
09/04/2015 • 18 minutes to read

In this article

Avoid Async Void

Async All the Way

Configure Context

Know Your Tools

March 2013

Volume 28 Number 03

Async/Await - Best Practices in
Asynchronous Programming
By Stephen Cleary | March 2013

These days there’s a wealth of information about the new async and await
support in the Microsoft .NET Framework 4.5. This article is intended as a “second
step” in learning asynchronous programming; I assume that you’ve read at least
one introductory article about it. This article presents nothing new, as the same
advice can be found online in sources such as Stack Overflow, MSDN forums and
the async/await FAQ. This article just highlights a few best practices that can get
lost in the avalanche of available documentation.

The best practices in this article are more what you’d call “guidelines” than actual
rules. There are exceptions to each of these guidelines. I’ll explain the reasoning
behind each guideline so that it’s clear when it does and does not apply. The
guidelines are summarized in Figure 1; I’ll discuss each in the following sections.

Figure 1 Summary of Asynchronous Programming Guidelines

Name Description Exceptions

Avoid async
void

Prefer async Task methods over async
void methods

Event handlers

Async all the
way

Don’t mix blocking and async code Console main method

Configure
context

Use ConfigureAwait(false) when you can Methods that require
context

Avoid Async Void
There are three possible return types for async methods: Task, Task<T> and void,
but the natural return types for async methods are just Task and Task<T>. When
converting from synchronous to asynchronous code, any method returning a
type T becomes an async method returning Task<T>, and any method returning
void becomes an async method returning Task. The following code snippet
illustrates a synchronous void-returning method and its asynchronous equivalent:

XML

Void-returning async methods have a specific purpose: to make asynchronous
event handlers possible. It is possible to have an event handler that returns some
actual type, but that doesn't work well with the language; invoking an event
handler that returns a type is very awkward, and the notion of an event handler
actually returning something doesn't make much sense. Event handlers naturally
return void, so async methods return void so that you can have an asynchronous
event handler. However, some semantics of an async void method are subtly
different than the semantics of an async Task or async Task<T> method.

＝ Copy

void MyMethod()
{
 // Do synchronous work.
 Thread.Sleep(1000);
}
async Task MyMethodAsync()
{
 // Do asynchronous work.
 await Task.Delay(1000);
}

Async void methods have different error-handling semantics. When an exception
is thrown out of an async Task or async Task<T> method, that exception is
captured and placed on the Task object. With async void methods, there is no
Task object, so any exceptions thrown out of an async void method will be raised
directly on the SynchronizationContext that was active when the async void
method started. Figure 2 illustrates that exceptions thrown from async void
methods can’t be caught naturally.

Figure 2 Exceptions from an Async Void Method Can’t Be Caught with Catch

XML

These exceptions can be observed using AppDomain.UnhandledException or a
similar catch-all event for GUI/ASP.NET applications, but using those events for
regular exception handling is a recipe for unmaintainability.

Async void methods have different composing semantics. Async methods
returning Task or Task<T> can be easily composed using await, Task.WhenAny,
Task.WhenAll and so on. Async methods returning void don’t provide an easy way
to notify the calling code that they’ve completed. It’s easy to start several async
void methods, but it’s not easy to determine when they’ve finished. Async void
methods will notify their SynchronizationContext when they start and finish, but a

＝ Copy

private async void ThrowExceptionAsync()
{
 throw new InvalidOperationException();
}
public void AsyncVoidExceptions_CannotBeCaughtByCatch()
{
 try
 {
 ThrowExceptionAsync();
 }
 catch (Exception)
 {
 // The exception is never caught here!
 throw;
 }
}

custom SynchronizationContext is a complex solution for regular application
code.

Async void methods are difficult to test. Because of the differences in error
handling and composing, it’s difficult to write unit tests that call async void
methods. The MSTest asynchronous testing support only works for async
methods returning Task or Task<T>. It’s possible to install a
SynchronizationContext that detects when all async void methods have
completed and collects any exceptions, but it’s much easier to just make the
async void methods return Task instead.

It’s clear that async void methods have several disadvantages compared to async
Task methods, but they’re quite useful in one particular case: asynchronous event
handlers. The differences in semantics make sense for asynchronous event
handlers. They raise their exceptions directly on the SynchronizationContext,
which is similar to how synchronous event handlers behave. Synchronous event
handlers are usually private, so they can’t be composed or directly tested. An
approach I like to take is to minimize the code in my asynchronous event handler
—for example, have it await an async Task method that contains the actual logic.
The following code illustrates this approach, using async void methods for event
handlers without sacrificing testability:

XML

Async void methods can wreak havoc if the caller isn’t expecting them to be
async. When the return type is Task, the caller knows it’s dealing with a future
operation; when the return type is void, the caller might assume the method is
complete by the time it returns. This problem can crop up in many unexpected
ways. It’s usually wrong to provide an async implementation (or override) of a

＝ Copy

private async void button1_Click(object sender, EventArgs e)
{
 await Button1ClickAsync();
}
public async Task Button1ClickAsync()
{
 // Do asynchronous work.
 await Task.Delay(1000);
}

void-returning method on an interface (or base class). Some events also assume
that their handlers are complete when they return. One subtle trap is passing an
async lambda to a method taking an Action parameter; in this case, the async
lambda returns void and inherits all the problems of async void methods. As a
general rule, async lambdas should only be used if they’re converted to a
delegate type that returns Task (for example, Func<Task>).

To summarize this first guideline, you should prefer async Task to async void.
Async Task methods enable easier error-handling, composability and testability.
The exception to this guideline is asynchronous event handlers, which must
return void. This exception includes methods that are logically event handlers
even if they’re not literally event handlers (for example, ICommand.Execute
implementations).

Async All the Way
Asynchronous code reminds me of the story of a fellow who mentioned that the
world was suspended in space and was immediately challenged by an elderly
lady claiming that the world rested on the back of a giant turtle. When the man
enquired what the turtle was standing on, the lady replied, “You’re very clever,
young man, but it’s turtles all the way down!” As you convert synchronous code
to asynchronous code, you’ll find that it works best if asynchronous code calls
and is called by other asynchronous code—all the way down (or “up,” if you
prefer). Others have also noticed the spreading behavior of asynchronous
programming and have called it “contagious” or compared it to a zombie virus.
Whether turtles or zombies, it’s definitely true that asynchronous code tends to
drive surrounding code to also be asynchronous. This behavior is inherent in all
types of asynchronous programming, not just the new async/await keywords.

“Async all the way” means that you shouldn’t mix synchronous and asynchronous
code without carefully considering the consequences. In particular, it’s usually a
bad idea to block on async code by calling Task.Wait or Task.Result. This is an
especially common problem for programmers who are “dipping their toes” into
asynchronous programming, converting just a small part of their application and
wrapping it in a synchronous API so the rest of the application is isolated from
the changes. Unfortunately, they run into problems with deadlocks. After

answering many async-related questions on the MSDN forums, Stack Overflow
and e-mail, I can say this is by far the most-asked question by async newcomers
once they learn the basics: “Why does my partially async code deadlock?”

Figure 3 shows a simple example where one method blocks on the result of an
async method. This code will work just fine in a console application but will
deadlock when called from a GUI or ASP.NET context. This behavior can be
confusing, especially considering that stepping through the debugger implies
that it’s the await that never completes. The actual cause of the deadlock is
further up the call stack when Task.Wait is called.

Figure 3 A Common Deadlock Problem When Blocking on Async Code

XML

The root cause of this deadlock is due to the way await handles contexts. By
default, when an incomplete Task is awaited, the current “context” is captured and
used to resume the method when the Task completes. This “context” is the
current SynchronizationContext unless it’s null, in which case it’s the current
TaskScheduler. GUI and ASP.NET applications have a SynchronizationContext that
permits only one chunk of code to run at a time. When the await completes, it
attempts to execute the remainder of the async method within the captured
context. But that context already has a thread in it, which is (synchronously)

＝ Copy

public static class DeadlockDemo
{
 private static async Task DelayAsync()
 {
 await Task.Delay(1000);
 }
 // This method causes a deadlock when called in a GUI or ASP.NET
context.
 public static void Test()
 {
 // Start the delay.
 var delayTask = DelayAsync();
 // Wait for the delay to complete.
 delayTask.Wait();
 }
}

waiting for the async method to complete. They’re each waiting for the other,
causing a deadlock.

Note that console applications don’t cause this deadlock. They have a thread
pool SynchronizationContext instead of a one-chunk-at-a-time
SynchronizationContext, so when the await completes, it schedules the remainder
of the async method on a thread pool thread. The method is able to complete,
which completes its returned task, and there’s no deadlock. This difference in
behavior can be confusing when programmers write a test console program,
observe the partially async code work as expected, and then move the same code
into a GUI or ASP.NET application, where it deadlocks.

The best solution to this problem is to allow async code to grow naturally
through the codebase. If you follow this solution, you’ll see async code expand to
its entry point, usually an event handler or controller action. Console applications
can’t follow this solution fully because the Main method can’t be async. If the
Main method were async, it could return before it completed, causing the
program to end. Figure 4 demonstrates this exception to the guideline: The Main
method for a console application is one of the few situations where code may
block on an asynchronous method.

Figure 4 The Main Method May Call Task.Wait or Task.Result

XML ＝ Copy

class Program
{
 static void Main()
 {
 MainAsync().Wait();
 }
 static async Task MainAsync()
 {
 try
 {
 // Asynchronous implementation.
 await Task.Delay(1000);
 }
 catch (Exception ex)
 {
 // Handle exceptions.

Allowing async to grow through the codebase is the best solution, but this means
there’s a lot of initial work for an application to see real benefit from async code.
There are a few techniques for incrementally converting a large codebase to
async code, but they’re outside the scope of this article. In some cases, using
Task.Wait or Task.Result can help with a partial conversion, but you need to be
aware of the deadlock problem as well as the error-handling problem. I’ll explain
the error-handling problem now and show how to avoid the deadlock problem
later in this article.

Every Task will store a list of exceptions. When you await a Task, the first
exception is re-thrown, so you can catch the specific exception type (such as
InvalidOperationException). However, when you synchronously block on a Task
using Task.Wait or Task.Result, all of the exceptions are wrapped in an
AggregateException and thrown. Refer again to Figure 4. The try/catch in
MainAsync will catch a specific exception type, but if you put the try/catch in
Main, then it will always catch an AggregateException. Error handling is much
easier to deal with when you don’t have an AggregateException, so I put the
“global” try/catch in MainAsync.

So far, I’ve shown two problems with blocking on async code: possible deadlocks
and more-complicated error handling. There’s also a problem with using blocking
code within an async method. Consider this simple example:

XML

 }
 }
}

＝ Copy

public static class NotFullyAsynchronousDemo
{
 // This method synchronously blocks a thread.
 public static async Task TestNotFullyAsync()
 {
 await Task.Yield();
 Thread.Sleep(5000);
 }
}

This method isn’t fully asynchronous. It will immediately yield, returning an
incomplete task, but when it resumes it will synchronously block whatever thread
is running. If this method is called from a GUI context, it will block the GUI thread;
if it’s called from an ASP.NET request context, it will block the current ASP.NET
request thread. Asynchronous code works best if it doesn’t synchronously block.
Figure 5 is a cheat sheet of async replacements for synchronous operations.

Figure 5 The “Async Way” of Doing Things

To Do This … Instead of This … Use This

Retrieve the result of a background
task

Task.Wait or
Task.Result

await

Wait for any task to complete Task.WaitAny await
Task.WhenAny

Retrieve the results of multiple tasks Task.WaitAll await Task.WhenAll

Wait a period of time Thread.Sleep await Task.Delay

To summarize this second guideline, you should avoid mixing async and blocking
code. Mixed async and blocking code can cause deadlocks, more-complex error
handling and unexpected blocking of context threads. The exception to this
guideline is the Main method for console applications, or—if you’re an advanced
user—managing a partially asynchronous codebase.

Configure Context
Earlier in this article, I briefly explained how the “context” is captured by default
when an incomplete Task is awaited, and that this captured context is used to
resume the async method. The example in Figure 3 shows how resuming on the
context clashes with synchronous blocking to cause a deadlock. This context
behavior can also cause another problem—one of performance. As asynchronous
GUI applications grow larger, you might find many small parts of async methods
all using the GUI thread as their context. This can cause sluggishness as
responsiveness suffers from “thousands of paper cuts.”

To mitigate this, await the result of ConfigureAwait whenever you can. The
following code snippet illustrates the default context behavior and the use of
ConfigureAwait:

XML

By using ConfigureAwait, you enable a small amount of parallelism: Some
asynchronous code can run in parallel with the GUI thread instead of constantly
badgering it with bits of work to do.

Aside from performance, ConfigureAwait has another important aspect: It can
avoid deadlocks. Consider Figure 3 again; if you add “ConfigureAwait(false)” to
the line of code in DelayAsync, then the deadlock is avoided. This time, when the
await completes, it attempts to execute the remainder of the async method
within the thread pool context. The method is able to complete, which completes
its returned task, and there’s no deadlock. This technique is particularly useful if
you need to gradually convert an application from synchronous to asynchronous.

If you can use ConfigureAwait at some point within a method, then I recommend
you use it for every await in that method after that point. Recall that the context
is captured only if an incomplete Task is awaited; if the Task is already complete,
then the context isn’t captured. Some tasks might complete faster than expected
in different hardware and network situations, and you need to graciously handle
a returned task that completes before it’s awaited. Figure 6 shows a modified
example.

Figure 6 Handling a Returned Task that Completes Before It’s Awaited

XML

＝ Copy

async Task MyMethodAsync()
{
 // Code here runs in the original context.
 await Task.Delay(1000);
 // Code here runs in the original context.
 await Task.Delay(1000).ConfigureAwait(
 continueOnCapturedContext: false);
 // Code here runs without the original
 // context (in this case, on the thread pool).
}

＝ Copy

You should not use ConfigureAwait when you have code after the await in the
method that needs the context. For GUI apps, this includes any code that
manipulates GUI elements, writes data-bound properties or depends on a GUI-
specific type such as Dispatcher/CoreDispatcher. For ASP.NET apps, this includes
any code that uses HttpContext.Current or builds an ASP.NET response, including
return statements in controller actions. Figure 7demonstrates one common
pattern in GUI apps—having an async event handler disable its control at the
beginning of the method, perform some awaits and then re-enable its control at
the end of the handler; the event handler can’t give up its context because it
needs to re-enable its control.

Figure 7 Having an Async Event Handler Disable and Re-Enable Its Control

XML

async Task MyMethodAsync()
{
 // Code here runs in the original context.
 await Task.FromResult(1);
 // Code here runs in the original context.
 await Task.FromResult(1).ConfigureAwait(continueOnCapturedContext:
false);
 // Code here runs in the original context.
 var random = new Random();
 int delay = random.Next(2); // Delay is either 0 or 1
 await Task.Delay(delay).ConfigureAwait(continueOnCapturedContext:
false);
 // Code here might or might not run in the original context.
 // The same is true when you await any Task
 // that might complete very quickly.
}

＝ Copy

private async void button1_Click(object sender, EventArgs e)
{
 button1.Enabled = false;
 try
 {
 // Can't use ConfigureAwait here ...
 await Task.Delay(1000);
 }
 finally
 {

Each async method has its own context, so if one async method calls another
async method, their contexts are independent. Figure 8 shows a minor
modification of Figure 7.

Figure 8 Each Async Method Has Its Own Context

XML

Context-free code is more reusable. Try to create a barrier in your code between
the context-sensitive code and context-free code, and minimize the context-
sensitive code. In Figure 8, I recommend putting all the core logic of the event
handler within a testable and context-free async Task method, leaving only the
minimal code in the context-sensitive event handler. Even if you’re writing an
ASP.NET application, if you have a core library that’s potentially shared with
desktop applications, consider using ConfigureAwait in the library code.

 // Because we need the context here.
 button1.Enabled = true;
 }
}

＝ Copy

private async Task HandleClickAsync()
{
 // Can use ConfigureAwait here.
 await Task.Delay(1000).ConfigureAwait(continueOnCapturedContext:
false);
}
private async void button1_Click(object sender, EventArgs e)
{
 button1.Enabled = false;
 try
 {
 // Can't use ConfigureAwait here.
 await HandleClickAsync();
 }
 finally
 {
 // We are back on the original context for this method.
 button1.Enabled = true;
 }
}

To summarize this third guideline, you should use ConfigureAwait when possible.
Context-free code has better performance for GUI applications and is a useful
technique for avoiding deadlocks when working with a partially async codebase.
The exceptions to this guideline are methods that require the context.

Know Your Tools
There’s a lot to learn about async and await, and it’s natural to get a little
disoriented. Figure 9 is a quick reference of solutions to common problems.

Figure 9 Solutions to Common Async Problems

Problem Solution

Create a task to execute code Task.Run or TaskFactory.StartNew (not the Task
constructor or Task.Start)

Create a task wrapper for an
operation or event

TaskFactory.FromAsync or
TaskCompletionSource<T>

Support cancellation CancellationTokenSource and CancellationToken

Report progress IProgress<T> and Progress<T>

Handle streams of data TPL Dataflow or Reactive Extensions

Synchronize access to a shared
resource

SemaphoreSlim

Asynchronously initialize a
resource

AsyncLazy<T>

Async-ready producer/consumer
structures

TPL Dataflow or AsyncCollection<T>

The first problem is task creation. Obviously, an async method can create a task,
and that’s the easiest option. If you need to run code on the thread pool, use
Task.Run. If you want to create a task wrapper for an existing asynchronous

operation or event, use TaskCompletionSource<T>. The next common problem is
how to handle cancellation and progress reporting. The base class library (BCL)
includes types specifically intended to solve these issues:
CancellationTokenSource/CancellationToken and IProgress<T>/Progress<T>.
Asynchronous code should use the Task-based Asynchronous Pattern, or TAP
(msdn.microsoft.com/library/hh873175), which explains task creation, cancellation
and progress reporting in detail.

Another problem that comes up is how to handle streams of asynchronous data.
Tasks are great, but they can only return one object and only complete once. For
asynchronous streams, you can use either TPL Dataflow or Reactive Extensions
(Rx). TPL Dataflow creates a “mesh” that has an actor-like feel to it. Rx is more
powerful and efficient but has a more difficult learning curve. Both TPL Dataflow
and Rx have async-ready methods and work well with asynchronous code.

Just because your code is asynchronous doesn’t mean that it’s safe. Shared
resources still need to be protected, and this is complicated by the fact that you
can’t await from inside a lock. Here’s an example of async code that can corrupt
shared state if it executes twice, even if it always runs on the same thread:

XML

The problem is that the method reads the value and suspends itself at the await,
and when the method resumes it assumes the value hasn’t changed. To solve this
problem, the SemaphoreSlim class was augmented with the async-ready
WaitAsync overloads. Figure 10 demonstrates SemaphoreSlim.WaitAsync.

Figure 10 SemaphoreSlim Permits Asynchronous Synchronization

＝ Copy

int value;

Task<int> GetNextValueAsync(int current);

async Task UpdateValueAsync()

{

 value = await GetNextValueAsync(value);

}

XML

Asynchronous code is often used to initialize a resource that’s then cached and
shared. There isn’t a built-in type for this, but Stephen Toub developed an
AsyncLazy<T> that acts like a merge of Task<T> and Lazy<T>. The original type
is described on his blog (bit.ly/dEN178), and an updated version is available in my
AsyncEx library (nitoasyncex.codeplex.com).

Finally, some async-ready data structures are sometimes needed. TPL Dataflow
provides a BufferBlock<T> that acts like an async-ready producer/consumer
queue. Alternatively, AsyncEx provides AsyncCollection<T>, which is an async
version of BlockingCollection<T>.

＝ Copy

SemaphoreSlim mutex = new SemaphoreSlim(1);

int value;

Task<int> GetNextValueAsync(int current);

async Task UpdateValueAsync()

{

 await mutex.WaitAsync().ConfigureAwait(false);

 try

 {

 value = await GetNextValueAsync(value);

 }

 finally

 {

 mutex.Release();

 }

}

I hope the guidelines and pointers in this article have been helpful. Async is a
truly awesome language feature, and now is a great time to start using it!

Stephen Cleary is a husband, father and programmer living in northern Michigan.
He has worked with multithreading and asynchronous programming for 16 years
and has used async support in the Microsoft .NET Framework since the first CTP.
His home page, including his blog, is at stephencleary.com.

Thanks to the following technical expert for reviewing this article: Stephen Toub
Stephen Toub works on the Visual Studio team at Microsoft. He specializes in
areas related to parallelism and asynchrony.

