
2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 1/8

Chess Program in C#
Jacques Fournier

26 Oct 2020 GPL3

SrcChess is a chess program built in C#

Download source - 2.5 MB

Download demo - 2.5 MB

 

Introduction
SrcChess is a chess program built in C#. Although it is not on par with commercial chess programs, SrcChess is beating me
without any problem and therefore can be a serious opponent for casual players. The program supports a reasonable number of
functions. Its biggest weaknesses are probably the lack of a good board evaluation function and of an end game database. One of
its strengths is that it takes advantage of multiple processors when available. The program also includes a PGN filter that lets you
import games in PGN format and build your own openings book.

https://www.codeproject.com/
https://www.codeproject.com/script/Membership/View.aspx?mid=399077
http://www.opensource.org/licenses/gpl-3.0.html
https://www.codeproject.com/KB/game/SrcChess/Article_src.zip
https://www.codeproject.com/KB/game/SrcChess/Article_demo.zip


2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 2/8

I decided to make my program available so programmers can understand how a chess program works. I also hope some people will
improve it.

Features
This chess program features:

Visual interface
Multiple difficulty levels
Database of book openings
Loading / saving of game
Undo / redo functions
Reversing the board
Player against computer
Computer against computer
Player against player
Creating your own chess board (manually or from PGN)
Hints for the player
Etc.

Versioning

Versi
on
3.0

Added difficulty levels 
      Beginner:         Use a weak evaluation board (all pieces have the same value) 
                              2-Ply search 
                              No opening book 
      Easy:                Use basic evaluation board 
                              2-Ply search 
                              No opening book 
      Intermediate:   Use basic evaluation board 
                               4-Ply search 
                               Unrated opening book 
      Advance:          Use basic evaluation board 
                               4-Ply search 
                               Master opening book 
      More Advance: Use basic evaluation board 
                                6-Ply search 
                                Master opening book 
      Manual:             Define your own settings 
Simplified the user interface 
Added interface to the FICS (Free Internet Chess Server). You can now observe 
      the following games in real time: 
            Lightning / Blitz / Untimed and Standard time 
Added tooltips in many dialog boxes and in the main interface 
Added more than 100 mates in N move games. 
Added a warning for saving a board before leaving a game. 
Moved the chessboard closer to the center 
Rewrote the PGN parser to handle bigger PGN files and to be more compliant 
      with PGN specifications. 
The new parser comes with an improved advanced book and a new intermediate one. The new books have
been created from a 2.77 millions TWIC games. Thank you to chess.com for the SCID file. The advanced
book includes games from players with ELO rating of 2500 or more. 
Simplified status bar 
Added a progress bar when finding a best move or waiting for a move from FICS server. 
Did a major code clean-up 
The game is now saving its last position and size. 
To come: Let users play game via FICS server.

 

Versi
on Bugs corrections. More information in Readme.txt 

 



2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 3/8

2.05 Add the Refresh option.

Versi
on
2.04

Bugs corrections. More information in Readme.txt 
New menu to create a snapshot of a game to help fixing bugs.

 

Versi
on
2.03

Add a button to load a PGN games without the moves
 

Versi
on
2.02

Bugs correction: Endless loop when reading/parsing PGN files
 

Versi
on
2.01

Bugs correction. More information in Readme.txt
 

Versi
on
2.00

Move to WPF 
New user interface. 
Add list of piece sets to choose from 
Thank you to Ilya Margolin for the XAML piece sets

 

Versi
on
1.10

Move to .NET Framework V4 
Use <font face="Courier New">System.Threading.Tasks </font>to simplify the
multi-threading implementation 
Improves the search engine and the board evaluation interface 
Correct exception when resizing the <font face="Courier New">ChessControl</font> 
For a more exhaustive list, look at the readme.txt file.

 

Versi
on
1.00

Improves the user interface 
Improves the search engine and the board evaluation 
Add a new iterative depth-first fix ply search method 
Correct depth-first so it perform correctly 
Add timer 
Games can now be saved in PGN format 
Saved format is NOT compatible with previous version 
For a more exhaustive list, look at the readme.txt file.

 

Versi
on
0.943
.000

Add support for the threefold repetition rule 
Add support for the fifty-move rule 
Add a new interface to help adding new board evaluation methods to the game. For more information,
reads the BoardEvaluator.txt file. 
Add a test mode to compare the performance and the efficiency of board evaluation method (Tool -> Test
Evaluation Method...). 
Clean-up the code a little...

 

Versi
on
0.942
.000

Ply count has been corrected so it represents a move by one player. 
Adds an option to configure move shuffling (to add some random to game). It's now possible to disable it
to make debug easier. 
Add timing information about search.

 

Versi
on
0.941
.000

Iterative deepening depth-first search is now working. You can now choose a fixed amount of time for
finding a best move instead of a number of ply. 
The opening book will choose more often usual openings.

 

Versi
on
0.940
.000

Add an option to enable/disable book opening 
Add an option to select the multi-threading mode 
Add an option to set the size of the transposition table 
Search setting is now persisted 
Correct the transposition table algorithm 
Decrease the points given for castling in the board evaluation 
Iterative deepening depth-first search is close to be functional... but not yet.

 

Versi
on Corrects exception occurring at the end of a game.

 



2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 4/8

0.930
.002

New option to enable/disable the transposition table. (The option is off by default to correct a bug. Next
version will enable it by default). 

Versi
on
0.930
.001

Original posted version.

 

Behind the Board
The program is developed in C# using Visual Studio 2010. It uses the alpha-beta pruning search algorithm (and minimax for
debugging) to search for the next best move. To decrease the number of moves to evaluate, the search algorithm uses a
transposition table implemented with Zobrist hashing.  

To further improve the performance of the search, the program uses one thread per processor found on the computer and splits the
search among them (finally a use for the multiple processors on my computer...). The search threads are low priority so as not to
disturb too much the computer response.

The program uses a database of book openings. The one provided with the game was built from PGN files. The program also
provides a PGN parser so you can build your own openings database using an option on the Tool menu. The parser also allows you
to replay chess games downloaded from the Web in PGN format.

Building an Openings Book
A database of book openings is provided with the program. You can build your own openings book from any PGN file (easily found
on the Web).

The program includes a parser that allows you to import and filter the content of a PGN file according to parameters such as players
or rankings. This filtered version of the PGN file can also be saved and used to create an openings book.

The openings book must be located in the directory containing the executable and named book.bin.



2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 5/8

What Needs to be Improved?
The board evaluation function is minimalist. Improvements on this function will greatly enhance the level of playing of the program.
Similarly, the end game stage of the program could benefit from the inclusion of an end game database.

There is no rating among the different openings; an opening is thus chosen randomly.

Improvements can also be made on the user interface. Adding a help file to the game would be welcome.

Source Description
A chess program is not very complex in itself. But like a lot of software, the devil is in the details. This chess program contains
around 10,000 lines of codes (including remarks). The user interface is separated from the other classes so it can easily be changed.

The ChessBoard class is the most important since it contains the board abstraction. It also contains the logic to build the list of
legal moves and to search for the best move. A little extra complexity was added to support multi-threading. However, the class is
relatively small (less than 2000 lines). To improve the speed of the search, a list of legal moves for each {piece, piece position} is
created once in the static constructor of the class.

ChessBoard: Class constructor
CopyFrom: Copy a board into another one
Clone: Create a clone of the board
ReadBook: Read an openings book from a file
SaveBoard: Save the board to a stream
LoadBoard: Load the board to a stream
ResetBoard: Reset the board to initial position
this[int iPos]: Default indexer, get or set a piece on the board
GetEatedPieceCount: Return the number of pieces which have been captured for a given color
DoMove: Do the specified move
UndoMove: Undo the specified move



2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 6/8

WhitePieceCount: Number of white pieces on the board
BlackPieceCount: Number of black pieces on the board
IsCheck: Determine if a given color king is being directly attacked
EnumMoveList: Enumerate all the possible moves for a given color
FindBestMove: Find the best move for a given color using alpha-beta or minimax
FindBookMove: Find a move in the openings book
GetHumanPos: Return a human readable move from a move structure
CancelPlay: Cancel the background search

The core logic of the search lies in the alpha-beta pruning function. This function can be used in two modes:

Specific number of ply
Iterative deepening depth-first search

The first method searches for the best move in a specified number of ply.

The second one tries to find the best move in a specific amount of time using an iterative depth-first search, increasing the number
of ply for each search up to the moment when time is exhausted. At first glance, this method may seem less efficient since it
performs the same search repeatedly. But in practice, the method reorders the moves between each search to optimize the alpha-
beta cut-off. Another big advantage of this method is that the number of ply can be adjusted depending on the stage of the game.
In particular, the end game holds fewer pieces on the board, so increasing the number of ply doesn't have the same impact as
doing so in the middle of the game.

The following lists the source files and description. The number of lines appears in brackets after the name of the file. The code has
a total of 9836 lines.

Assembly.cs (34) 
Assembly file for .NET application.

Book.cs (359) 
Implements the book openings.

ChessBoard.cs (1990) 
Implements the chess board regardless of the user interface. This is where the core logic of the program lies (search, legal
moves, etc.). The search function is implemented using minimax and alpha-beta algorithms, using multi-threading when
possible.

ChessControl.cs (1510) 
User interface for the chess board. Implemented as a UserControl.

ChessControl.Designer.cs (86) 
Visual Studio generated code for the control.

frmAbout.cs (16) 
About dialog box.

frmAbout.Designer.cs (110) 
Visual Studio generated code for the form.

frmChessBoard.cs (1236) 
Main form containing all the other controls (ChessControl, MoveViewer, etc.).

frmChessBoard.Designer.cs (499) 
Visual Studio generated code for form.

frmCreatePGNGame.cs (114) 
Interface to convert a PGN file into a book openings database.

frmCreatePGNGame.Designer.cs (97) 
Visual Studio generated code for the form.

frmGameParameter.cs (165) 
Parameters of the game.

frmGameParameter.Designer.cs (218) 
Visual Studio generated code for the form.



2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 7/8

frmPGNFilter.cs (340) 
Parameters for filtering a PGN file.

frmPGNFilter.Designer.cs (309) 
Visual Studio generated code for the form.

frmPGNGamePicker.cs (209) 
Choosing from PGN game.

frmPGNGamePicker.Designer.cs (103) 
Visual Studio generated code for the form.

LostPiecesControl.cs (299) 
Control used to show the captured pieces.

LostPiecesControl.Designer.cs (63)
Visual Studio generated code for the control.

MoveViewer.cs (192) 
Control used to show the moves.

MoveViewer.Designer.cs (87) 
Visual Studio generated code for the control.

PGNParser.cs (765) 
Parser for PGN notation.

PgnUtil.cs (816) 
Utility class for PGN files.

Program.cs (21) 
Main program.

TransTable.cs (232) 
Transposition table implementation.

Short Glossary
All terms can be easily found on the Web (Wikipedia is a good source).

Ply

A ply consists of a half move (a move of one side only). A 4-ply search means to search 2 moves in advance.

PGN

Portable Game Notation, or PGN, is a notation used to record chess games. PGN is widely used as it is easy to read by users and to
process by computers. Many chess games and events are published in the PGN format. The parser allows the chess program to read
these files.

Minimax

Minimax is a recursive algorithm use for choosing the next move in a game. A tree of legal moves is built and played. Each move is
evaluated using an evaluation function. The computer makes the move that maximizes the minimum value of the position resulting
from the opponent's possible following moves.

Alpha-beta Pruning

The alpha-beta pruning function is an improvement of the minimax search method. It reduces the number of nodes to evaluate by
eliminating a move when at least one possibility was proved worse than a previously evaluated one.



2020/10/29 Chess Program in C# - CodeProject

https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=Print 8/8

Permalink 
Advertise  
Privacy
Cookies 
Terms of Use 

 Article Copyright 2009 by Jacques Fournier
Everything else Copyright © CodeProject,

1999-2020 

Web06 2.8.20201022.1

Transposition Table

A transposition table is a hashing table that records the previous moves' evaluations so they will not have to be re-evaluated.
Transposition tables are used to speed up the search of the game tree. They are implemented using Zobrist hashing .

Zobrist Keys, Zobrist Hashing

To implement a transposition table, it is important to determine if two boards are equivalent in configuration and in potential
moves. To do so, we can just compare the pieces of the two boards, but we must also take into account castling and en-passant
moves, as they constrain possible moves. The only problem is that this method is a quite long when considering it has to be used
millions of times to evaluate each move. Zobrist hashing simplifies this process by assigning each board position a 64-bit signature;
instead of checking each piece one by one to see if the board has already been evaluated, we just compare the two 64-bit values.

License
This article, along with any associated source code and files, is licensed under The GNU General Public License (GPLv3)

About the Author

Comments and Discussions
 191 messages have been posted for this article Visit https://www.codeproject.com/Articles/36112/Chess-Program-in-C to

post and view comments on this article, or click here to get a print view with messages.

Jacques Fournier
Web Developer Consyst SQL
Canada 

Consyst is a dynamic IT company specialized for more than 20 years in information technology architecture and in the
development of innovative productivity tools for businesses. Rep++, the product at the core of its mission, can significantly
accelerate the development cycle of applications and services by reducing the duration of the design, coding, testing and
maintenance stages. 
Rep++ uses a model-driven approach supported by a powerful model execution mechanism. Essential complement to Visual
Studio® (Microsoft®), Rep++ includes: an open and centralized model that is used to define, contain and manage all the
metadata of an application set; toolkits and application frameworks that implement various flavors of the presentation layer; and
specialized assistants that simplify the creation of applications and services for a variety of architectures and technologies. These
elements provide a very high automation level, which enable businesses to focus their development efforts on where it counts:
their business rules.

https://www.codeproject.com/Articles/36112/Chess-Program-in-C
http://developermedia.com/
https://www.codeproject.com/info/privacy.aspx
https://www.codeproject.com/info/cookie.aspx
https://www.codeproject.com/info/TermsOfUse.aspx
mailto:webmaster@codeproject.com
http://www.opensource.org/licenses/gpl-3.0.html
https://www.codeproject.com/Articles/36112/Chess-Program-in-C
https://www.codeproject.com/Articles/36112/Chess-Program-in-C?display=PrintAll
https://www.codeproject.com/Members/Jacques-Fournier

