
Articles » Web Development » Trace and Logs » Debug and Tracing

Console Enhancements
Wesner Moise

3 Jul 2003 CPOL

This article enhances console support in .NET such as clearing, colored text, and more; enables console support in Windows
apps as well as DOS apps; and also eases testing and debugging of .NET applications.

Download source files - 17 Kb

Introduction
System.Console is a class provided by the framework to handle console I/O and redirection. The Win32 API also
supports a set of console APIs. Win32 supports a single console for each application (process), even a Windows Forms
Application. Consoles support a number of features such as buffering, full-screen mode, colors, and so on. You can call
another process and capture its output into your own console. With console applications, the console is inherited from the
calling process; however, Windows application are detached from any console.

Unfortunately, the Console class does not take advantage of most of the features supported in the console APIs. So, I
introduced a new class called WinConsole, that provides more of the functionality offered by the Win32 class. It
provides some of the more popular console functions, but not yet all of them. It can be used in both Console and Windows
Applications and probably Class Libraries as well. I plan to add the full range of functionality sometime in the future.

I initially intended to use it for debugging purposes and was going to call it DebugConsole, but it is also used as a
replacement or extension for the existing Console class. I found that testing a low-level UI-less, data structure or class in
a full-fledged Windows Application can be very difficult. Standard I/O no longer work. The Debugger Output Window is just
a poor substitute for the console. It has fewer capabilities than the console and requires flipping between the application
and the debugger. Now, with WinConsole, Console.WriteLine() and Console.ReadLine() are both
available for WinForms apps.

Web applications are still out of luck. Sorry.

WinConsole in Console Application
In Console applications, WinConsole provides additional features such as the following:

1) Hiding and showing the console window (WinConsole.Visible = false)
2) Clearing the console window (WinConsole.Clear())
3) Getting or setting the cursor location
4) Changing the color of text to one of 16 different console colors (WinConsole.Color = ConsoleColor.Red)

<

5) Having standard error output written with a different color as demonstrated above.
6) Automatically flashing window and beeping when an error message is written out. (WinConsole.Beep())
7) Capturing asserts and traces to standard error each with a different color scheme

To read input and write output, you can use Console.WriteLine and Console.ReadLine. You can also use
WinConsole.WriteLine or WinConsole.ReadLine, but it always defers to the Console functions.

WinConsole in Windows Application
WinConsole truly shines in a Windows application environment. It enables the use of an additional console window
alongside the main application window, which can be hidden and shown anytime. It contains all the additional
enhancements, listed above for Console applications, and more.

WinConsole is especially useful for debugging and tracing. Testing data structures becomes a lot harder when moving
from a console app to a windows application, because of the omission of console window to report interesting messages.
The standard Debug.Write, Trace.Write call OutputDebugString, which sends data to the limited Debugger's
output window.

With WinConsole, calls from Debug.Write(Line), Trace.Write(Line), and even
Console.Write(Line) and Console.Error.Write(Line) can output to the application console window,
each in its own independent color. In addition to coloring, there is a flashing mode that can be selected (flash once, flash
until response) to alert the developer/tester to warning and error messages.

Input can also be read from the console window through Console.Read(Line). This allows the application to easily
receive input from the user in a simple synchronous model instead of a more complex event-driven model. In this way, an
entire command-line system can be developed for the application while it is running for performing various tests.

The best part is that the console window is owned and painted separately by the operating system in a separate thread, so
that it is always viewable while debugging even after entering break mode or flipping back and forth between the
debugger and the application. In contrast, normal application windows are frozen--they cannot be redrawn since event
processing is suspended after a break.

WinConsole API
To use the WinConsole in a Windows application, WinConsole.Visible should be assigned at some point before
the console is used. Of course, the assignment needs to be true in order to see any contents. Alternatively,
WinConsole.Initialize() can be called, but the console may not be visible.

In console applications, WinConsole.Initialize() is sufficient. Most of the properties and methods in
WinConsole will cause an initialization to occur as well, if it has not already occurred.

Below is a list of properties.

Properties Description

Buffer
(IntPtr) Get the current Win32
buffer handle

BufferSize
(Coord) Returns the size of
buffer

Color
(ConsoleColor) Gets or sets the
current text and background color and other attributes of
text

<FONT
size=2>CtrlBreakPressed

(bool) indicates whether control
break was pressed. Value is automatically cleared after
reading.

<FONT
size=2>CursorPosition

(Coord) Gets and sets the
current position of the cursor

Handle (IntPtr) Get the HWND of the console window

<FONT
size=2>MaximumScreenSize

(Coord) Returns the maximum
size of the screen given the desktop dimensions

<FONT
size=2>ParentHandle

Gets and sets a new parent hwnd
to the console window

ScreenSize
(Coord) Returns a coordinates of
visible window of the buffer

Title Gets or sets the title of the console window

Visible
Specifies whether the console window should be visible or
hidden

To change the color of text, Color must be assigned a ConsoleColor.

ConsoleColor is an enum consist of flags Red, Blue, Green, Intensified, RedBG, BlueBG,
GreenBG, IntensifiedBG. The BG colors are for the background color. By using various combinations of each
color flags, you can achieve 16 colors for text and 16 colors for the background. To produce white, Red|Green|Blue|

Intensified must be set. When the intensified flag is missing, the unintensified color is midway between black and the
chosen color. So, white becomes gray, red becomes dark red, and so on.

Below is a list of properties.

Method Description

Beep() Produces a simple beep

Clear() Clear the console window

Flash(bool)
Flashes the console window (Currently now working on
my machine, if you can figure out why, I would be
grateful)

<FONT
size=2>GetWindowPosition(out int
x, out int y, out int width, out
int height)

Gets the Console Window location and size in pixels

Initialize() Initializes WinConsole -- should be
called at the start of the program using it

<FONT
size=2>LaunchNotepadDialog(string
arguments)
<FONT
size=2>RedirectDebugOutput(bool
clear, ConsoleColor color, bool
beep)

Redirects debug output to the console
clear - clear all other listeners first
color - color to use for display debug output

<FONT
size=2>RedirectTraceOutput(bool
clear, ConsoleColor
color)

Redirects trace output to the console

<FONT
size=2>SetWindowPosition(int x,
int y, int width, int
height)

Sets the console window location and size in pixels

In addition to these methods and properties, WinConsole also includes all the standard Console methods and
properties, which it simply redirects to the Console class, so that there is exactly no difference between calling a
Console method and its corresponding WinConsole method. For example, WinConsole.WriteLine calls
Console.WriteLine.

Coloring Standard Error Output, Debug Output or Trace
Output
I have also included a ConsoleWriter class, which can be used to provided colored output, flashing, and/or beeping to
the console window.

ConsoleWriter is constructed by calling new on the ConsoleWriter(TextWriter writer,
ConsoleColor color, ConsoleFlashingMode mode, bool beep) constructor.

Redirecting Standard Error:
 Console.Error = new ConsoleWriter(Console.Error, ConsoleColor.Red|
ConsoleColor.Intensified, 0, true);

Redirecting Debug or Trace Output:
 Debug.Listeners.Remove("default"); // Debug.Listeners.Clear();

Debug.Listeners.Add(new TextWriterTraceListener(new
ConsoleWriter(Console.Error, ...)));

You can also use the convenience function: WinConsole.RedirectDebugOutput(...).

Launch Notepad Dialog
At Microsoft, virtually every group uses a command-line environment for building, testing and so on; this can sometimes
make it difficult to get a complex set of information from a user, because of the UI-less environment.

Thus, the infamous notepad dialog was invented. A command would start a notepad.exe with a filename argument and
wait for it to exit. The file is prepopulated with help comments and default information. The user edits the file and indicates
OK by exiting notepad. The suspended command, which was waiting for notepad to exit, is now resumed and ready to
process the notepad file.

The image shows a typical notepad dialog.

WinConsole.LaunchNotepadDialog takes a filename argument, and launches a notepad dialog, in which the user can
modified the specified file.

Conclusion
This represents just one of my articles in the debugging series. There will be others.

I'd appreciate your vote; it is a powerful motivating force for me.

Permalink
Advertise
Privacy
Cookies
Terms of Use

Article Copyright 2003 by Wesner Moise
Everything else Copyright © CodeProject,

1999-2019

Web03 2.8.191213.1

Version History
• June 28, 2003 - Original article.

License
This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

About the Author

Comments and Discussions

64 messages have been posted for this article Visit https://www.codeproject.com/Articles/4426/Console-
Enhancements to post and view comments on this article, or click here to get a print view with messages.

I am a software entrepreneur and former Microsoft Excel developer

I founded SoftPerson LLC (softperson.com) to build software using artificial intelligence to perform tasks associated with
people. My business plan was a finalist in a national competition.

I helped develop Microsoft Excel 97, 2000 and XP. I received a BA from Harvard College in Applied
Mathematics/Computer Science and an MBA from UCLA in technology entrepreneurship. I also obtained an
MCSE/MCSD certification in 1997. My IQ is in the 99.9 percentile. I received a Microsoft MVP award in 2006.

My technical blog on .NET technologies is wesnerm.blogs.com.
My personal website is http://wesnermoise.com.
My company website is http://softperson.com.

Wesner Moise
CEO SoftPerson; previously, Microsoft
United States

