Y K torihose who code
Chess Program in C#
% Jacques Fournier
13 Jun 2023 GPL3
L =1
SrcChess is a chess program built in C#

SrcChess is a chess program that supports a reasonable number of functions and is built using C#.

Download source - 2.5 MB

Download program - 2.7 MB

1 SrcChess for WPF (Version 3.20) _ = =
File Edit Options Tool Help
B ® White : 00:01:34 Black : 00:00:00
e e w12 b ¢ d e f g h HEss
8 3
M
6
sl
4
e
5 e
l
d

Manual | Move | White mates in five moves

SrcChess is a chess program built in C#. Although it is not on par with commercial chess programs,
SrcChess is beating me without any problem and therefore can be a serious opponent for casual
players. The program supports a reasonable number of functions. Its biggest weaknesses are probably
the lack of a good board evaluation function and of an end game database. One of its strengths is
that it takes advantage of multiple processors when available. The program also includes a PGN filter
that lets you import games in PGN format and build your own openings book.

| decided to make my program available so programmers can understand how a chess program
works. | also hope some people will improve it.

This chess program features:

e Visual interface

e Multiple difficulty levels

e Database of book openings
¢ lLoading / saving of game

e Undo / redo functions

e Reversing the board

¢ Player against computer

e Computer against computer
e Player against player

e Creating your own chess board (manually or from PGN)
e Hints for the player

e etc.
Versi : . . .
on e Fixes a crash when trying to find the best move for a player who is in
390 check and there are not enough pieces to do a mate
Versl o Moves to .NET 7.0
(3)21 e Improves search performance using dynamic PGO

e Adds a reverse board option
e Adds a readme.txt describing the source files
e Removes the pawn promotion to a pawn

e Finishes the generalization of the search engine

e Runs only on .NET 6.0

e The main menu has been restructured.

e The status bar now displays the number of threads running when the best
move is being searched.

e Restructures the code to separate:

o the core chess routines
o the search engine
o the PGN parsing
Versi o the FICS interface (chess server)
on o the user interface
3.20 e Fixes the crash which occurs when a game has more than 256 moves (512
ply)
e The chess 50 move rule now correctly checks for 50 moves (was 50 ply).
e Diables iterative deepening. The way the multi-threading is implemented
makes the iterative deepening longer than when you're not using it. | will
try to find a solution to that.
e The translation table now works properly and improves the performance
of the search.
e Code clean-up has been done.
Correct multi-thread problem when using translation table
e Updates the project to use the .NET Framework 4.8 (was .NET Framework
4.0)
Versi e Compiles in x64 to support bigger translation table (was x86)
on e Adds a .NET 6.0 version of the program
3.03 e Revises the code to
o Supports the new C# syntax (nullable references, new switch
expression, etc.
o Improves the esthetic of the code (no more hungarian notation)
Versi
on e Prompts user before switching to design mode
3.02
versi e Corrects bug which permits a castling to occur with a rook which has been
(3)%1 eaten if neither the rook nor the king has been moved.

e Corrects an exception which was occurring when loading a PGN files with
an invalid format.

Versi
on
3.0

e Adds the game result to terminate the move list when saving a game in

PGN format.

Added difficulty levels

value)

Beginner: Uses a weak evaluation board (all pieces have the same
2-Ply search
No opening book

Easy: Uses basic evaluation board
2-Ply search

No opening book
Intermediate: Uses basic evaluation board
4-Ply search
Unrated opening book
Advance: Uses basic evaluation board
4-Ply search
Master opening book
More Advance: Uses basic evaluation board
6-Ply search
Master opening book
Manual: Defines your own settings

e Simplifies the user interface
e Adds interface to the FICS (Free Internet Chess Server). You can now

observe the following games in real time: Lightning / Blitz / Untimed and
Standard time

e Adds tooltips in many dialog boxes and in the main interface
e Adds more than 100 mates in N move games

e Adds a warning for saving a board before leaving a game

e Moves the chessboard closer to the center

Rewrites the PGN parser to handle bigger PGN files and to be more
compliant with PGN specifications.

The new parser comes with an improved advanced book and a new
intermediate one. The new books have been created from a 2.77 millions
TWIC games. Thank you to chess.com for the SCID file. The advanced
book includes games from players with ELO rating of 2500 or more.
Simplifies status bar

Adds a progress bar when finding a best move or waiting for a move from
FICS server

Did a major code clean-up

The game is now saving its last position and size.
To come: Let users play game via FICS server.

Versi
on
2.05

Versi
on
2.04

Versi
on
2.03

Versi
on
2.02

Versi
on
2.01

Versi
on
2.00

Versi
on
1.10

Versi
on
1.00

Versi
on
0.94

Bugs corrections. More information in Readme.txt
Adds the Refresh option

Bugs corrections. More information in Readme.txt
New menu to create a snapshot of a game to help fixing bugs.

Adds a button to load PGN games without the moves

Bugs correction: Endless loop when reading/parsing PGN files

Bugs correction. More information in Readme.txt

Moves to WPF

New user interface

Adds list of piece sets to choose from

Thank you to llya Margolin for the XAML piece sets

Moves to .NET Framework V4

Uses System.Threading.Tasks to simplify the multi-threading
implementation

Improves the search engine and the board evaluation interface
Correct exception when resizing the ChessControl

For a more exhaustive list, look at the readme.txt file.

Improves the user interface

Improves the search engine and the board evaluation

Adds a new iterative depth-first fix ply search method
Corrects depth-first so it performs correctly

Adds timer

Games can now be saved in PGN format

Saved format is NOT compatible with previous version
For a more exhaustive list, look at the readme.txt file.

Adds support for the threefold repetition rule
Adds support for the fifty-move rule

3.00
0

Versi
on

0.94
2.00

Versi
on

0.94
1.00

Versi
on

0.94
0.00

Versi
on
0.93
0.00

Versi
on
0.93
0.00

Adds a new interface to help adding new board evaluation methods to
the game. For more information, reads the BoardEvaluator.txt file.
Adds a test mode to compare the performance and the efficiency of
board evaluation method (Tool -> Test Evaluation Method...).

Clean-up the code a little...

Ply count has been corrected so it represents a move by one player.
Adds an option to configure move shuffling (to add some random to
game). It's now possible to disable it to make debug easier.

Adds timing information about search

Iterative deepening depth-first search is now working. You can now
choose a fixed amount of time for finding a best move instead of a
number of ply.

The opening book will choose more often usual openings.

Adds an option to enable/disable book opening

Adds an option to select the multi-threading mode

Adds an option to set the size of the transposition table

Search setting is now persisted

Corrects the transposition table algorithm

Decreases the points given for castling in the board evaluation

Iterative deepening depth-first search is close to be functional... but not
yet.

Corrects exception occurring at the end of a game
New option to enable/disable the transposition table. (The option is off by
default to correct a bug. Next version will enable it by default.)

Original posted version

The program is developed in C# using Visual Studio 2010. It uses the alpha-beta pruning search
algorithm (and minimax for debugging) to search for the next best move. To decrease the number of
moves to evaluate, the search algorithm uses a transposition table implemented with Zobrist hashing.

To further improve the performance of the search, the program uses one thread per processor found
on the computer and splits the search among them (finally a use for the multiple processors on my
computer...). The search threads are low priority so as not to disturb the computer response too much.

The program uses a database of book openings. The one provided with the game was built from PGN
files. The program also provides a PGN parser so you can build your own openings database using an
option on the Tool menu. The parser also allows you to replay chess games downloaded from the
Web in PGN format.

[Select the Game from the PGH File

OO0 - Gashemey W againsl Bacrsl E (2705 / 2679 plaved on 2008 .04.21. Reaull is 1/2-1/2
00002 'fa:'nmua:alﬁsl Navara,D (2672 / 2776) pleyed on 2008 04.22. Aesult i 12172
3- ‘r'l.u-.m #Emmm"‘.-'l?E.'-'!-' EZE'.:r _.GnE*.Z-; P s 17212

(00005 - Wang Yue -a..aﬂr.t Chparinoy, IEEBE- EE-E'E"Iplaud ot 200804 24, Feeult ia 10
Q000E - naricey E agarst G Gashimow W (2679 / JEES) plarped on JO0E.04. 24 syl 172172
00007 - Nevere.D against Bacrot E (2705 / 2672) played on 2008 0435, Result s 1/2-1/2
(0008 - Inarkey E against Chapadnov | (2696 / 2684) played on 2008.04.27 F.'aautns[ﬂ
00003 - Wang Yue agenst Navara D (2571 / 2685} payed on 2008.04 27 Resub a 172-1/2
00010 - Werkdey E sgairel Mavara D (3672 / J604) played on 2008 04 29, Result is 10
00411 - Chepannov | againat Gashimow V (2573 / 2656} played on 200204 30 Resul & 1/2-1/2
Q00T - Bacrot.E aganst Wang Yue (2683 / ZT05) played on Z008.04 30, Fesk s 1/2-1/2
00013 - Bacrol E ageinsd nadddew E (2684 / 2705) played on 2008.05 01, Resut & -1

D014 - Mavara, Laqanxﬁaﬂ'um-.-"-f}ﬁ 9/ 267F played on 2008 05 03. Reault s 1/2-1/2
03015 - Gashanoy W against Grschuke A (2716 7 2673} played on 2008.05.04. Resut & 14
00016 - inarkiev E agairst Wang Yue (2685 EE..-d-}uIﬂ'ycd on 2008 0504 Result is 17212
00317 - Navara. [apainet Chepannoy | (28596 / 2672) played on 2008 05.05. Resull is 10

Event “FIDE GF'] ~|

EventCate: “2003.04.217]
[ECO “012)

l.c4 MEZ ddch 3. NF3d5 4. a2 B3 5. Ned ok 6 Nhd Bga 7. Ba2 Nbd7 B

00 BdE 3 g3 00 10 Moghitemh 17,63 Qe 12 a3 RicE 13 B3 RacE 14 B2

{BbE 15, Rel B46 16. 25 BhB 17 BaZX a5 18, bd a4 19,18 &3 20 Q3 A=l

21.Feal Ned 22 Muad deed 23, OF2 WG 24, 45 MedS 25. Beed NG 26 B3 Beb

27 Bod Rod8 28, ad af 29 boab 5 30, b oS 31, of begS 12 Back AFE

33, Boby5 Bixdd 34 modd Ol 35 RhT Otdd 36 Coodd Rdd 37, RidT RIAE 38

Fordd Fugd 35 Bob Npd 400 Fh2 Na541. BbB 9542 Ba2 Rd7 43. Wf2 gk 44, Fnd w |

| D= | l Cancel J

A database of book openings is provided with the program. You can build your own openings book
from any PGN file (easily found on the Web).

The program includes a parser that allows you to import and filter the content of a PGN file according
to parameters such as players or rankings. This filtered version of the PGN file can also be saved and
used to create an openings book.

The openings book must be located in the directory containing the executable and named book.bin.

2 Select Filter Criterias Elrﬁl@l

37 games found in the flz D IEEEGEGEGEGEGEGENN _o0= Proect'Chass programBaku 2008 por

ELO Ranges Playems Ercirg
[] atRanges [] includes Unrated A Piayem) [+] Al End Games

FETESEC I 0 PO 0
[] Range 2700 - 2733 [+#¥] Bacmt E [+]

[#] Carsen M]

[} Cheparninoy |

[#] Sashimay. V¥

[#] Grischuk A

[#] Inardiev E

[+] Kamsky G

[#] Kaakin, Sergey

[#] Mamedyamy. 5

[#] Navare D

E Radabtay, T

[#] Swidler P

[#] Wang Yue

[Select Al | | Select A |

R S

The board evaluation function is minimalist. Improvements on this function will greatly enhance the
level of playing of the program. Similarly, the end game stage of the program could benefit from the
inclusion of an end game database.

There is no rating among the different openings; an opening is thus chosen randomly.

Improvements can also be made on the user interface. Adding a help file to the game would be
welcome.

A chess program is not very complex in itself. But like a lot of software, the devil is in the details. This
chess program contains around 10,000 lines of codes (including remarks). The user interface is
separated from the other classes so it can easily be changed.

The ChessBoard class is the most important since it contains the board abstraction. It also contains the
logic to build the list of legal moves and to search for the best move. A little extra complexity was
added to support multi-threading. However, the class is relatively small (less than 2000 lines). To

improve the speed of the search, a list of legal moves for each {piece, piece position} is created once
in the static constructor of the class.

ChessBoard: Class constructor

CopyFrom: Copy a board into another one

Clone: Create a clone of the board

ReadBook: Read an openings book from a file

SaveBoard: Save the board to a stream

LoadBoard: Load the board to a stream

ResetBoard: Reset the board to initial position

this[int iPos]: Default indexer, get or set a piece on the board
GetEatedPieceCount: Return the number of pieces which have been captured for a given color
DoMove: Do the specified move

UndoMove: Undo the specified move

WhitePieceCount: Number of white pieces on the board

BlackPieceCount: Number of black pieces on the board

IsCheck: Determine if a given color king is being directly attacked
EnumMoveList: Enumerate all the possible moves for a given color
FindBestMove: Find the best move for a given color using alpha-beta or minimax
FindBookMove: Find a move in the openings book

GetHumanPos: Return a human readable move from a move structure
CancelPlay: Cancel the background search

< € € © €@ @ @ €@ @ € €@ €@ @ @ @ & & & &

The core logic of the search lies in the alpha-beta pruning function. This function can be used in two
modes:

e Specific number of ply
¢ |terative deepening depth-first search

The first method searches for the best move in a specified number of ply.

The second one tries to find the best move in a specific amount of time using an iterative depth-first
search, increasing the number of ply for each search up to the moment when time is exhausted. At
first glance, this method may seem less efficient since it performs the same search repeatedly. But in
practice, the method reorders the moves between each search to optimize the alpha-beta cut-off.
Another big advantage of this method is that the number of ply can be adjusted depending on the
stage of the game. In particular, the end game holds fewer pieces on the board, so increasing the
number of ply doesn't have the same impact as doing so in the middle of the game.

The following lists the content of the different folders. For more information, please consult the
readme.txt files in the root folder.

e Root folder: Game user interface
e Core: Contains the implementation of the chessboard, moves, moves history and board
evaluation

e Ficsinterface: Interface to FICS (Free Internet Chess Server)

e GenericSearchEngine: Contains the generic search engine using MinMax or AlphaBeta algorithm
e Properties: Defines the different settings

e PgnParsing: Parsing of chess game expressed in the Portable Game Notation

e PieceSets: Different chess piece sets

e Resources: Binary resource

All terms can be easily found on the Web (Wikipedia is a good source).
Ply

A ply consists of a half move (a move of one side only). A 4-ply search means to search 2 moves in
advance.

PGN
Portable Game Notation, or PGN, is a notation used to record chess games. PGN is widely used as it is

easy to read by users and to process by computers. Many chess games and events are published in
the PGN format. The parser allows the chess program to read these files.

Minimax

Minimax is a recursive algorithm use for choosing the next move in a game. A tree of legal moves is
built and played. Each move is evaluated using an evaluation function. The computer makes the move
that maximizes the minimum value of the position resulting from the opponent's possible following
moves.

Alpha-beta Pruning

The alpha-beta pruning function is an improvement of the minimax search method. It reduces the
number of nodes to evaluate by eliminating a move when at least one possibility was proved worse
than a previously evaluated one.

Transposition Table

A transposition table is a hashing table that records the previous moves' evaluations so they will not
have to be re-evaluated. Transposition tables are used to speed up the search of the game tree. They

are implemented using Zobrist hashing.

Zobrist Keys, Zobrist Hashing

To implement a transposition table, it is important to determine if two boards are equivalent in
configuration and in potential moves. To do so, we can just compare the pieces of the two boards, but
we must also take into account castling and en-passant moves, as they constrain possible moves. The
only problem is that this method is a quite long when considering it has to be used millions of times
to evaluate each move. Zobrist hashing simplifies this process by assigning each board position a 64-
bit signature; instead of checking each piece one by one to see if the board has already been
evaluated, we just compare the two 64-bit values.

This article, along with any associated source code and files, is licensed under The GNU General Public
License (GPLv3)

Written By

Jacques Fournier

Team Leader Consyst SQL
i+l Canada

Consyst is a dynamic IT company specialized for more than 20 years in information technology
architecture and in the development of innovative productivity tools for businesses. Rep++, the
product at the core of its mission, can significantly accelerate the development cycle of applications
and services by reducing the duration of the design, coding, testing and maintenance stages.

Rep++ uses a model-driven approach supported by a powerful model execution mechanism. Essential
complement to Visual Studio® (Microsoft®), Rep++ includes: an open and centralized model that is
used to define, contain and manage all the metadata of an application set; toolkits and application
frameworks that implement various flavors of the presentation layer; and specialized assistants that
simplify the creation of applications and services for a variety of architectures and technologies. These
elements provide a very high automation level, which enable businesses to focus their development
efforts on where it counts: their business rules.

Comments and Discussions

= 249 messages have been posted for this article Visit
https://www.codeproject.com/Articles/36112/Chess-Program-in-C to post and view comments
on this article, or click here to get a print view with messages.

Permalink
Advertise
Privacy
Cookies
Terms of Use

Article Copyright 2009 by Jacques
Fournier

Everything else Copyright © CodeProject,
1999-2023

Web04 2.8:2023-05-13:1

