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These days there’s a wealth of information about the new async and await 
support in the Microsoft .NET Framework 4.5. This article is intended as a “second 
step” in learning asynchronous programming; I assume that you’ve read at least 
one introductory article about it. This article presents nothing new, as the same 
advice can be found online in sources such as Stack Overflow, MSDN forums and 
the async/await FAQ. This article just highlights a few best practices that can get 
lost in the avalanche of available documentation.

The best practices in this article are more what you’d call “guidelines” than actual 
rules. There are exceptions to each of these guidelines. I’ll explain the reasoning 
behind each guideline so that it’s clear when it does and does not apply. The 
guidelines are summarized in Figure 1; I’ll discuss each in the following sections.

Figure 1 Summary of Asynchronous Programming Guidelines

Name Description Exceptions

Avoid async 
void

Prefer async Task methods over async 
void methods

Event handlers



Async all the 
way

Don’t mix blocking and async code Console main method

Configure 
context

Use ConfigureAwait(false) when you can Methods that require 
context

Avoid Async Void
There are three possible return types for async methods: Task, Task<T> and void, 
but the natural return types for async methods are just Task and Task<T>. When 
converting from synchronous to asynchronous code, any method returning a 
type T becomes an async method returning Task<T>, and any method returning 
void becomes an async method returning Task. The following code snippet 
illustrates a synchronous void-returning method and its asynchronous equivalent:

XML

Void-returning async methods have a specific purpose: to make asynchronous 
event handlers possible. It is possible to have an event handler that returns some 
actual type, but that doesn't work well with the language; invoking an event 
handler that returns a type is very awkward, and the notion of an event handler 
actually returning something doesn't make much sense. Event handlers naturally 
return void, so async methods return void so that you can have an asynchronous 
event handler. However, some semantics of an async void method are subtly 
different than the semantics of an async Task or async Task<T> method.

＝ Copy

void MyMethod() 
{ 
  // Do synchronous work. 
  Thread.Sleep(1000); 
} 
async Task MyMethodAsync() 
{ 
  // Do asynchronous work. 
  await Task.Delay(1000); 
} 



Async void methods have different error-handling semantics. When an exception 
is thrown out of an async Task or async Task<T> method, that exception is 
captured and placed on the Task object. With async void methods, there is no 
Task object, so any exceptions thrown out of an async void method will be raised 
directly on the SynchronizationContext that was active when the async void 
method started. Figure 2 illustrates that exceptions thrown from async void 
methods can’t be caught naturally.

Figure 2 Exceptions from an Async Void Method Can’t Be Caught with Catch
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These exceptions can be observed using AppDomain.UnhandledException or a 
similar catch-all event for GUI/ASP.NET applications, but using those events for 
regular exception handling is a recipe for unmaintainability.

Async void methods have different composing semantics. Async methods 
returning Task or Task<T> can be easily composed using await, Task.WhenAny, 
Task.WhenAll and so on. Async methods returning void don’t provide an easy way 
to notify the calling code that they’ve completed. It’s easy to start several async 
void methods, but it’s not easy to determine when they’ve finished. Async void 
methods will notify their SynchronizationContext when they start and finish, but a 

＝ Copy

private async void ThrowExceptionAsync() 
{ 
  throw new InvalidOperationException(); 
} 
public void AsyncVoidExceptions_CannotBeCaughtByCatch() 
{ 
  try 
  { 
    ThrowExceptionAsync(); 
  } 
  catch (Exception) 
  { 
    // The exception is never caught here! 
    throw; 
  } 
} 



custom SynchronizationContext is a complex solution for regular application 
code.

Async void methods are difficult to test. Because of the differences in error 
handling and composing, it’s difficult to write unit tests that call async void 
methods. The MSTest asynchronous testing support only works for async 
methods returning Task or Task<T>. It’s possible to install a 
SynchronizationContext that detects when all async void methods have 
completed and collects any exceptions, but it’s much easier to just make the 
async void methods return Task instead.

It’s clear that async void methods have several disadvantages compared to async 
Task methods, but they’re quite useful in one particular case: asynchronous event 
handlers. The differences in semantics make sense for asynchronous event 
handlers. They raise their exceptions directly on the SynchronizationContext, 
which is similar to how synchronous event handlers behave. Synchronous event 
handlers are usually private, so they can’t be composed or directly tested. An 
approach I like to take is to minimize the code in my asynchronous event handler
—for example, have it await an async Task method that contains the actual logic. 
The following code illustrates this approach, using async void methods for event 
handlers without sacrificing testability:
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Async void methods can wreak havoc if the caller isn’t expecting them to be 
async. When the return type is Task, the caller knows it’s dealing with a future 
operation; when the return type is void, the caller might assume the method is 
complete by the time it returns. This problem can crop up in many unexpected 
ways. It’s usually wrong to provide an async implementation (or override) of a 

＝ Copy

private async void button1_Click(object sender, EventArgs e) 
{ 
  await Button1ClickAsync(); 
} 
public async Task Button1ClickAsync() 
{ 
  // Do asynchronous work. 
  await Task.Delay(1000); 
} 



void-returning method on an interface (or base class). Some events also assume 
that their handlers are complete when they return. One subtle trap is passing an 
async lambda to a method taking an Action parameter; in this case, the async 
lambda returns void and inherits all the problems of async void methods. As a 
general rule, async lambdas should only be used if they’re converted to a 
delegate type that returns Task (for example, Func<Task>).

To summarize this first guideline, you should prefer async Task to async void. 
Async Task methods enable easier error-handling, composability and testability. 
The exception to this guideline is asynchronous event handlers, which must 
return void. This exception includes methods that are logically event handlers 
even if they’re not literally event handlers (for example, ICommand.Execute 
implementations).

Async All the Way
Asynchronous code reminds me of the story of a fellow who mentioned that the 
world was suspended in space and was immediately challenged by an elderly 
lady claiming that the world rested on the back of a giant turtle. When the man 
enquired what the turtle was standing on, the lady replied, “You’re very clever, 
young man, but it’s turtles all the way down!” As you convert synchronous code 
to asynchronous code, you’ll find that it works best if asynchronous code calls 
and is called by other asynchronous code—all the way down (or “up,” if you 
prefer). Others have also noticed the spreading behavior of asynchronous 
programming and have called it “contagious” or compared it to a zombie virus. 
Whether turtles or zombies, it’s definitely true that asynchronous code tends to 
drive surrounding code to also be asynchronous. This behavior is inherent in all 
types of asynchronous programming, not just the new async/await keywords.

“Async all the way” means that you shouldn’t mix synchronous and asynchronous 
code without carefully considering the consequences. In particular, it’s usually a 
bad idea to block on async code by calling Task.Wait or Task.Result. This is an 
especially common problem for programmers who are “dipping their toes” into 
asynchronous programming, converting just a small part of their application and 
wrapping it in a synchronous API so the rest of the application is isolated from 
the changes. Unfortunately, they run into problems with deadlocks. After 



answering many async-related questions on the MSDN forums, Stack Overflow 
and e-mail, I can say this is by far the most-asked question by async newcomers 
once they learn the basics: “Why does my partially async code deadlock?”

Figure 3 shows a simple example where one method blocks on the result of an 
async method. This code will work just fine in a console application but will 
deadlock when called from a GUI or ASP.NET context. This behavior can be 
confusing, especially considering that stepping through the debugger implies 
that it’s the await that never completes. The actual cause of the deadlock is 
further up the call stack when Task.Wait is called.

Figure 3 A Common Deadlock Problem When Blocking on Async Code
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The root cause of this deadlock is due to the way await handles contexts. By 
default, when an incomplete Task is awaited, the current “context” is captured and 
used to resume the method when the Task completes. This “context” is the 
current SynchronizationContext unless it’s null, in which case it’s the current 
TaskScheduler. GUI and ASP.NET applications have a SynchronizationContext that 
permits only one chunk of code to run at a time. When the await completes, it 
attempts to execute the remainder of the async method within the captured 
context. But that context already has a thread in it, which is (synchronously) 

＝ Copy

public static class DeadlockDemo 
{ 
  private static async Task DelayAsync() 
  { 
    await Task.Delay(1000); 
  } 
  // This method causes a deadlock when called in a GUI or ASP.NET 
context. 
  public static void Test() 
  { 
    // Start the delay. 
    var delayTask = DelayAsync(); 
    // Wait for the delay to complete. 
    delayTask.Wait(); 
  } 
} 



waiting for the async method to complete. They’re each waiting for the other, 
causing a deadlock.

Note that console applications don’t cause this deadlock. They have a thread 
pool SynchronizationContext instead of a one-chunk-at-a-time 
SynchronizationContext, so when the await completes, it schedules the remainder 
of the async method on a thread pool thread. The method is able to complete, 
which completes its returned task, and there’s no deadlock. This difference in 
behavior can be confusing when programmers write a test console program, 
observe the partially async code work as expected, and then move the same code 
into a GUI or ASP.NET application, where it deadlocks.

The best solution to this problem is to allow async code to grow naturally 
through the codebase. If you follow this solution, you’ll see async code expand to 
its entry point, usually an event handler or controller action. Console applications 
can’t follow this solution fully because the Main method can’t be async. If the 
Main method were async, it could return before it completed, causing the 
program to end. Figure 4 demonstrates this exception to the guideline: The Main 
method for a console application is one of the few situations where code may 
block on an asynchronous method.

Figure 4 The Main Method May Call Task.Wait or Task.Result

XML ＝ Copy

class Program 
{ 
  static void Main() 
  { 
    MainAsync().Wait(); 
  } 
  static async Task MainAsync() 
  { 
    try 
    { 
      // Asynchronous implementation. 
      await Task.Delay(1000); 
    } 
    catch (Exception ex) 
    { 
      // Handle exceptions. 



Allowing async to grow through the codebase is the best solution, but this means 
there’s a lot of initial work for an application to see real benefit from async code. 
There are a few techniques for incrementally converting a large codebase to 
async code, but they’re outside the scope of this article. In some cases, using 
Task.Wait or Task.Result can help with a partial conversion, but you need to be 
aware of the deadlock problem as well as the error-handling problem. I’ll explain 
the error-handling problem now and show how to avoid the deadlock problem 
later in this article.

Every Task will store a list of exceptions. When you await a Task, the first 
exception is re-thrown, so you can catch the specific exception type (such as 
InvalidOperationException). However, when you synchronously block on a Task 
using Task.Wait or Task.Result, all of the exceptions are wrapped in an 
AggregateException and thrown. Refer again to Figure 4. The try/catch in 
MainAsync will catch a specific exception type, but if you put the try/catch in 
Main, then it will always catch an AggregateException. Error handling is much 
easier to deal with when you don’t have an AggregateException, so I put the 
“global” try/catch in MainAsync.

So far, I’ve shown two problems with blocking on async code: possible deadlocks 
and more-complicated error handling. There’s also a problem with using blocking 
code within an async method. Consider this simple example:

XML

    } 
  } 
} 

＝ Copy

public static class NotFullyAsynchronousDemo 
{ 
  // This method synchronously blocks a thread. 
  public static async Task TestNotFullyAsync() 
  { 
    await Task.Yield(); 
    Thread.Sleep(5000); 
  } 
} 



This method isn’t fully asynchronous. It will immediately yield, returning an 
incomplete task, but when it resumes it will synchronously block whatever thread 
is running. If this method is called from a GUI context, it will block the GUI thread; 
if it’s called from an ASP.NET request context, it will block the current ASP.NET 
request thread. Asynchronous code works best if it doesn’t synchronously block. 
Figure 5 is a cheat sheet of async replacements for synchronous operations.

Figure 5 The “Async Way” of Doing Things

To Do This … Instead of This … Use This

Retrieve the result of a background 
task

Task.Wait or 
Task.Result

await

Wait for any task to complete Task.WaitAny await 
Task.WhenAny

Retrieve the results of multiple tasks Task.WaitAll await Task.WhenAll

Wait a period of time Thread.Sleep await Task.Delay

To summarize this second guideline, you should avoid mixing async and blocking 
code. Mixed async and blocking code can cause deadlocks, more-complex error 
handling and unexpected blocking of context threads. The exception to this 
guideline is the Main method for console applications, or—if you’re an advanced 
user—managing a partially asynchronous codebase.

Configure Context
Earlier in this article, I briefly explained how the “context” is captured by default 
when an incomplete Task is awaited, and that this captured context is used to 
resume the async method. The example in Figure 3 shows how resuming on the 
context clashes with synchronous blocking to cause a deadlock. This context 
behavior can also cause another problem—one of performance. As asynchronous 
GUI applications grow larger, you might find many small parts of async methods 
all using the GUI thread as their context. This can cause sluggishness as 
responsiveness suffers from “thousands of paper cuts.”



To mitigate this, await the result of ConfigureAwait whenever you can. The 
following code snippet illustrates the default context behavior and the use of 
ConfigureAwait:

XML

By using ConfigureAwait, you enable a small amount of parallelism: Some 
asynchronous code can run in parallel with the GUI thread instead of constantly 
badgering it with bits of work to do.

Aside from performance, ConfigureAwait has another important aspect: It can 
avoid deadlocks. Consider Figure 3 again; if you add “ConfigureAwait(false)” to 
the line of code in DelayAsync, then the deadlock is avoided. This time, when the 
await completes, it attempts to execute the remainder of the async method 
within the thread pool context. The method is able to complete, which completes 
its returned task, and there’s no deadlock. This technique is particularly useful if 
you need to gradually convert an application from synchronous to asynchronous.

If you can use ConfigureAwait at some point within a method, then I recommend 
you use it for every await in that method after that point. Recall that the context 
is captured only if an incomplete Task is awaited; if the Task is already complete, 
then the context isn’t captured. Some tasks might complete faster than expected 
in different hardware and network situations, and you need to graciously handle 
a returned task that completes before it’s awaited. Figure 6 shows a modified 
example.

Figure 6 Handling a Returned Task that Completes Before It’s Awaited

XML

＝ Copy

async Task MyMethodAsync() 
{ 
  // Code here runs in the original context. 
  await Task.Delay(1000); 
  // Code here runs in the original context. 
  await Task.Delay(1000).ConfigureAwait( 
    continueOnCapturedContext: false); 
  // Code here runs without the original 
  // context (in this case, on the thread pool). 
} 

＝ Copy



You should not use ConfigureAwait when you have code after the await in the 
method that needs the context. For GUI apps, this includes any code that 
manipulates GUI elements, writes data-bound properties or depends on a GUI-
specific type such as Dispatcher/CoreDispatcher. For ASP.NET apps, this includes 
any code that uses HttpContext.Current or builds an ASP.NET response, including 
return statements in controller actions. Figure 7demonstrates one common 
pattern in GUI apps—having an async event handler disable its control at the 
beginning of the method, perform some awaits and then re-enable its control at 
the end of the handler; the event handler can’t give up its context because it 
needs to re-enable its control.

Figure 7 Having an Async Event Handler Disable and Re-Enable Its Control
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async Task MyMethodAsync() 
{ 
  // Code here runs in the original context. 
  await Task.FromResult(1); 
  // Code here runs in the original context. 
  await Task.FromResult(1).ConfigureAwait(continueOnCapturedContext: 
false); 
  // Code here runs in the original context. 
  var random = new Random(); 
  int delay = random.Next(2); // Delay is either 0 or 1 
  await Task.Delay(delay).ConfigureAwait(continueOnCapturedContext: 
false); 
  // Code here might or might not run in the original context. 
  // The same is true when you await any Task 
  // that might complete very quickly. 
} 

＝ Copy

private async void button1_Click(object sender, EventArgs e) 
{ 
  button1.Enabled = false; 
  try 
  { 
    // Can't use ConfigureAwait here ... 
    await Task.Delay(1000); 
  } 
  finally 
  { 



Each async method has its own context, so if one async method calls another 
async method, their contexts are independent. Figure 8 shows a minor 
modification of Figure 7.

Figure 8 Each Async Method Has Its Own Context
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Context-free code is more reusable. Try to create a barrier in your code between 
the context-sensitive code and context-free code, and minimize the context-
sensitive code. In Figure 8, I recommend putting all the core logic of the event 
handler within a testable and context-free async Task method, leaving only the 
minimal code in the context-sensitive event handler. Even if you’re writing an 
ASP.NET application, if you have a core library that’s potentially shared with 
desktop applications, consider using ConfigureAwait in the library code.

    // Because we need the context here. 
    button1.Enabled = true; 
  } 
} 

＝ Copy

private async Task HandleClickAsync() 
{ 
  // Can use ConfigureAwait here. 
  await Task.Delay(1000).ConfigureAwait(continueOnCapturedContext: 
false); 
} 
private async void button1_Click(object sender, EventArgs e) 
{ 
  button1.Enabled = false; 
  try 
  { 
    // Can't use ConfigureAwait here. 
    await HandleClickAsync(); 
  } 
  finally 
  { 
    // We are back on the original context for this method. 
    button1.Enabled = true; 
  } 
} 



To summarize this third guideline, you should use ConfigureAwait when possible. 
Context-free code has better performance for GUI applications and is a useful 
technique for avoiding deadlocks when working with a partially async codebase. 
The exceptions to this guideline are methods that require the context.

Know Your Tools
There’s a lot to learn about async and await, and it’s natural to get a little 
disoriented. Figure 9 is a quick reference of solutions to common problems.

Figure 9 Solutions to Common Async Problems

Problem Solution

Create a task to execute code Task.Run or TaskFactory.StartNew (not the Task 
constructor or Task.Start)

Create a task wrapper for an 
operation or event

TaskFactory.FromAsync or 
TaskCompletionSource<T>

Support cancellation CancellationTokenSource and CancellationToken

Report progress IProgress<T> and Progress<T>

Handle streams of data TPL Dataflow or Reactive Extensions

Synchronize access to a shared 
resource

SemaphoreSlim

Asynchronously initialize a 
resource

AsyncLazy<T>

Async-ready producer/consumer 
structures

TPL Dataflow or AsyncCollection<T>

The first problem is task creation. Obviously, an async method can create a task, 
and that’s the easiest option. If you need to run code on the thread pool, use 
Task.Run. If you want to create a task wrapper for an existing asynchronous 



operation or event, use TaskCompletionSource<T>. The next common problem is 
how to handle cancellation and progress reporting. The base class library (BCL) 
includes types specifically intended to solve these issues: 
CancellationTokenSource/CancellationToken and IProgress<T>/Progress<T>. 
Asynchronous code should use the Task-based Asynchronous Pattern, or TAP 
(msdn.microsoft.com/library/hh873175), which explains task creation, cancellation 
and progress reporting in detail.

Another problem that comes up is how to handle streams of asynchronous data. 
Tasks are great, but they can only return one object and only complete once. For 
asynchronous streams, you can use either TPL Dataflow or Reactive Extensions 
(Rx). TPL Dataflow creates a “mesh” that has an actor-like feel to it. Rx is more 
powerful and efficient but has a more difficult learning curve. Both TPL Dataflow 
and Rx have async-ready methods and work well with asynchronous code.

Just because your code is asynchronous doesn’t mean that it’s safe. Shared 
resources still need to be protected, and this is complicated by the fact that you 
can’t await from inside a lock. Here’s an example of async code that can corrupt 
shared state if it executes twice, even if it always runs on the same thread:

XML

The problem is that the method reads the value and suspends itself at the await, 
and when the method resumes it assumes the value hasn’t changed. To solve this 
problem, the SemaphoreSlim class was augmented with the async-ready 
WaitAsync overloads. Figure 10 demonstrates SemaphoreSlim.WaitAsync.

Figure 10 SemaphoreSlim Permits Asynchronous Synchronization

＝ Copy

int value; 

Task<int> GetNextValueAsync(int current); 

async Task UpdateValueAsync() 

{ 

  value = await GetNextValueAsync(value); 

} 



XML

Asynchronous code is often used to initialize a resource that’s then cached and 
shared. There isn’t a built-in type for this, but Stephen Toub developed an 
AsyncLazy<T> that acts like a merge of Task<T> and Lazy<T>. The original type 
is described on his blog (bit.ly/dEN178), and an updated version is available in my 
AsyncEx library (nitoasyncex.codeplex.com).

Finally, some async-ready data structures are sometimes needed. TPL Dataflow 
provides a BufferBlock<T> that acts like an async-ready producer/consumer 
queue. Alternatively, AsyncEx provides AsyncCollection<T>, which is an async 
version of BlockingCollection<T>.

＝ Copy

SemaphoreSlim mutex = new SemaphoreSlim(1); 

int value; 

Task<int> GetNextValueAsync(int current); 

async Task UpdateValueAsync() 

{ 

  await mutex.WaitAsync().ConfigureAwait(false); 

  try 

  { 

    value = await GetNextValueAsync(value); 

  } 

  finally 

  { 

    mutex.Release(); 

  } 

} 



I hope the guidelines and pointers in this article have been helpful. Async is a 
truly awesome language feature, and now is a great time to start using it!
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