
2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 1/32

fastJSON - Smallest, Fastest Polymorphic JSON Serializer
Mehdi Gholam
10 Nov 2020 CPOL

In this article I demonstrate why fastJSON is the smallest, fastest polymorphic JSON serializer (with Silverlight4, MonoDroid and .NET
core support)

Here we look at: the what and why of JSON, features of this implementation, some of the JSON alternatives that I have personally
used, using the code, and performance tests.

Download fastJSON_v2.3.5.3.zip

Previous Versions (below)

Preface
Introduction
The What and Why of JSON
Features of this implementation

Limitations

What's out there

XML
BinaryFormatter
Json.NET
LitJSON
ServiceStack Serializer
Microsoft Json Serializer (v1.7 update)

Using the code

Additions in v1.7.5
Additions v1.7.6
Additions v1.8

Performance Tests

The test code template
The test data structure
.NET 3.5 Serialize
.NET 3.5 Deserialize
.NET 4 Auto Serialize
.NET 4 Auto Deserialize
.NET 4 x86 Serialize
.NET 4 x86 Deserialize
Exotic data type tests

Performance Conclusions
Performance Conclusions v1.4
Performance Conclusions v1.5
Performance Conclusions v1.6
Performance Conclusions v1.7
Points of Interest
Appendix v1.9.8

https://www.codeproject.com/
https://www.codeproject.com/script/Membership/View.aspx?mid=151481
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.3.5.3.zip

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 2/32

Appendix v2.0.0
Appendix v2.0.3 - Silverlight Support
Appendix v2.0.10 - MonoDroid Support
Appendix v2.0.11 - Unicode Changes
Appendix - fastJSON vs Json.net rematch
Appendix v2.0.17 - dynamic objects
Appendic v2.0.28.1 - Parametric Constructors
Appendix v2.1.0 - Circular Referneces & Breaking changes
Appendix v2.1.3 - Milliseconds and Raspberry Pi
Appendix v2.3.5 - Parser optimizations
Previous Versions
History

Preface
The code is now on :

CodePlex at http://fastjson.codeplex.com/
GitHub at https://github.com/mgholam/fastJSON
nuget just search for "fastJSON" or PM> Install-Package fastJSON

I will do my best to keep this article and the repositories in sync.

Security Warning
It has come to my attention from the HP Enterprise Security Group that using the $type extension has the potential to be unsafe,
so use it with common sense and known json sources and not public facing ones to be safe.

Introduction
This is the smallest and fastest polymorphic JSON serializer, smallest because it's only 25kb when compiled, fastest because most of
the time it is (see performance test section) and polymorphic because it can serialize and deserialize the following situation correctly
at run-time with what ever object you throw at it:

class animal { public string Name { get; set;} }
class cat: animal { public int legs { get; set;} }
class dog : animal { public bool tail { get; set;} }
class zoo { public List<animal> animals { get; set;} }

var zoo1 = new zoo();

zoo1.animals = new List<animal>();
zoo1.animals.Add(new cat());
zoo1.animals.Add(new dog());

This is a very important point because it simplifies your coding immensely and is a cornerstone of object orientated programming,
strangely few serializers handle this situation, even the XmlSerializer in .NET doesn't do this and you have to jump through
hoops to get it to work. Also this is a must if you want to replace the BinaryFormatter serializer which what most transport protocols
use in applications and can handle any .NET object structure (see my WCF Killer article).

The What and Why of JSON
JSON (Java Script Object Notation) is a text or human readable format invented by Douglas Crockford around 1999 primarily as a
data exchange format for web applications (see www.JSON.org). The benefits of which are (in regards to XML which was used
before):

Structured data format like XML

http://fastjson.codeplex.com/
https://github.com/mgholam/fastJSON
http://www.json.org/

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 3/32

High signal to noise ratio in other words it does away with extra characters which are not conclusive to the data (angle
brackets and slashes in XML)
Compact data format
Simple parsing rules which makes the processing of data easy and fast

So its good for the following scenarios:

Data exchange between same or different platforms like Java, .NET services over the wire.
Data storage: MongoDB (www.mongodb.org) uses JSON as an internal storage format.

Features of this implementation
Just 3 classes + 2 helpers : 1158 lines of code
JSON standard compliant with the following additions

"$type" is used to denote object type information [Json.NET does this as well].
"$schema" is used to denote the dataset schema information
"$map" is used for post processing runtime types when assigned to the object type.
"$types" is used for global type definition where the instances reference this dictionary of types via a number (
reduces JSON size for large number of embedded types)

Works on .NET 2.0+ : some implementations in the list of alternatives below require at least .NET 3.5
Extremely small size : 25kb when compiled
Blazingly fast (see the performance tests section)
Can dynamically create types
Handles Guid, Dataset, Dictionary, Hashtable and Generic lists
Handles Nullable types
Handles byte arrays as base64 strings
Handles polymorphic collections of objects
Thread safe
Handles value type arrays (e.g. int[] char[] etc.)
Handles value type generic lists (e.g. List<int> etc.)
Handles special case List<object[]> (useful for bulk data transfer)
Handles Embedded Classes (e.g. Sales.Customer)
Handles polymorphic object type deserialized to original type (e.g object ReturnEntity = Guid,
DataSet, valuetype, new object[] { object1, object2 }) [needed for wire communications].
Ability to disable extensions when serializing for the JSON purists (e.g. no $type, $map in the output).
Ability to deserialize standard JSON into a type you give to the deserializer, no polymorphism is guaranteed.
Special case optimized output for Dictionary<string,string>.
Override null value outputs.
Handles XmlIgnore attributes on properties.
Datatable support.
Indented JSON output via IndentOutput property.
Support for SilverLight 4.0+.
RegisterCustomType() for user defined and non-standard types that are not built into fastJSON (like TimeSpan,
Point, etc.).

This feature must be enabled via the CUSTOMTYPE compiler directive as there is about a 1% performance hit.
You supply the serializer and deserializer routines as delegates.

Added support for public Fields.
Added ShowReadOnlyProperties to control the output of readonly properties (default is false = won't be
outputted).
Automatic UTC datetime conversion if the date ends in "Z" (JSON standard compliant now).
Added UseUTCDateTime property to control the output of UTC datetimes.
Dictionary<string, > are now stored optimally not in K V format.
Support for Anonymous Types in the serializer (deserializer is not possible at the moment)
Support for dynamic types
Support for circular referneces in object structures
Support for multi dimensional arrays i.e. int[][]

http://www.mongodb.org/

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 4/32

Limitations

Currently can't deserialize value type array properties (e.g. int[] char[] etc.)
Currently can't handle multi dimensional arrays.
Silverlight 4.0+ support lacks HashTable, DataSet, DataTable as it is not part of the runtime.

What's out there
In this section I will discuss some of the JSON alternatives that I have personally used. Although I can't say it is a comprehensive list,
it does however showcase the best of what is out there.

XML

If you are using XML, then don't. It's too slow and bloated, it does deserve an honorable mention as being the first thing everyone
uses, but seriously don't. It's about 50 times slower than the slowest JSON in this list. The upside is that you can convert to and
from JSON easily.

BinaryFormatter

Probably the most robust format for computer to computer data transfer. It has a pretty good performance although some
implementation here beat it.

Pros Cons

Can handle anything with a Serializable attribute
on it
Pretty compact output

Version unfriendly : must be deserialized into the
exact class that was serialized
Not good for storing of data because of the
versioning problem
Not human readable
Not for communication outside of the same
platform (e.g. both sides must be .NET)

Json.NET

The most referenced JSON serializer for the .NET framework is Json.NET from (http://JSON.codeplex.com/) and the blog site
(http://james.newtonking.com/pages/JSON-net.aspx). It was the first JSON implementation I used in my own applications.

Pros Cons

Robust output which can handle datasets
First implementation I saw which could handle
polymorphic object collections

Large dll size ~320kb
Slow in comparison to the rest in the list
Source code is hard to follow as it is large

LitJSON

I had to look around a lot to find this gem (http://litjson.sourceforge.NET/), which is still at version 0.5 since 2007. This was what I
was using before my own implementation and it replaced the previous JSON serializer which was Json.NET. Admittedly I had to
change the original to fit the requirements stated above.

Pros Cons

http://json.codeplex.com/
http://james.newtonking.com/pages/json-net.aspx
http://litjson.sourceforge.net/

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 5/32

Pros Cons

Can do all that Json.NET does (after my changes).
Small dll size ~57kb
Relatively fast

Didn't handle datasets in the original source code
(I wrote it my self afterwards in my own
application)
The lexer class is difficult to follow
Requires .NET 3.5 (Got around this limitation by
implementing a Linqbridge class which works
with .NET 2.0)

ServiceStack Serializer

An amazingly fast JSON serializer from Demis Bellot found at (http://www.servicestack.NET/mythz_blog/?p=344). The serializer
speed is astonishing, although it does not support what is needed from the serializer. I have included it here as a measure of
performance.

Pros Cons

Amazingly fast serializer
Pretty small dll size ~91kb

Can't handle polymorphic object collections
Requires at least .NET 3.5
Fails on Nullable types
Fails on Datasets
Fails on other "exotic" types like dictionaries, hash
tables etc.

Microsoft Json Serializer (v1.7 update)

By popular demand and my previous ignorance about the Microsoft JSON implementation and thanks to everyone who pointed this
out to me, I have added this here.

Pros Cons

Included in the framework
Can serialize basic polymorphic objects

Can't deserialize polymorphic objects
Fails on Datasets
Fails on other "exotic" types like dictionaries, hash
tables etc.
4x slower that fastJSON in serialization

Using the code
To use the code do the following:

// to serialize an object to string
string jsonText = fastJSON.JSON.Instance.ToJSON(c);

// to deserialize a string to an object
var newobj = fastJSON.JSON.Instance.ToObject(jsonText);

The main class is JSON which is implemented as a singleton so it can cache type and property information for speed.

Additions in v1.7.5

// you can set the defaults for the Instance which will be used for all calls
JSON.Instance.UseOptimizedDatasetSchema = true; // you can control the serializer dataset
schema

http://www.servicestack.net/mythz_blog/?p=344

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 6/32

JSON.Instance.UseFastGuid = true; // enable disable fast GUID serialization
JSON.Instance.UseSerializerExtension = true; // enable disable the $type and $map inn the
output

// you can do the same as the above on a per call basis
public string ToJSON(object obj, bool enableSerializerExtensions)
public string ToJSON(object obj, bool enableSerializerExtensions, bool enableFastGuid)
public string ToJSON(object obj, bool enableSerializerExtensions, bool enableFastGuid, bool
enableOptimizedDatasetSchema)

// Parse will give you a Dictionary<string,object> with ArrayList representation of the JSON
input
public object Parse(string json)

// if you have disabled extensions or are getting JSON from other sources then you must specify
// the deserialization type in one of the following ways
public T ToObject<T>(string json)
public object ToObject(string json, Type type)

Additions v1.7.6

JSON.Instance.SerializeNullValues = true; // enable disable null values to output

public string ToJSON(object obj, bool enableSerializerExtensions, bool enableFastGuid, bool
enableOptimizedDatasetSchema, bool serializeNulls)

Additions v1.8

For all those who requested why there is no support for type "X", I have implemented a open closed principal extension to fastJSON
which allows you to implement your own routines for types not supported without going through the code.

To allow this extension you must compile with CUSTOMTYPE compiler directive as there is a performance hit associated with it.

public void main()
{
 fastJSON.JSON.Instance.RegisterCustomType(typeof(TimeSpan), tsser, tsdes);
 // do some work as normal
}

private static string tsser(object data)
{
 return ((TimeSpan)data).Ticks.ToString();
}

private static object tsdes(string data)
{
 return new TimeSpan(long.Parse(data))
}

Performance Tests
All test were run on the following computer:

AMD K625 1.5Ghz Processor
4Gb Ram DDR2
Windows 7 Home Premium 64bit
Windows Rating of 3.9

The tests were conducted under three different .NET compilation versions

.NET 3.5

.NET 4 with processor type set to auto

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 7/32

.NET 4 with processor type set to x86

The Excel screen shots below are the results of these test with the following descriptions:

The numbers are elapsed time in milliseconds.
The more red the background the slower the times
The more green the background the faster the times.
5 tests were conducted for each serializer.
The "AVG" column is the average for the last 4 tests excluding the first test which is basically the serializer setting up its
internal caching structures, and the times are off.
The "min" row is the minimum numbers in the respective columns below.
The Json.NET serializer was tested with two version of 3.5r6 and 4.0r1 which is the current one.
"bin" is the BinaryFormatter tests which for reference.
The test structure is the code below which is a 5 time loop with an inner processing of 1000 objects.
Some data types were removed from the test data structure so all serializers could work.

The test code template

The following is the basic test code template, as you can see it is a loop of 5 tests of what we want to test each done count time
(1000 times). The elapsed time is written out to the console with tab formatting so you can pipe it to a file for easier viewing in an
Excel spreadsheet.

int count = 1000;
private static void fastjson_serialize()
{
 Console.WriteLine();
 Console.Write("fastjson serialize");
 for (int tests = 0; tests < 5; tests++)
 {
 DateTime st = DateTime.Now;
 colclass c;
 string jsonText = null;
 c = CreateObject();
 for (int i = 0; i < count; i++)
 {
 jsonText = fastJSON.JSON.Instance.ToJSON(c);
 }
 Console.Write("\t" + DateTime.Now.Subtract(st).TotalMilliseconds + "\t");
 }
}

The test data structure

The test data are the following classes which show the polymorphic nature we want to test. The "colclass" is a collection of these
data structures. In the attached source files more exotic data structures like Hashtables, Dictionaries, Datasets etc. are included.

[Serializable()]
public class baseclass
{
 public string Name { get; set; }
 public string Code { get; set; }
}

[Serializable()]
public class class1 : baseclass
{
 public Guid guid { get; set; }
}

[Serializable()]
public class class2 : baseclass
{
 public string description { get; set; }
}

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 8/32

[Serializable()]
public class colclass
{
 public colclass()
 {
 items = new
List<baseclass>();
 date = DateTime.Now;
 multilineString = @"
 AJKLjaskljLA
 ahjksjkAHJKS
 AJKHSKJhaksjhAHSJKa
 AJKSHajkhsjkHKSJKash
 ASJKhasjkKASJKahsjk
 ";
 gggg = Guid.NewGuid();
 //hash = new Hashtable();
 isNew = true;
 done= true;
 }
 public bool done { get; set; }
 public DateTime date {get; set;}
 //public DataSet ds { get; set; }
 public string multilineString { get; set; }
 public List<baseclass> items { get; set; }
 public Guid gggg {get; set;}
 public decimal? dec {get; set;}
 public bool isNew { get; set; }
 //public Hashtable hash { get; set; }

}

.NET 3.5 Serialize

fastJSON is second place in this test by a margin of nearly 35% slower than Stacks.
fastJSON is nearly 2.9x faster than binary formatter.
Json.NET is nearly 1.9x slower in the new version 4.0r1 against its previous version of 3.5r6
Json.NET v3.5r6 is nearly 20% faster than binary formatter.

.NET 3.5 Deserialize

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 9/32

fastJSON is first place in this test to Stacks by a margin of 10%.
fastJSON is nearly 4x faster than nearest other JSON.
Json.NET is nearly 1.5x faster in version 4.0r1 than its previous version of 3.5r6

.NET 4 Auto Serialize

fastJSON is first place in this test by a margin of nearly 20% against Stacks.
fastJSON is nearly 4.9x faster than binary formatter.
Json.NET v3.5r6 is on par with binary formatter.

.NET 4 Auto Deserialize

fastJSON is first place by a margin of 11%.
fastJSON is 1.7x faster than binary formatter.
Json.NET v4 1.5x faster than its previous version.

.NET 4 x86 Serialize

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 10/32

fastJSON is first place in this test by a margin of nearly 21% against Stacks.
fastJSON is 4x faster than binary formatter.
Json.NET v3.5r6 1.7x faster than the previuos version.

.NET 4 x86 Deserialize

fastJSON is first place by a margin of 5% against Stacks.
fastJSON is 1.7x faster than binary formatter which is third.

Exotic data type tests

In this section we will see the performance results for exotic data types like datasets, hash tables, dictionaries, etc.. The comparison
is between fastJSON and the BinaryFormatter as most of the other serializers can't handle these data types. These include the
following:

Datasets
Nullable types
Hashtables
Dictionaries

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 11/32

fastJSON is 5x faster than BinaryFormatter in serialization
fastJSON is 20% faster than BinaryFormatter in deserialization
Datasets are performance killers by a factor of 10

Performance Conclusions
fastJSON is faster in all test except the when running the serializer under .NET 3.5 for which Stacks is faster by only 35%
(note must be made that Stacks is not polymorphic and can't handle all types so it is not outputting data correctly within the
tests).
.NET 4 is faster than .NET 3.5 by around 15% in these test except for the fastJSON serializer which is 90% faster..
You can replace BinaryFormatter with fastJSON with a huge performance boost (this lean way lends it self to compression
techniques on the text output also).
Start up costs for fastJSON is on average 2x faster than Stacks and consistently faster than everyone else.

Performance Conclusions v1.4

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 12/32

As you can see from the above picture v1.4 is noticably faster. The speed boost make fastJSON faster than SerializerStack in all tests
even on .net v3.5.

fastJSON serializer is 6.7x faster than binary with a dataset.
fastJSON deserializer is 2.1x faster than binary with a dataset.
fastJSON serializer is 6.9x faster than binary without a dataset.
fastJSON deserializer is 1.6x faster than binary without a dataset.

Performance Conclusions v1.5

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 13/32

The numbers speak for themselves fastJSON serializer 6.65x faster without dataset and 6.88x faster than binary, the
deserializer is 2.7x faster than binary.
The difference in numbers in v1.5 which is slower than v1.4 is because of extra properties in the test for Enums etc.

Performance Conclusions v1.6

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 14/32

Guid are 2x faster now with base64 encoding you can revert back to old style with the UseFastGuid = false on
the JSON.Instance
Datasets are ~40% smaller and ~35% faster.
fastJSON serializer is now ~2.3x faster than deserializer and the limit seems to be 2x.

Performance Conclusions v1.7

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 15/32

int, long parse are 4x faster.
unicode string optimizations, reading and writing non english strings are faster.
ChangeType method optimized
Dictionary optimized using TryGetValue

Points of Interest
I did a lot of performance tuning with a profiler and here are my results:

Always use a StringBuilder and never strings concats.
Never do the following stringbuilder.append("string1 + "string2") because it kills performance, replace it with two
stringbuilder appends. This point blew my mind and was 50% faster in my tests with the profiler.
Never give the stringbuilder a capacity value to start with e.g. var stringbuilder = new StringBuilder(4096); . Strange but it is
faster without it.
I tried replacing the StringBuiler with a MemoryStream but it was too slow (100% slower).
The simplest and the most direct way is probably the fastest as well, case in point reading values as opposed to lexer parser
implementations.
Always use cached reflection properties on objects.

Appendix v1.9.8
Some reformatting was done to make the use of fastJSON easier in this release which will break some code but is ultimately better
in the long run. To use the serializer in this version you can do the following :

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 16/32

// per call customization of the serializer
string str = fastJSON.JSON.Instance.ToJSON(obj,
 new fastJSON.JSONParamters { EnableAnonymousTypes = true }); // using the
parameters

fastJSON.JSON.Instance.Parameters.UseExtensions = false; // set globally

This removes a lot of the ToJSON overloads and gives you more readable code.

Also in this release support for anonymous types has been added, this will give you a JSON string for the type, but deserialization is
not possible at the moment since anonymous types are compiler generated.

DeepCopy has been added which allows you to create an exact copy of your objects which is useful for business application
rollback/cancel semantics.

Appendix v2.0.0
Finally got round to adding Unit Tests to the project (mostly because of some embarrassing bugs that showed up in the changes),
hopefully the tests cover the majority of use cases, and I will add more in the future.

Also by popular demand you can now deseialize root level basic value types, Lists and Dictionaries. So you can use the following
style code :

var o = fastJSON.JSON.Instance.ToObject<List<Retclass>>(s); // return a generic list

var o = fastJSON.JSON.Instance.ToObject<Dictionary<Retstruct, Retclass>>(s); // return a
dictionary

A breaking change in this version is the Parse() method now returns number formats as long and decimal not string
values, this was necessary for array returns and compliance with the json format (keep the type information in the original json, and
not loose it to strings). So the following code is now working :

List<int> ls = new List<int>();
ls.AddRange(new int[] { 1, 2, 3, 4, 5, 10 });
var s = fastJSON.JSON.Instance.ToJSON(ls);
var o = fastJSON.JSON.Instance.ToObject(s); // long[] {1,2,3,4,5,10}

Be aware that if you do not supply the type information the return will be longs not ints. To get what you expect use the
following style code:

var o = fastJSON.JSON.Instance.ToObject<List<int>>(s); // you get List<int>

Check the unit test project for sample code regarding the above cases.

Appendix v2.0.3 - Silverlight Support
Microsoft in their infinate wisdom has removed some functionality which was in Silverlight4 from Silverlight5. So fastJSON will
not build or work on Silverlight5.

Appendix v2.0.10 - MonoDroid Support
In this release I have added a MonoDroid project file and fastJSON now compiles and works on Android devices running the
excellent work done by Miguel de Icaza and his team at Xamarin. This is what Silverlight should have been and I am really excited
about this as it will open a lot of opportunities one of which is the new RaptorDB.

Appendix v2.0.11 - Unicode Changes

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 17/32

My apologies to everyone regarding my misreading of the JSON standard regarding Unicode, my interpretation was that the output
should be in ASCII format and hence all non ASCII characters should be in the \uxxxx format.

In this version you can control the output format with the UseEscapedUnicode parameter and all the strings will be in
Unicode format (no \uxxxx), the default is true for backward compatibility.

Appendix - fastJSON vs Json.net rematch
After being contacted by James Newton King for a retest with his new version of Json.net which is v5r2, I redid the tests and
here is the results (times are in milliseconds):

As you can see there are 5 test and the AVG column is the average of the last 4 tests so to exclude the startup of each library, the
DIFF column is the difference between the two libraries and fastJSON being the base of the test.

Things to note :

fastJSON is about 2x faster than Json.net in both serialize and deserialize.
Json.net is about 1.5-2x faster that it's previous versions which is a great job of optimizatons done and congratualtions
in order.

Appendix v2.0.17 - dynamic objects
By popular demand the support for dynamic objects has been added so you can do the following with fastJSON:

string s = "{\"Name\":\"aaaaaa\",\"Age\":10,\"dob\":\"2000-01-01 00:00:00Z\",\"inner\":
{\"prop\":30}}";

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 18/32

dynamic d = fastJSON.JSON.Instance.ToDynamic(s);
var ss = d.Name;
var oo = d.Age;
var dob = d.dob;
var inp = d.inner.prop;

Appendix v2.0.28.1 - Parametric Constructors
As of this version fastJSON can now handle deserializing parametric constructor classes without a default constructors, like:

public class pctor
{
 public pctor(int a) // pctor() does not exist
 {
 }
}

Now to do this fastJSON is using the FormatterServices.GetUninitializedObject(type) in the framework
which essentially just allocates a memory region for your type and gives it to you as an obeject by passing all initializations including
the constructor. While this is really fast, it has the unfortunate side effect of ignoring all class initialization like default values for
properties etc. so you should be aware of this if you are restoring partial data to an object (if all the data is in json and matches the
class structure then you are fine).

To control this you can set the ParametricConstructorOverride to true in the JSONParameters.

Appendix v2.1.0 - Circular References & Breaking Changes
As of this version I fixed a design flaw since the start which was bugging me, namely the removal of the JSON.Instance
singleton. This means you type less to use the library which is always a good thing, the bad thing is that you need to do a find
replace in your code and the nuget package will not be drop in and you have to build with the new version.

Also I found a really simple and fast way to support circular reference object structures. So a complex structure like the following will
serialize and deserialize properly (the unit test is CircularReferences()):

var o = new o1 { o1int = 1, child = new o3 { o3int = 3 }, o2obj = new o2 { o2int = 2 } };
o.o2obj.parent = o;
o.child.child = o.o2obj;

To do this fastJSON replaces the circular reference with :

{"$i" : number } // number is an index for the internal reference

also a $circular : true is added to the top of the json for the deserializer to know, so the above structure yields the
following json :

{
 "$circular" : true,
 "$types" : {
 "UnitTests.Tests+o1, UnitTests, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" :
"1",
 "UnitTests.Tests+o2, UnitTests, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" :
"2",
 "UnitTests.Tests+o3, UnitTests, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" :
"3"
 },
 "$type" : "1",
 "o1int" : 1,
 "o2obj" : {
 "$type" : "2",
 "o2int" : 2,

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 19/32

 "parent" : {
 "$i" : 1
 }
 },
 "child" : {
 "$type" : "3",
 "o3int" : 3,
 "child" : {
 "$i" : 2
 }
 }
}

Appendix v2.1.3 - Milliseconds and Raspberry Pi
After much request I have added the support for millisecond resolution to the DateTime serialization, while the JSON standard
does not explicitly state the format but there seems to be general concensus about it. So if you enable the
JSONParameters.DateTimeMilliseconds flag then you will get :

"2014-09-15 09:40:16.006Z"

Important Note : when deserializing the above the resulting DateTime will not equal the original value since the DateTime
object also has a Tick value which is not serialized and will be 0 so an object comparison will be false.

On a different note, I recently got a Raspberry Pi, installed mono on it and copied fastJSON on it, the results are below:

This is quite incedible and says a lot for the mono team when by just coping my DLL files from a Windows system it works.

As a comparison I have added the results for my new dev notebook which has an i7 4702MQ and 8gb of ram below:

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 20/32

as you can see the Raspberry is ~100x slower, but still works.

Appendix v2.3.5 - Parser optimizations
In this version the parser has been optimized to skip properties not in the object but available in the json, for those times your data
is from some where else and you only care about some of the properties. Previously fastJSON parsed all the properties from the
json string and then populated the object you wanted, now the parser is smarter and will skip unwanted properties.

This feature works with the ToObect<T>() or ToObject(string, Type) generic interface where you supply the
reuslting type, it will also work with general no typed case if the json string has $types defined in it.

For maximum compatibilty this feature will be disabled on edge cases involving Dictionay<,> properties in other classes.

Some results on a 29Mb json file supplied by Marcos Kirchner for testing, the "full" suffix is to denote
Deserialize<object>() or equivalent for each library which ensures reading all the properties:

on dotnet 4 full framework:

 Newtonsoft 629 ms
 NewtonsoftFull 3,437 ms

 Jil 343 ms
 JilFull 2,767 ms

 utf8 367 ms
 utf8Full 1,581 ms

 FastJson 194 ms
 FastJsonParse 1,154 ms

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 21/32

on dotnet core 3.1:

 Newtonsoft : 652 ms
 NewtonsoftFull : 3,455 ms

 SystemTextJson : 412 ms
 SystemTextJsonFull : 811 ms

 Jil : 364 ms
 JilFull : 2,988 ms

 FastJson : 283 ms
 FastJsonParse : 1,185 ms

The Microsoft json serializer is really good on .net core. fastJSON performs better on full framework for some reason.

Previous Versions
You can check out previous versions of fastJSON here.

Download fastJSON_v1.0.zip - 22.75 KB

Download fastJSON_v1.1.zip - 9.62 KB

Download fastJSON_v1.2.zip - 9.67 KB

Download fastJSON_v1.3.zip - 9.06 KB

Download fastJSON_v1.4.zip - 9.42 KB

Download fastJSON_v1.5.zip - 10.17 KB

Download fastJSON_v1.6.zip - 10.26 KB

Download Consoletest v1.7.zip - 6.59 KB

Download fastJSON_v1.7.zip - 11.15 KB

Download fastJSON_v1.7.5.zip - 11.5 KB

Download fastJSON_v1.7.6.zip - 11.66 KB

Download fastJSON_v1.7.7.zip - 12.37 KB

Download fastJSON_v1.7.7-SilverLight4.zip - 11.7 KB

Download fastJSON_v1.8.zip - 14.42 KB

Download fastJSON_v1.9.zip - 14.49 KB

Download fastJSON_v1.9.1.zip - 14.48 KB

Download fastJSON_v1.9.2.zip - 14.49 KB

Download fastJSON_v1.9.3.zip - 14.65 KB

Download fastJSON_v1.9.4.zip - 14.73 KB

Download fastJSON_v1.9.6.zip - 27.12 KB

Download fastJSON_v1.9.7.zip - 28.30 KB

Download fastJSON_v1.9.8.zip

Download fastJSON_v1.9.9.zip

Download fastJSON_v2.0.0.zip

Download fastJSON_v2.0.1.zip

Download fastJSON_v2.0.2.zip

Download fastJSON_v2.0.3.zip

Download fastJSON_v2.0.4.zip

Download fastJSON_v2.0.5.zip

Download fastJSON_v2.0.6.zip

https://www.codeproject.com/KB/IP/fastJSON/fastJSON.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.1.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.2.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.3.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.4.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.5.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.6.zip
https://www.codeproject.com/KB/IP/fastJSON/Consoletest.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.7.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.7.5.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.7.6.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.7.7.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.7.7-SilverLight4.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.8.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.1.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.2.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.3.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.4.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.6.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.7.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.8.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v1.9.9.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.0.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.1.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.2.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.3.zip
https://www.codeproject.com/KB/IP/fastJSON/fastjson_v2.0.4.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.5.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.6.zip

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 22/32

Download fastJSON_v2.0.7.zip

Download fastJSON_v2.0.8.zip

Download fastJSON_v2.0.9.zip

Download fastJSON_v2.0.10.zip

Download fastJSON_v2.0.11.zip

Download fastJSON_v2.0.12.zip

Download fastJSON_v2.0.13.zip

Download fastJSON_v2.0.14.zip

Download fastJSON_v2.0.15.zip

Download fastJSON_v2.0.16.zip

Download fastJSON_v2.0.17.zip

Download fastJSON_v2.0.18.zip

Download fastJSON_v2.0.19.zip

Download fastJSON_v2.0.20.zip

Download fastJSON_v2.0.21.zip

Download fastJSON_v2.0.22.zip

Download fastJSON_v2.0.23.zip

Download fastJSON_v2.0.24.zip

Download fastJSON_v2.0.25.zip

Download fastJSON_v2.0.26.zip

Download fastJSON_v2.0.27.zip

Download fastJSON_v2.0.28.zip

Download fastJSON_2.0.28.1.zip

Download fastJSON_v2.1.0.zip

Download fastJSON_v2.1.1.zip

Download fastJSON_v2.1.2.zip

Download fastJSON_v2.1.3.zip

Download fastJSON_v2.1.4.zip

Download fastJSON_v2.1.5.zip

Download fastJSON_v2.1.6.zip

Download fastJSON_v2.1.7.zip

Download fastJSON_v2.1.8.zip

Download fastJSON_v2.1.9.zip

Download fastJSON_v2.1.10.zip

Download fastJSON_v2.1.11.zip

Download fastJSON_v2.1.12.zip

Download fastJSON_v2.1.13.zip

Download fastJSON_v2.1.14.zip

Download fastJSON_v2.1.15.zip

Download fastJSON_v2.1.16.zip

Download fastJSON_v2.1.17.zip

Download fastJSON_v2.1.18.zip

Download fastJSON_v2.1.19.zip

Download fastJSON_v2.1.20.zip

Download fastJSON_v2.1.21.zip

https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.7.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.8.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.9.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.10.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.11.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.12.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.13.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.14.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.15.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.16.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.17.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.18.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.19.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.20.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.21.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.22.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.23.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.24.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.25.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.26.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.27.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.0.28.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_2.0.28.1.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.0.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.1.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.2.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.3.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.4.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.5.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.6.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.7.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.8.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.9.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.10.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.11.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.12.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.13.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.14.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.15.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.16.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.17.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.18.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.19.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.20.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.21.zip

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 23/32

Download fastJSON_v2.1.22.zip

Download fastJSON_v2.1.23.zip

Download fastJSON_v2.1.24.zip

Download fastJSON_v2.1.25.zip

Download fastJSON_v2.1.26.zip

Download fastJSON_v2.1.27.zip

Download fastJSON_v2.1.28.zip

Download fastJSON_v2.1.29.zip

Download fastJSON_v2.1.31.zip

Download fastJSON_v2.1.32.zip

Download fastJSON_v2.1.33.zip

Download fastJSON_v2.1.34.zip

Download fastJSON_v2.1.36.zip

Download fastJSON_v2.2.0.zip

Download fastJSON_v2.2.2.zip

Download fastJSON_v2.2.3.zip

Download fastJSON_v2.2.4.zip

Download fastJSON_v2.3.0.zip

Download fastJSON_v2.3.3.zip

Download fastJSON_v2.3.5.zip

Download fastJSON_v2.3.5.1.zip

Download fastJSON_v2.3.5.2.zip

History
Initial Release : 2011/02/20
Update v1.1 : 26% performance boost on dataset deserialization, corrected ServiceStack name
Update v1.2 : System.DBNull serialized to null, CultureInfo fix for numbers, Readonly properties handled correctly
Update v1.3 : Removed unused code (lines now at 780), Property comma fix
Update v1.4 : Heavy optimizations (serializer 3% faster, deserializer 50% faster, dataset serializer 46% faster, dataset
deserializer 26% faster) [now officially faster than the serializer ServiceStack in all test even on .net 3.5]
Update v1.5 : Heavy optimizations (deserializer ~50% faster than v1.4), Enum fix, Max Depth property for serializer. Special
thanks and credits to Simon Hewitt for optimizations in this version.
Update v1.6 :

value type arrays handled
guid 2x faster
datasets ~40% smaller
serializer ~2% to 11% faster
deserializer ~6% to 38% faster

Update v1.7 :

added microsoft json evaluation
added consoletest project to downloads for testing newer exotic types
bug fix dictionary deserialize
special case handles List<object[]>
int and long parse 4x faster
unicode string optimize
changetype optimize
dictionary optimize
deserialize embeded class e.g. Sales.Customer
safedictionary check before add
handles object ReturnEntity = new object[] { object1, object2 }
handles object ReturnEntity = Guid, Dataset, valuetype

https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.22.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.23.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.24.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.25.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.26.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.27.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.28.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.29.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.31.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.32.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.33.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.34.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.1.36.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.2.0.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.2.2.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.2.3.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.2.4.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.3.0.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.3.3.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.3.5.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.3.5.1.zip
https://www.codeproject.com/KB/IP/fastJSON/fastJSON_v2.4.5.2.zip

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 24/32

Update v1.7.5 :

ability to serialize without extensions
overloaded methods for serialize and deserialize
the deserializer will do its best to deserialize the input with or without extensions with no gaurantee on
polymorphism

Update v1.7.6 :

XmlIgnore handled : thanks to Patrik Oscarsson for the idea
special case optimized output for dictionary of string,string
bug fix year 1 date output as 0000 string
override serialize nulls to output : thanks again to Patrik

Update v1.7.7 :

Indented output
Datatable support
bug fix

Update v1.7.7 Silverlight4 : 4th June 2011

A new project added for silverlight4, currently in testing phase will add to main zip when all ok.
Silverlight lacks arraylist, dataset, datatable, hashtable support
#if statements in source files for silverlight4 support.

Update v1.8 : 9th June 2011

Silverlight code merged into the project
Seperate Silverlight project
RegisterCustomType extension for user defined serialization routines
CUSTOMTYPE compiler directive

Update v1.9 : 28th June 2011

added support for public fields

Update v1.9.1 : 30th June 2011

fixed a shameful bug when SerializeNullValues = false, special thanks to Grant Birchmeier for testing

Update v1.9.2 : 10th July 2011

fixed to fullname instead of name when searching for types in property cache (namespace1.myclass ,
namespace2.myclass are now different) thanks to alex211b

Update v1.9.3 : 31st July 2011

UTC datetime handling via UseUTCDateTime = true property thanks to mrkappa
added support for enum as key in dictionary thanks to Grant Birchmeier

Update v1.9.4 : 23rd September 2011

ShowReadOnlyProperties added for exporting readonly properties (default = false)
if datetime value ends in "Z" then automatic UTC time calculated
if using UTC datetime the output end in a "Z" (standards compliant)

Update v1.9.6 : 26th November 2011

bug fix datatable schema serialize & deserialize
added a $types extension for global type definitions which reduce the size of the output json thanks to Marc Bayé
for the idea
added UsingGlobalTypes config for controling the above (default = true)
bug fix datatable commas between arrays and table definitions (less lint complaining)
string key dictionaries are serialized optimally now (not K V format)

Update v1.9.7 : 10th May 2012

bug fix SilverLight version to support GlobalTypes
removed indent logic from serializer
added Beautify(json) method to JSON credits to Mark http://stackoverflow.com/users/65387/mark

http://stackoverflow.com/users/65387/mark

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 25/32

added locks on SafeDictionary
added FillObject(obj,json) for filling an existing object

Update v1.9.8 : 17th May 2012

added DeepCopy(obj) and DeepCopy<T>(obj)
refactored code to JSONParameters and removed the JSON overloads
added support to serialize anonymous types (deserialize is not possible at the moment)
bug fix $types output with non object root

Update v1.9.9 : 24th July 2012

spelling mistake on JSONParameters
bug fix Parameter initialization
bug fix char and string ToString
refactored reflection code into Reflection class
added support for top level struct object serialize/deserialize

Update v2.0.0 : 4th August 2012

bug fix reflection code
added unit tests
deserialize root level arrays (int[] etc.)
deserialize root level value types (int,long,decimal,string)
deserialize ToObject< Dictionary<T,V> >
deserialize ToObject< List<T> >
* breaking change in Parse , numbers are returned as decimals and longs not strings

Update v2.0.1 : 10th August 2012

bug fix preserve internal objects when FillObject called
changed ArrayList to List<object> and consolidated silverlight code
added more tests
speed increase when using global types ($types)

Update v2.0.2 : 16th August 2012

bug fix $types and arrays

Update v2.0.3 : 27th August 2012

readonly property checking on deserialize (thanks to Slava Pocheptsov)
bug fix deserialize nested types with unit test (thanks to Slava Pocheptsov)
fix the silverlight4 project build (silverlight5 is not supported)

Update v2.0.4 : 7th September 2012

fixed null objects -> returns "null"
added sealed keyword to classes
bug fix SerializeNullValues=false and an extra comma at the end
UseExtensions=false will disable global types also (thanks to qio94, donat.hutter, softwarejaeger)
fixed parameters setting for Parse()

Update v2.0.5 : 17th September 2012

fixed number parsing for invariant format
added a test for German locale number testing (,. problems)

Update v2.0.6 : 19th September 2012

singleton uses [ThreadStatic] for concurrency (thanks to Philip Jander)
bug fix extra comma in the output when only 1 property in the object (thanks to Philip Jander)

Update v2.0.7 : 5th October 2012

bug fix missing comma with single property and extensions enabled

Update v2.0.8 : 13th October 2012

bug fix big number conversions (thanks to Alex .µZ Hg.)

http://www.codeproject.com/script/Membership/View.aspx?mid=1190956

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 26/32

* breaking change Parse will return longs and doubles instead of longs and decimal
ToObject on value types will auto convert the data (e.g ToObject<decimal>())

Update v2.0.9 : 24th October 2012

added support for root level DataSet and DataTable deserialize (you have to do ToObject<DataSet>(...))
added dataset tests

Update v2.0.10 : 15th November 2012

added MonoDroid project

Update v2.0.11 : 7th December 2012

bug fix single char number json
added UseEscapedUnicode parameter for controlling string output in \uxxxx for unicode/utf8 format
bug fix null and generic ToObject<>()
bug fix List<> of custom types

Update v2.0.12 : 3rd January 2013

bug fix nested generic types (thanks to Zambiorix)
bug fix comma edge cases with nulls

Update v2.0.13 : 9th January 2013

bug fix comma edge cases with nulls
unified DynamicMethod calls with SilverLight4 code
test cases for silverlight

Article Update : 12th April 2013

rematch between fastJSON and Json.net v5r2

Update v2.0.14 : 19th April 2013

Optimizations done by Sean Cooper
- using Stopwatch instead of DateTime for timings
- myPropInfo using enum instead of boolean
- using switch instead of linked if statements
- parsing DateTime optimized
- StringBuilder using single char output instead of strings for \" chars etc

Update v2.0.15 : 24th May 2013

removed CUSTOMTYPE directives from code
fix for writing enumerable object

Update v2.0.16 : 22nd June 2013

bug fix formatter
added test for formatter

Update v2.0.17 : 22nd July 2013

added serialization of static fields and properties
added dynamic object support and test
reformatted article

Update v2.0.18 : 19th August 2013

edge case empty array deserialize "[]" -> T[]
code cleanup
fixed serialize readonly properties

Update v2.0.19 : 27th August 2013

fix dynamic objects and lists (Thanks to M.Killer)
fix deserialize Dictionary<T, List<V>> and Dictionary<T, V[]> (Thanks to Pelle Penna)
added tests for dictionary with lists

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 27/32

Update v2.0.20 : 11th September 2013

fixed hastable deserialize
added test for hashtable
added abstract class test
changed list of getters to array ~3% performance gain
removed unused code

Update v2.0.21 : 18th September 2013

fixed edge case tailing '\' in formatter
code cleanup formatter

Update v2.0.22 : 1st October 2013

added .net 3.5 project
now compiling to 'output' directory
added signed assembly
version numbers will stay at 2.0.0.0 for drop in compatibility
file version will reflect the build number
bug fix deserializing to dictionaries instead of dataset when type is not defined

Update v2.0.23 : 28th October 2013

JSONParameters.IgnoreCaseOnDeserialize now works
added ignore case test

Update v2.0.24 : 2nd November 2013

access inner property in arrays in dynamic types e.g. d.arr[1].a (Thanks to Greg Ryjikh)
add JSONParameters.KVStyleStringDictionary to control string key dictionary output

Update v2.0.25 : 16th November 2013

bug fix dynamic json and root arrays e.g. [1,2,3,4]

Update v2.0.26 : 23rd November 2013

bug fix objects in array dynamic types e.g. [1,2,{"prop":90}]
added support for special collections : StringDictionary, NameValueCollection

Update v2.0.27 : 8th January 2014

added UseValuesOfEnums parameter to control enum output
fixed working with const properties and fields (i.e ignored)

Update v2.0.28 : 22nd March 2014

removed ToCharArray in the parser for less memory usage (Thanks to Simon Hewitt)
fixed create enum from value and string
replaced safedictionary with dictionary for some of the internals so no locks on read
added custom ignore attributes (Thanks to Jared Thirsk)
using IsDefined instead of GetCustomAttributes (Thanks to Andrew Rissing)
moved all the reflection code out of JSON.cs
now you can deserialize non default constructor classes (Thanks to Anton Afanasyev)

Update v2.0.28.1 : 29th March 2014

added ParametricConstructorOverride parameter to control non default constructors
fixed failing StructTest when run with others
added create object performance test

Update v2.1.0 : 7th April 2014

breaking change : removed the JSON.Instance singleton
moved all the state from JSON to the Reflection singleton
all of the JSON interface is now static
added JSONParameters overloads for ToObject()
support for circular referenced object structures

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 28/32

added circular test
fixed the .net35 project file to compile correctly

Update v2.1.1 : 27th April 2014

bug fix obj.List<List<object>> and obj.List<object[]>
added code intellisense help for methods
added ClearReflectionCache() to reset all internal structures

Update v2.1.2 : 16th August 2014

bug fix circular references (thanks to SonicThg)

Update v2.1.3 : 15th September 2014

added support for DateTime milliseconds
added TestMilliseconds() test

Update v2.1.4 : 6th October 2014

bug fix deserializing a struct property in a class

Update v2.1.5 : 23rd October 2014

added direct nullable convert ToObject<x?> i.e. int? long? etc. (thanks to goroth)
bug fix deserialize private set and no set properties
added ReadonlyTest() test for the above

Update v2.1.6 : 20th November 2014

fix for release build in net4 (thanks to Craig Minihan)
support for ExpandoObject serialize in net4 (thanks to Craig Minihan)
added JSONParameters.SerializerMaxDepth to control the max depth to go down to
added JSONParameters.InlineCircularReferences to disable the $i feature and inline already seen
objects
JSONParameters.UseExtensions = false disables circular references also

Update v2.1.7 : 29th November 2014

strict ISO date format compliance with a T in the output (IE, firefox javascript engines complained)
added JSONParameters.SerializeToLowerCaseNames for javascript interop
JSONParameters.IgnoreCaseOnDeserialize is depricated and not needed anymore
added tests for lowercase output
internal code cleanup

Update v2.1.8 : 8th January 2015

bug fix serializing static fields and properties
skip indexer properties on objects (thanks to scymen)
JSONParameters.SerializeToLowerCaseNames also handles Dictionary and
NameValueCollection

Update v2.1.9 : 16th January 2015

JSONParameters.SerializeNullValues = false handles Dictionary and
NameValueCollection correctly

Update v2.1.10 : 24th February 2015

bug fix byte[] keys with Dictionary (thanks to Stanislav Lukeš)

Update v2.1.11 : 6th March 2015

bug fix public static properties

Update v2.1.12 : 27th April 2015

support for multidimensional arrays (thanks to wmjordan)

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 29/32

Update v2.1.13 : 17th May 2015

code speedups (thanks to wmjordan)

Update v2.1.14 : 31st May 2015

dynamic object processing enhancements (thanks to Justin Dearing)

Update v2.1.15 : 15th March 2016

usings cleanup
bug fix : edge case CreateArray() bt is null -> default to typeof(object)

Update v2.1.16 : 19th June 2016

bug fix ToObject<Dictionary<string, List<X>>>() (thanks to sleiN13)
bug fix CreateStringKeyDictionary() (thanks to John Earnshaw)
type access optimizations
test restructuring

Update v2.1.17 : 15th July 2016

added support for skipping line comments in json string on read (e.g. //comment)
fixed broken custom type handler (sorry to all)
added test for custom types
auto convert string to int or long if the receiving type expects one
auto convert byte[] if needed (thanks to Enrico Padovani)
bug fix DateTime in anonymous type InvalidProgramException (thanks to skottmckay)
ExpandoObject work correctly
JSON.ToObject<T[]>() works correctly
support for double.NaN float.NaN with test
property/field/key names with quotes etc. handled correctly
fixed byte[] in Dictionary values with test
added twitter data test
support for DateTimeOffset

Update v2.1.18 : 23rd July 2016

bug fix read only properties to output
added test for readonly properties
sync reflection.cs with fastBinaryJSON
added NonSerialized to the list of ignore default attributes

Update v2.1.19 : 3rd September 2016

added ToNiceJSON(obj) with default parameters
added support for interface object properties (thanks to DrDeadCrash)

Update v2.1.20 : 12th September 2016

 bug fix nested dictionary D<,D<,>>

Update v2.1.21 : 21st October 2016

bug fix enumerating dynamic objects

Update v2.1.22 : 29th December 2016

bug fix ToObject<Dictionary<string,List<T>>() with extensions off (thanks to chunlizh)
added Howto.md (work in progress)
renamed solution file

Update v2.1.23 : 15th February 2017

added support for TimeSpan (equates to a long)
added auto convert string numbers "42" -> 42
added more to Howto.md

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 30/32

Update v2.1.24 : 1st June 2017

Support ISO8601 formatted DateTimeOffset (thanks to Scott McKay)
security warning for $type usage

Update v2.1.25 : 24th July 2017

support for DataMember[Name] attribute
handling \0 in strings as \u0000 even without extensions

Update v2.1.26 : 12th August 2017

bug fix support for byte[] in DataTable columns (thanks to HKatura)
added JSONParameters.FormatterIndentSpaces
bug fix edge cases for float/decimal/double/long/ulong/int/uint
 MinValue, MaxValue, NegativeInfinity, PositiveInfinity, Epsilon, NaN (thanks
to qaqz111)

Update v2.1.27 : 15th September 2017

bug fix case in DataMember attributes (thanks to Elvis Lam)
added ToObject(string json, Type type, JSONParameters par)
bug fix .net v2.0+ build with conditional compilation

Update v2.1.28 : 16th January 2018

bug fix deserializing array of objects with type information
test for above
support for .net core and netstandard2.0 via separate project

Update v2.1.29 : May 4th 2018

added JSONParameters.AllowNonQuotedKeys for non standard javascript like json
signed .net core and standard assembly

Update v2.1.31 : May 9th 2018

auto convert to string on deserialize if the object property is string and the json value is not
fixed side effect of changing JSONParameters.UsingGlobalTypes inside classes and affecting the original
value
fixed deserialize nested Dictionary without extensions with generic ToObject<>

Update v2.1.32 : 26th May 2018

Non public setter / readonly property support (thanks to rbeurskens)
unify reflection.cs with fastBinaryJSON

Update v2.1.33 : 18th June 2018

case insensitive enum (thanks to AgentFire)
auto covert to boolean (number >0 , string : 1, true, yes, on)
fixed .net 3.5 project output framework version

Update v2.1.34 : 28th June 2018

ability to create internal/private objects (removed the public access restriction on classes)

Update v2.1.36 : 8th August 2018

optimization tweaks ~30% boost on deserialize
changed internal tolower to tolowerinvariant
internal json parser fixed char pointer
internal reflection struct to class

Update v2.2.0 : 23rd August 2018

fixed json parser to create a decimal number if the string does not have an exponent
fixed fast creating lists without capacity constructor

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 31/32

unified Reflection.cs
* breaking runtime change if using RegisterCustomType() *

Update v2.2.2 : 17th March 2019

thread safe json formatter (thanks to Ondrej Medek)
added JSONParameters.AutoConvertStringToNumbers to control the auto conversion, if false you
will get an exception
fixed file names in nuget package on linux

Update v2.2.3 : 4th May 2019

bug fix deserialize Dictionary<int,List<X>> without extensions (thanks to Ondrej Medek)
bug fix deserialize Dictionary<int,X[]> without extensions

Update v2.2.4 : 8th June 2019

optimized CreateLong() and CreateInteger() (thanks to djmarcus)
made JSONParameters.MakeCopy() public

Update v2.3.0 : 26th October 2019

bug fix reading a negative number in int[]
bug fix object equality hash code checking with
JSONParameters.OverrideObjectHashCodeChecking (thanks to MTantos1)
added JSONParameters.BlackListTypeChecking default true for friday 13th json attack checking

Update v2.3.3 : 29th September 2020

removed racist term from code
added fastSJON.DataMember attribute for .net v2+

Update v2.3.5 : 20th October 2020

optimized the parser for skipping when type provided and $types not in json

Update v2.3.5.1 : 21st October 2020

added nuget package for nunit to the test project
code cleanup

Update v2.3.5.2 : 30th October 2020

bug fix endless loop parsing recursive object structures

Update v2.3.5.3 : 10th November 2020

bug fix BuildLookup()

License
This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

About the Author

http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/Members/MehdiGholam

2020/11/12 fastJSON - Smallest, Fastest Polymorphic JSON Serializer - CodeProject

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=Print 32/32

Permalink
Advertise
Privacy
Cookies
Terms of Use

 Article Copyright 2011 by Mehdi Gholam
Everything else Copyright © CodeProject,

1999-2020

Web02 2.8.20201111.2

Comments and Discussions
 1621 messages have been posted for this article Visit https://www.codeproject.com/Articles/159450/fastJSON-Smallest-

Fastest-Polymorphic-JSON-Seriali to post and view comments on this article, or click here to get a print view with messages.

Mehdi Gholam
Architect -
United Kingdom

Mehdi first started programming when he was 8 on BBC+128k machine in 6512 processor language, after various hardware and
software changes he eventually came across .net and c# which he has been using since v1.0.
He is formally educated as a system analyst Industrial engineer, but his programming passion continues.

* Mehdi is the 5th person to get 6 out of 7 Platinum's on Code-Project (13th Jan'12)
* Mehdi is the 3rd person to get 7 out of 7 Platinum's on Code-Project (26th Aug'16)

https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali
http://developermedia.com/
https://www.codeproject.com/info/privacy.aspx
https://www.codeproject.com/info/cookie.aspx
https://www.codeproject.com/info/TermsOfUse.aspx
mailto:webmaster@codeproject.com
https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali
https://www.codeproject.com/Articles/159450/fastJSON-Smallest-Fastest-Polymorphic-JSON-Seriali?display=PrintAll
https://www.codeproject.com/Members/MehdiGholam

