Articles / Desktop Programming / Win32

C++ Win32 SQLite

Displaying recent browsing history
* Michael Haephrati
i 30 Sep 2024 CPOL 3 min read @31k Y.51 A6

This article explains how and where browsing history is stored and how to fetch it.

This article is about browsing history and focuses on the commonly used browsers: Edge and Chrome.
In this article | will explain how to get the recent browsing history, in this case, the history of the last
10 minutes, along with the dates and times in UTC.

Download source - 1.5 MB

Github repo: https://github.com/securedglobe/browsinghistory

Introduction

B Administrator: Command Prompt (=) X

om/, Vi
yscanner.net/?previ, GEO_ ON&r r - : 2024-09-29 19
2024-09-29
: 2024-09-29 19
24-09-29 19:28:26

roundcubs
roundcube/?_ ailg_r &_uid=110258 mby i ime (024-09-29
8 «_mbox=INBOX w, Visit Time (UT

curedglobe.net/, Visit Time 29 19:
curedglobe.net/category/all- , Visit Time (UTC
securedglobe.net/, Visit Time (UTC): 2024-89-29 1
Time (U

.com/, \
.com/, Visit Time (UT
.com/, Visit Time (UT

Tim

58,
2famcdn.msftauth.ne

gment&promp
nant=commong&ui_:
neF6KLBPIRSMOKKTgrpY!

When trying to get the browsing history, there are several questions:
- Where is it stored?

- How frequent is it updated?

- In what format is it stored?

- What is the best method to access that information?

Microsoft Edge stores its history in "<User profile>\AppData\Local\Microsoft\Edge\User
Data\Default\History". It uses a table named urls to store each visit, excluding Incognito mode.

From the programming view, if you have found the user's profile path and stored it in userProfilePath,
the database path will be:

userProfilePath + "\\AppData\\Local\\Microsoft\\Edge\\User Data\\Default\\History"

Google Chrome stores its history in "<User profile>\AppData\Local\Google\Chrome\User
Data\Default\History". It uses a table named urls to store each visit, excluding Incognito mode.

From the programming view, if you have found the user's profile path and stored it in userProfilePath,
the database path will be:

userProfilePath + "\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\History"

The building blocks

For the purpose of this article, | created a Console application using Visual Studio 2022.

Since the browsing history is stored in an sqlite3 database, we need to include the sqlite3 library or
source code files.

To be able to read the browsing history database, we need to be able to handle sqlite3 databases. You
can find further information about sqlite3 here. We then need to add sqlite3.c and sqlite3.h to the
project.

All locations are relative to the current user's profile path in the c:\users folder. We first need to find
that path. Here is a function that does that:

// Get the current user's profile path (e.g., C:\Users\<username>\)
std::wstring GetUserProfilePath()

{ WCHAR path[MAX_PATH];
if (SUCCEEDED(SHGetFolderPathW(NULL, CSIDL_PROFILE, NULL, ©, path)))
{ return std::wstring(path);
}
return L"";
}

Since the databases may be locked, and they will be locked if Edge or Chrome are running, we first
need to copy them to another location and access them from there.

// Function to copy the lLocked database to a temporary file for querying
bool CopyDatabaseToTemp(const std::wstring& dbPath, std::wstring& tempDbPath)

wchar_t tempPath[MAX_PATH];
if (GetTempPathW(MAX_PATH, tempPath) == @)
{

}

wchar_t tempFileName[MAX_PATH];
if (GetTempFileNameW(tempPath, L"dbcopy", ©, tempFileName) == 0)
{

}

return false;

return false;

tempDbPath = std::wstring(tempFileName);

try
{
std::filesystem::copy_file(dbPath, tempDbPath,
std::filesystem: :copy_options::overwrite_existing);
return true;

}

catch (const std::filesystem::filesystem_error& e)

{
wprintf(L"Failed to copy database: %s\n", ConvertUtf8ToWide(e.what()).c_str());
return false;

}

There are several ways to store dates and times.

WebKit Epoch

The WebKit timestamp starts from January 1, 1601 (UTC).
Unix Epoch

The Unix timestamp starts from January 1, 1970 (UTC).
Converting between WebKit Epoch to Unix Epoch

We use the following function for the conversion. ConvertWebKitToUnixTime()
Here is how it works:
Parameters:

webkitTime: This is an int64_t value representing a timestamp in microseconds since the WebKit
epoch (January 1, 1601).

Return Type:

The function returns a time_t value, which represents the Unix timestamp in seconds since the Unix
epoch (January 1, 1970).

The Logic:

The WebKit timestamp is in microseconds, while the Unix timestamp is in seconds. By dividing
webkitTime by 1,000,000, we convert microseconds to seconds.

Adjusting for the Epoch Difference:

The difference between the two epochs (January 1, 1601, and January 1, 1970) is 369 years.

This difference translates to 11644473600 seconds.

The - 11644473600LL in the calculation adjusts the timestamp from the WebKit epoch to the Unix
epoch.

Final Computation:

static_cast<time_t>(webkitTime / 1000000 - 11644473600LL);

It takes the WebKit timestamp in microseconds, converts it to seconds, and then subtracts the
difference in seconds between the two epochs to yield the correct Unix timestamp.

Here is the function:

// Convert WebKit timestamp (microseconds) to Unix timestamp (seconds)
time_t ConvertWebKitToUnixTime(int64_t webkitTime)

{
return static_cast<time_t>(webkitTime / 1000000 - 11644473600LL); // Adjusting for
WebKit epoch

}

There is also some code for printing the results in human readable format, in my case, | display them
in UTC.

// Convert time_t to human-readable UTC time string
std::wstring FormatUnixTimeToUTC(time_t unixTime)

{

struct tm timeInfo;
if (gmtime_s(&timeInfo, &unixTime) != @) // Safe version of gmtime

{
}

return L"Invalid time";

wchar_t buffer[80];
wcsftime(buffer, sizeof(buffer), L"%Y-%m-%d %H:%M:%S", &timeInfo); // Format time

return std::wstring(buffer);

In the source code below, we print both Edge and Chrome's recent browsing history.

C++

// Function to read browsing history from a given database path
void PrintUrlsFromDatabase(const std::wstring& dbPath, const time_t currentTime, const

time_t timeRangeInSeconds)

{

std: :wstring tempDbPath;
if (!CopyDatabaseToTemp(dbPath, tempDbPath))

{
wprintf(L"Failed to copy database to temporary file: %s\n", dbPath.c_str());

return;

}

sqlite3* db;

if (sqlite3_openl6(tempDbPath.c_str(), &db) != SQLITE_OK)

{
wprintf(L"Failed to open database: %s\n", tempDbPath.c_str());
return;

}

// Query to get URLs and visit times
const char* query = "SELECT u.url, v.visit_time FROM urls u JOIN visits v ON u.id =

v.url ORDER BY v.visit_time DESC;";

sqlite3_stmt* stmt;

if (sqlite3_prepare_v2(db, query, -1, &stmt, nullptr) != SQLITE_OK)

{
wprintf(L"Failed to prepare statement: %S\n", sqlite3_errmsg(db));
sqlite3_close(db);
return;

}

// Execute the query and process the results
while (sqlite3_step(stmt) == SQLITE_ROW)
{

const char* foundUrlUtf8 = reinterpret_cast<const char*>(sqlite3_column_text(stmt,

9));

int64_t visitTimeWebKit = sqglite3_column_int64(stmt, 1);
time_t visitTimeUnix = ConvertWebKitToUnixTime(visitTimeWebKit);

// Check if the URL was visited within the last 10 minutes
if (difftime(currentTime, visitTimeUnix) <= timeRangeInSeconds)

{
// Convert the URL from UTF-8 to wide string using the Windows API function

std::wstring foundUrl = ConvertUtf8ToWide(foundUrlUtfs8);

// Format the visit time to a human-readable UTC string
std::wstring visitTimeStr = FormatUnixTimeToUTC(visitTimeUnix);

wprintf(L"URL: %s, Visit Time (UTC): %s\n", foundUrl.c_str(),
visitTimeStr.c_str());

}
}

sqlite3_finalize(stmt);
sqlite3_close(db);

// Remove the temporary file after use
std::filesystem: :remove(tempDbPath);

This article, along with any associated source code and files, is licensed under The Code Project Open
License (CPOL)

Written By

Michael Haephrati
CEO Secured Globe, Inc.
== United States

Michael Haephrati is a music composer, an inventor and an expert specializes in software
development and information security, who has built a unique perspective which combines
technology and the end user experience. He is the author of a the book Learning C++ , which teaches
C++ 20, and was published in August 2022.

He is the CEO of Secured Globe, Inc., and also active at Stack Overflow.

Read our Corporate blog or read my Personal blog.

Follow @haephrati

Xm

Comments and Discussions

=1 message has been posted for this article Visit
https://www.codeproject.com/Articles/5388718/Displaying-recent-browsing-history to post and
view comments on this article, or click here to get a print view with messages.

Permalink Article Copyright 2024 by Michael
Advertise Posted 30 Sep 2024 Haephrati
Privacy Everything else Copyright ©
Cookies CodeProject, 1999-2024

Terms of Use
Web01 2.8:2024-07-22:1

