Unicode Art - CodeProject

2021/2117

For those who code

K

09
\Y

A

Unicode Art

-

Sergey Alexandrovich Kryukov

17 Feb 2021

CPOL

Similar to ASCII Art, Unicode Art offers better tonal range, impressive look, and some fun on this sunny April day

Download source code and sample images — 291.8 KB

. _uq_s__.“___.-__ .
.,E._.._.a____m;_# 1

] _M:T*n_“...,._n_
PO SRS I e Y R o gn |
- 1o S ESEEAN Sl a0 atid
B _:..ﬁ_u._..._:m—.sln.;__:..ﬁ <V lir H o
a4 @ EERlHIBIE NS E e gr
V= e R O W 0 e B R I B :E_F_zsi_
B T T _:E;.Eu.::_f*____z..w_ [FLTETRIERE ST AT T o ol T H
[1 54 = 1 i)) _._._-xEr."Em_lﬁ_:.mn_w__.____..3..__-._”:&.'..."!!!_._:
2 (] ..__.E_c K Mw___-n.nn..nni.n..B_..__.._#_._uﬁ_t.__._.._-!.-ﬁ!u!u!l‘1
i bl § (RENG AT IERa TR ERONT B il | E Rl {1 BT RNER'AT H o Gl o 7 LN
. 7 G e S el Y W () E_ﬂ_.“.___ﬂ_H-H:iIE |
= 6 D 2 G A B 2D D g -._”_-.-_”_ 1| A L1
= b

i

1A

SEE DL HLEF IR A B E S SHEERE TR R S

1=l (g™ 1 A 1 m R RS KR
D SEAKEREERRD S50 !!.-HE.,..._ 1

[CEER =E ool iy~ A R o S]

e E0 Y B e 2 e B B B B O R L D e
iG] R R LE KD el I T Rlo D e

4 HE N mE TR R R R e AR -

B _ﬁ Rl TEETTE AT T A ol A A ol o ol T ST T d e T] [EImTE R

:..____..._.3_.__,”_5_._”_R_E_..m._____u_-_m_u.ﬁ!!!!!i__._ v i 24 sealilH Wi w -
HHM “ﬁﬁ.n.::l!!!!!!- m e ,.___y.:Z.___ Kl 5

[} < wc f im0 e i

- o, [el i 1

Hariek L
e @ e E I IR

Epigraph:

1/9

=Print

https://www.codeproject.com/Articles/1179876/Unicode-Art?display:

https://www.codeproject.com/
https://www.codeproject.com/script/Membership/View.aspx?mid=2291164
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/KB/graphics/1179876/UnicodeArt.zip

202172117 Unicode Art - CodeProject

| would rather be adorned by beauty of character than jewels

Plautus

Introduction

Operation

Research

Performance

Threading

HTML Rendering

New Style Elements
Application and Window Icons
Compeatibility and Build
Instead of Conclusions: Aleph Numbers
Licensing Notes

On this nice spring day, it's the great time to have some fun.

Compared to ASCII art, its Unicode analog is easier for automatic generation; at the same time, the result can look more impressive,
due to better tonal set of the characters — there are so many of them in Unicode!

Human visual perception is amazingly complicated thing. It presents a lot of subtle problems of the visual presentation of
everything. On the other hand, the power of human perception is dramatically underestimated. Accordingly, the preparation of the
photographs or other images for the conversion into a good-looking Unicode Art form takes some artistry.

At the same time, the application offered in the present article helps to get some basic experience pretty quickly, because, with
almost every small reasonably contrast and clear photograph on input, it produces quite recognizable rendition of the character-
composed image. Let’s see how it is done.

The operation of the application is quite simple. The user selects some input image file and the font used for rendering of the
output image. “Preview” renders the image in a separate window, which can later be saved in one if three forms: as an image file,
plain text file or HTML.

The preview can be switched between two modes: in a ViewboXx showing entire image scaled to fit the window size, or “original
pixel size” viewed in a ScrollViewer. With “original pixel size”, if the font size used is, for example, 12 pixels, each character is
presented pixel to pixel, taking exactly 12x12 pixels on screen.

The input image should be prepared with some care. If the image size combined with the font size is too big, the rendering process
may take too much time. However, it can be aborted separately per each preview window. The preparation of the input image for
really nice rendition will need some practice. Font parameters make the difference, but the tonal range of the image and its clarity is
even more critical. From the first attempts, it's not so easy to predict how the results will look.

That's why some conversions can produce somewhat surprising results:

To preserve original aspect ratio, the characters representing pixels are always rendered in a square area with the square side equal
to the font size. As a result of this design, the font does not have to be monospace: in all cases, a character glyph, if its measures are
different, is placed in the center of this square. That can reduce the apparent character densities, but the output images can still be
good.

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print 2/9

https://msdn.microsoft.com/en-us/library/ms743737%28v=vs.110%29.aspx
http://unicode.org/glossary/#character
https://en.wikipedia.org/wiki/Plautus
https://en.wikipedia.org/wiki/April_Fools'_Day
https://en.wikipedia.org/wiki/ASCII_art
https://en.wikipedia.org/wiki/Glyph

202172117 Unicode Art - CodeProject

It took some effort to study how different font families, metrics and character repertoires can render dynamic range of some images.

To map a subset of characters and choose characters used to represent some pixel value, we first need to collect statistics on the
“brightness” of each character glyph in certain subset of characters. Such “brightness” (quotation marks intended) can be defined as
the average value of the bit in a glyph rendered in black color in a white background area of the size S X S, where S is the font
size. The value calculated in this way does not correctly reflect human perception of the “color intensity”, which is essentially
logarithmic, but it is acceptable in the given situation; in all cases, it defines the partial ordering of the characters by brightness.

The target pixel format is the gray scale with 8 bits per pixel, which is more than enough, taking into account limited tonal range of
the set of characters. Even with this format, 0.. 255 tones, there are not enough pixels to cover it. So, we can map a given character
set to these 256 tones, normalizing the mapping so the “darkest” character would be mapped to 0, and the blank space character —
to 255. The problem is: not all values even in this 0.. 255 range would correspond to some character in the mapping. Apparently,
there are too many "light” characters, with bad deficiency in “dark” ones. The ratio of the pixel values corresponding to some
character in the given set can be considered as one of the possible "quality” characteristics of the combination of the font
parameters and character set.

This is how the mapping is calculated:

for (int index = ©; index < brightnessValues.Length; ++index) {
char symbol = list[index];
double symbolBrightness = brightnessValues[index];
double dValue = (symbolBrightness - min) / (1 - min) * (byte.MaxValue);
body[(int)dValue].Add(symbol);
} //Loop

Here, min is the minimal character glyph “brightness” found, and body is the array[0.. 255] of lists of characters. After this
step, the missing output pixel values (elements of the body array) are filled by interpolation. Please see the source file
“CharacterRepertoire.cs” for more detail.

Amazingly, the calculation of the “brightness” of the character does not require big font size. Indeed, the system character rendering
method already does a good job mapping a small glyph using gray tones, so most of the averaging work is already done.
Surprisingly, my measurements revealed that near-optimum quality (as defined above) is observed for the font size 6 to 8 pixels, for
most fonts.

This is how the character glyph "brightness” histogram looks for one of the near-optimum situations:

(In this picture, the maximum value at the input pixel value 175 is shown not to scale, in order to show the rest of the histogram in
reasonable scale. The actual number of characters mapped to this pixel value is 1062. Apparently, “almost all” characters have very
close glyph density values, which falls in the range of the pixel value 175 on the 0.. 255 tonal scale. This is how the fonts are
designed. Font artists consider the ability to produce uniformly-looking density of text line as one of the major virtues of the art.
This is one of the reasons why I've chosen my range of the character code points shown on the histogram: it has many “special”
characters, such as block elements, box drawing, mathematical symbols, dingbats, and so on. Those are the characters of untypical
glyph densities .)

It turned out that this calculation is fast enough, in comparison with the rendering of the input image. At first, | wanted to calculate
the character repertoire mapping in advance and store it in data to be used on every run of the application, but it does not seem to
be so important for the performance.

Image rendering is relatively slow: the reasonably small source images take few seconds to render, but big images | tried take hours.
Remember, the size of output file grows proportionally to the font size, squared.

Initially, the character repertoire is mapped to the tonal range corresponding to the pixel values 0.. 255. This calculation is done only
once in the lifetime of the application and then reused. Strictly speaking, the calculation should be performed separately for each
font, because, potentially, it may affect the ordering of the characters by “brightness”, but I did not notice any considerable
difference. On my system, this part of calculations adds a couple of seconds on first run. Any reasonable-size input file rendering
takes more time.

That's why it's important to use threading.

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print 3/9

http://unicode.org/glossary/#character_repertoire

202172117 Unicode Art - CodeProject

First of all, the output image is rendered as a System.Windows.Media.Imaging.BitmapSource. The runtime type
used as a source for showing the image in the preview is System.Windows .Media.Imaging.RenderTargetBitmap.
Even though the rendering requires the use of System.Windows.Media.DrawingContext, the use of direct rendering
has prohibitively poor performance of the preview, in this particular situation, by pretty obvious reasons.

That's why RenderTargetBitmap is used. First of all, it is needed to produce the image file when the users wants to save it. At
the same time, the instance of this type is used permanently (per “Preview” window) for the display of the rendered image, as the
Image.Source.

Each Preview window uses a separate thread. This is not a very typical situation where the number of the process threads is
unlimited, but it reasonable for this application. It's important that the user can choose rendering another image while waiting for
the rendering threads started before, with the possibility of aborting them if it takes too long.

The implementation is fundamentally based on the concept of thread wrapper which | started to explain in my articles Many
Questions Answered At Once: Interactive Animated Graphics with Forms, Thread Wrapper for Modern C++ and Conveyor Thread
Wrapper for Modern C++. This is a kind of ad hoc wrapper for the present application:

class ThreadWrapper {

internal ThreadWrapper(
PreviewWindow presentation,
Image image,
Main.Renderer renderer, BitmapImage source,
Typeface typeface, int fontSize,
Dispatcher dispatcher) {
this.presentation = presentation;
this.image = image;
this.typeface = typeface;
this.fontSize = fontSize;
this.renderer = renderer;
this.source = source;
source.Freeze();
this.dispatcher = dispatcher;
} //ThreadWrapper

internal void Start() {
thread = new Thread(Body);
thread.TrySetApartmentState(ApartmentState.STA);
thread.Start();

} //Start

internal void Abort() {
thread.Abort();
} //Abort

internal void Join() {
thread.Join();
} //Join

void Body() {
try {
ImageSource imageSource = renderer.Render(source, typeface, fontSize, 9);
dispatcher.Invoke(new System.Action(() => {
image.Source = imageSource;
image.Width = source.Width * fontSize;
image.Height = source.Height * fontSize;
presentation.menu.Visibility = Visibility.Visible;
presentation.SetTarget(RenderTarget.scaled);
D)
} catch (ThreadAbortException) {
} catch (System.Exception e) {
dispatcher.Invoke(
new System.Action<Exception>((Exception exception) => {
presentation.ShowException(exception);

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print 4/9

https://www.codeproject.com/Articles/406123/Many-Questions-Answered-At-Once-Graphics-WinForms
https://www.codeproject.com/Articles/1177478/Thread-Wrapper-CPP
https://www.codeproject.com/Articles/1177869/Conveyor-Thread-Wrapper-CPP

202172117 Unicode Art - CodeProject

}), e);
} //exception
} //Body

Thread thread;

Dispatcher dispatcher;
Main.Renderer renderer;
BitmapImage source;
PreviewWindow presentation;
Image image;

Typeface typeface;

int fontSize;

} //class ThreadWrapper

Note that the thread can be asynchronously aborted, which sometimes faces fierce opposition from other developers. It is too big
and complicated topic to cover it here, so I'll confine the discussion with just the claim: | do it in a safe way specific to each
application.

One important point about threading is the thread synchronization. In the present application, there are two points where we need
to pass data between the two threads, the Ul thread and a thread rendering each preview instance. First, the input image reference
is passed to the image-rendering thread. At the end, the rendered ImageSource is passed to the Ul thread for the presentation,
as a property Image . Source. These two transitions are fundamentally based on the method Freeze: see
System.Windows.Freezable.Freeze.

At first glance, it would be likely to expect that text and HTML presentation of the Unicode art would be easy to achieve. However, |
managed to screw up the first attempt. Here are the missing points:

1. Some characters included in the character repertoire might be not supported by a particular font. In bitmap rendering, it
won't create a big problem, because all characters are rendered in the same fixed area on the output bitmap. In HTML such
characters may still be rendered and take some space, but even with monospace fonts the horizontal space the width can be
different, which causes horizontal shift of the text lines.

2. Accidentally, some characters can act as end-of-line characters. With HTML pre element, it will cause the line break,
possibly in the middle of a stride.

3. Accidentally, some sequence of characters can match HTML character entities.

First two problems should be solved when the character repertoire is built. It's important to filter out some characters automatically.
This is the fragment of CharacterRepertoire.Build:

internal void Build(Typeface typeface) {
GlyphTypeface glyphTypeface;
bool success = typeface.TryGetGlyphTypeface(out glyphTypeface);
var map = glyphTypeface.CharacterToGlyphMap;
System.Predicate<ushort> isCharacterSupported = (codePoint) => {
ushort glyphIndexDummy;
return map.TryGetValue(codePoint, out glyphIndexDummy);
}; //isCharacterSupported
CharacterList list = new CharacterList();
DoubleList brightnessList = new DoublelList();
foreach (var range in DefinitionSet.charset)
for (ushort codePoint = range.first;
codePoint <= range.last;
++codePoint)

if (!isCharacterSupported(codePoint)) continue;
char character = System.Char.ConvertFromUtf32(codePoint)[0];
if (char.IsSeparator(character) ||
char.IsControl(character))
continue;
list.Add(character);
brightnessList.Add(GetBrightness(character, typeface));
} //Loop

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print 5/9

https://msdn.microsoft.com/en-us/library/ms557735%28v=vs.110%29.aspx

202172117 Unicode Art - CodeProject
/..
}; //Build
Besides, there are quite obvious problems, first of all, the aspect ratio. Apparently, if the font family chosen has variable-size

characters, the image will be heavily deformed — even though the fall-back family is monospace, if some more specialized family

was su

ccessfully used by the “Unicode Art" application, the same family will be found on the same system and used for the in-

browser rendering. There is nothing we can do about it, but how to deal with monospace font families? This is another subtle aspect
of HTML rendering. This is the solution:

internal void SaveToHtml(

string fileName,
string originalFileName,
Typeface typeface, int fontSize)

if (originalFileName == null) originalFileName = string.Empty;
int xMax = unicodePixels.GetUpperBound(1);
int yMax = unicodePixels.GetUpperBound(9);
StringBuilder sb = new StringBuilder();
for (var indexY = ©; indexY <= yMax; ++indexY) {
for (var indexX = ©; indexX <= xMax; ++indexX)
sb.Append(unicodePixels[indexY, indexX]);
if (indexY < yMax) sb.Append(System.Environment.NewlLine);
} //Lloop Y
GlyphTypeface glyphTypeface;
typeface.TryGetGlyphTypeface(out glyphTypeface);
System.Collections.Generic.IDictionary<ushort, double>
advanceHeights = glyphTypeface.AdvanceHeights;
System.Collections.Generic.IDictionary<ushort,
double> advanceWidths = glyphTypeface.AdvanceWidths;
double aspect = 1;
double width, height;
ushort testCharachter = DefinitionSet.fullSizeSampleCharacter;
if (advanceWidths.TryGetValue(testCharachter, out width) &&
advanceHeights.TryGetValue(testCharachter, out height))
// then sample character is supported by typeface
aspect = width / height;
string html = string.Format(
Resources.Resources.HtmlFormat,
originalFileName,
1,
aspect,
typeface.FontFamily.ToString(),
System.Web.HttpUtility.HtmlEncode(sb.ToString()));
using (StreamWriter writer =
new StreamWriter(fileName, false, Encoding.UTF8)) {
writer.WriteLine(html);

} //using

} //SaveToHtml

Note t

hat the 3rd problem is solved by using HEm1Encode. Now, let's look at the rendered HTML file:

<html>
<head>

<title>Unicode Art</title>
<meta name="generator" content="UnicodeArt.exe" />
<meta name="description"
content="Generated from file: input.cow.png; ..." />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
pre {
font-size: 1lem;
line-height: 0.748933577087142em;
font-family: "Courier New", monospace;

}
</style>

</head>
<body>

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print

6/9

202172117 Unicode Art - CodeProject

<pre><!-- image characters go here... --></pre>

</body>
</html>

This is the result of rendering:

(Unicode Art images rendered from identical original images my look different, because different character repertoires were used.)

HTML browsers have some problems with such images. From the code sample shown above, one can see that 5 parameters are
inserted in the HTML file format (see the source file "Resources/HtmIFormat.html”): original file name, the values for CSS style
properties font-size (always 1in emunits), 1ine-height, and font-family, and then the formatted stream of
characters. These parameters are ultimately calculated from the font face chosen in the main window of the application.

But how about the aspect ratio? The answer is: it is “almost correct”. One can easily observe where aspect ratio is a bit off by using
the standard Web browser Zoom feature: zooming makes aspect ratio flowing off, to certain extent, depending on the zoom levels.

At the same time, HTML presentation is very convenient due to this zoom, as the glyphs of the image are rendered on the fly as
vector graphics, so we can quickly observe separate characters or overall view.

A while ago, | put forward some more or less fresh style element. We often need to defer closing of the window, which may or may
not exit the whole application, most usually, to give the user the choice to save some work or cancel the changes. In WPF, it is done
using the overridden method System.Windows.Window.OnClosing or in the handler of the event
System.Windows.Window.Closing.

And who told that it should be those modal dialog boxes? Why those dialog boxes take up so much space? What is the useful
function of those ugly buttons (no matter how modern they look) with all those shadows, borders and spacing between those
decorative elements? Who says that all these visual clues really help the user to understand what should be done on the request of
the application? Can't it have much simpler look and produce less buzz? Here is how | pictured it:

This is just the message and menu of choices, customizable, theme-aware, visually associated with the window-closing element of
the window's non-client area (top right “=x="icon, for current Windows style). It simply disappears (which is equivalent to “Cancel”)
when it loses focus or escaped, safely leaving things as is when the user does not make a choice, which can be considered as a
softer and nicer form of modality. This behavior is safe and stable in response to any accidents and requires less user input activity.
All manipulations can be done with mouse or keyboard, or any combination of both.

In this particular application, the choice of action is not requested for the main window if no input image is loaded. For a preview
window, the choice is not requested if the user saved the image in both bitmap form and at least one of the textual forms: plain text
of HTML. Therefore, the option to save a file is not shown in the closing menu, but such option can be used in other applications.

The implementation of this style and behavior is tricky and interesting enough and may take a separate article.

The present implementation of this idea, being quite reliable, is still not fully universal or customizable, or convenient for the
application developers, so it could be considered as a working prototype. For further detail, please see the source files
“ClosingWindowControl.*" and “TheApplication.cs”.

Unfortunately, default C# project templates effectively encourage bad development practice: the application icon is created
independently from the window icons. Even if the icon is the same, most developers don't reuse them; and this is totally wrong,
because it violates the fundamental and very important in practice SPOT principle. There is no an obvious way of using the single
source icon for both purposes.

In the present application, with the use of my own WPF project template, | demonstrate the known simple and reliable solution of
this problem.

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print 719

https://en.wikipedia.org/wiki/Single_Point_of_Truth

202172117 Unicode Art - CodeProject

First of all, the developer needs to create an icon file, one or more. This file can be included in a .resx file and used as a resource for
one or more objects, some windows or the application (I would highly recommend development of icons using some 3rd-party tool
and included in the project as a separate file, used in a .docx file through the "Add existing file...” option.)

First user of such resource should be the application. To make a reusable resource embedded in an application an application icon,
we need an explicit entry-point method (Main). For the environment needed to have such method in a WPF application, please see
the source file “TheApplication.cs”. This is how the entry-point method may look:

[STAThread]
static void Main(string[] args) {
using (var iconStream = new System.IO.MemoryStream()) {
TheApplication app = new TheApplication();
UnicodeArt.Resources.Resources.IconMain.Save(iconStream);
iconStream.Seek(®, System.IO.SeekOrigin.Begin);
app.ApplicationIcon =
System.Windows.Media.Imaging.BitmapFrame.Create(iconStream);

app.Run();
} //using
} //Main

This code fragment assumes that the file “Resources.xres” is added to the project directory resource, and the default namespace is
“UnicodeArt” — it produces the auto-generated name of the resource variable shown above. To obtain the name of the appropriate
icon, simply find it in the auto-generated file, in this example, “Resources.Designer.cs”.

Assuming that at least one icon, the icon of the main window, should be the same as the application icon, | assign the application
window icon when it is created in the class TheApplication:

protected override void OnStartup(StartupEventArgs e) {
/).
MainWindow = new Ui.MainWindow();
MainWindow.Title = ProductName;
MainWindow.Icon = ApplicationIcon;
MainWindow.Show();

/] ..
} //0OnStartup

If some other windows need the same icon, they can copy the reference from the main window. Alternatively, if can be taken as
TheApplication.Current.ApplicationIcon, assumingthe TheApplication.Current to be the
TheApplication singleton analogous to Application.Current, and ApplicationIcon is the property of this type.

As the code is based on WPF, | used the first platform version decently compatible with WPF — Microsoft.NET v.3.5.
Correspondingly, | provided a solution and a project for Visual Studio 2008. I've done it intentionally, to cover all the readers who
could use WPF. Later .NET versions will be supported; later versions of Visual Studio can automatically upgrade solution and project
files.

In fact, Visual Studio is not required for the build. The code can be built as batch, by using the provided batch file “build.bat”. If your
Windows installation directory is different from the default, the build will still work. If .NET installation directory is different from
default one, please see the content of this batch file and the comment in its first line — next line can be modified to get the build.

Why the application icon is the Hebrew letter aleph, X?

First of all, this letter, inherited from Phoenician 'Alep, symbolizes the concept of alphabet and the word “alphabet”, originating,
through Greek dAg@dapntog, from the first two Phoenician letters, 'Alep and Bét, dating back to the Phoenicians, if not earlier. So, the
word “alphabet” can be interpreted as “ox house” :-).

Also, in mathematics, this character denotes aleph numbers representing the cardinalities of infinite sets. It suggests the idea of
“infinite” number of possible Unicode Art works, but only figuratively speaking: everything played on a computer is always some
finite set, just because any computer is merely a finite-state machine :-).

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print

8/9

https://en.wikipedia.org/wiki/Aleph
https://en.wikipedia.org/wiki/Phoenician_alphabet
https://en.wikipedia.org/wiki/Aleph
https://en.wikipedia.org/wiki/Aleph
https://en.wikipedia.org/wiki/Bet_%28letter%29
https://en.wikipedia.org/wiki/Phoenicia
https://en.wikipedia.org/wiki/Aleph_number
https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Finite-state_machine

202172117 Unicode Art - CodeProject

I will gladly respond to all kinds of informative criticism and consider suggestions on the topic.

In addition to The Code Project Open License:
All the images are original, created from scratch by the author of the article.

At the same time, the character glyphs used in some of the images can be copyrighted by the developers of the fonts used.
Eventually, royalty payment can be requested by the owners of the proprietary copyrighted fonts from any user of the present
application, as well as from any authors of any textual rendered work (printed or printable books, articles, application Ul, finance
reports and the like). :-)

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Sergey Alexandrovich Kryukov
Architect
United States &=

No Biography provided

Comments and Discussions

Iﬁ 12 messages have been posted for this article Visit https://www.codeproject.com/Articles/1179876/Unicode-Art to post and
view comments on this article, or click here to get a print view with messages.

Permalink Article Copyright 2017 by Sergey
Advertise Alexandrovich Kryukov
Privacy Everything else Copyright © CodeProject,
Cookies 1999-2021

Terms of Use
Web03 2.8.20210212.2

https://www.codeproject.com/Articles/1179876/Unicode-Art?display=Print 9/9

https://www.codeproject.com/Articles/1179876/Unicode-Art
http://developermedia.com/
https://www.codeproject.com/info/privacy.aspx
https://www.codeproject.com/info/cookie.aspx
https://www.codeproject.com/info/TermsOfUse.aspx
mailto:webmaster@codeproject.com
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/Members/SAKryukov
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/Articles/1179876/Unicode-Art
https://www.codeproject.com/Articles/1179876/Unicode-Art?display=PrintAll
https://www.codeproject.com/Members/SAKryukov

