
ContentsContents

 Asynchronous Programming with async and await
 Task asynchronous programming model
 Walkthrough: Accessing the Web by Using async and await
 How to: Extend the async Walkthrough by Using Task.WhenAll
 How to: Make Multiple Web Requests in Parallel by Using async and await
 Async Return Types
 Control Flow in Async Programs
 Cancel tasks and processing completed tasks

 Overview
 Cancel an Async Task or a List of Tasks
 Cancel Async Tasks after a Period of Time
 Cancel Remaining Async Tasks after One Is Complete
 Start Multiple Async Tasks and Process Them As They Complete

 Handling Reentrancy in Async Apps
 Using Async for File Access

The Task asynchronous programming model in C#
6/21/2019 • 10 minutes to read • Edit Online

The Task asynchronous programming model (TAP) provides an abstraction over asynchronous code. You write
code as a sequence of statements, just like always. You can read that code as though each statement completes
before the next begins. The compiler performs a number of transformations because some of those statements
may start work and return a Task that represents the ongoing work.

That's the goal of this syntax: enable code that reads like a sequence of statements, but executes in a much more
complicated order based on external resource allocation and when tasks complete. It's analogous to how people
give instructions for processes that include asynchronous tasks. Throughout this article, you'll use an example of
instructions for making a breakfast to see how the async and await keywords make it easier to reason about
code that includes a series of asynchronous instructions. You'd write the instructions something like the following
list to explain how to make a breakfast:

1. Pour a cup of coffee.
2. Heat up a pan, then fry two eggs.
3. Fry three slices of bacon.
4. Toast two pieces of bread.
5. Add butter and jam to the toast.
6. Pour a glass of orange juice.

If you have experience with cooking, you'd execute those instructions asynchronously. You'd start warming the
pan for eggs, then start the bacon. You'd put the bread in the toaster, then start the eggs. At each step of the
process, you'd start a task, then turn your attention to tasks that are ready for your attention.

Cooking breakfast is a good example of asynchronous work that isn't parallel. One person (or thread) can handle
all these tasks. Continuing the breakfast analogy, one person can make breakfast asynchronously by starting the
next task before the first completes. The cooking progresses whether or not someone is watching it. As soon as
you start warming the pan for the eggs, you can begin frying the bacon. Once the bacon starts, you can put the
bread into the toaster.

For a parallel algorithm, you'd need multiple cooks (or threads). One would make the eggs, one the bacon, and so
on. Each one would be focused on just that one task. Each cook (or thread) would be blocked synchronously
waiting for bacon to be ready to flip, or the toast to pop.

Now, consider those same instructions written as C# statements:

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/index.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

static void Main(string[] args)
{
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");
 Egg eggs = FryEggs(2);
 Console.WriteLine("eggs are ready");
 Bacon bacon = FryBacon(3);
 Console.WriteLine("bacon is ready");
 Toast toast = ToastBread(2);
 ApplyButter(toast);
 ApplyJam(toast);
 Console.WriteLine("toast is ready");
 Juice oj = PourOJ();
 Console.WriteLine("oj is ready");

 Console.WriteLine("Breakfast is ready!");
}

Don't block, await instead

Computers don't interpret those instructions the same way people do. The computer will block on each statement
until the work is complete before moving on to the next statement. That creates an unsatisfying breakfast. The
later tasks wouldn't be started until the earlier tasks had completed. It would take much longer to create the
breakfast, and some items would have gotten cold before being served.

If you want the computer to execute the above instructions asynchronously, you must write asynchronous code.

These concerns are important for the programs you write today. When you write client programs, you want the
UI to be responsive to user input. Your application shouldn't make a phone appear frozen while it's downloading
data from the web. When you write server programs, you don't want threads blocked. Those threads could be
serving other requests. Using synchronous code when asynchronous alternatives exist hurts your ability to scale
out less expensively. You pay for those blocked threads.

Successful modern applications require asynchronous code. Without language support, writing asynchronous
code required callbacks, completion events, or other means that obscured the original intent of the code. The
advantage of the synchronous code is that it's easy to understand. The step-by-step actions make it easy to scan
and understand. Traditional asynchronous models forced you to focus on the asynchronous nature of the code,
not on the fundamental actions of the code.

The preceding code demonstrates a bad practice: constructing synchronous code to perform asynchronous
operations. As written, this code blocks the thread executing it from doing any other work. It won't be interrupted
while any of the tasks are in progress. It would be as though you stared at the toaster after putting the bread in.
You'd ignore anyone talking to you until the toast popped.

Let's start by updating this code so that the thread doesn't block while tasks are running. The await keyword
provides a non-blocking way to start a task, then continue execution when that task completes. A simple
asynchronous version of the make a breakfast code would look like the following snippet:

static async Task Main(string[] args)
{
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");
 Egg eggs = await FryEggs(2);
 Console.WriteLine("eggs are ready");
 Bacon bacon = await FryBacon(3);
 Console.WriteLine("bacon is ready");
 Toast toast = await ToastBread(2);
 ApplyButter(toast);
 ApplyJam(toast);
 Console.WriteLine("toast is ready");
 Juice oj = PourOJ();
 Console.WriteLine("oj is ready");

 Console.WriteLine("Breakfast is ready!");
}

Start tasks concurrently

This code doesn't block while the eggs or the bacon are cooking. This code won't start any other tasks though.
You'd still put the toast in the toaster and stare at it until it pops. But at least, you'd respond to anyone that
wanted your attention. In a restaurant where multiple orders are placed, the cook could start another breakfast
while the first is cooking.

Now, the thread working on the breakfast isn't blocked while awaiting any started task that hasn't yet finished.
For some applications, this change is all that's needed. A GUI application still responds to the user with just this
change. However, for this scenario, you want more. You don't want each of the component tasks to be executed
sequentially. It's better to start each of the component tasks before awaiting the previous task's completion.

In many scenarios, you want to start several independent tasks immediately. Then, as each task finishes, you can
continue other work that's ready. In the breakfast analogy, that's how you get breakfast done more quickly. You
also get everything done close to the same time. You'll get a hot breakfast.

The System.Threading.Tasks.Task and related types are classes you can use to reason about tasks that are in
progress. That enables you to write code that more closely resembles the way you'd actually create breakfast.
You'd start cooking the eggs, bacon, and toast at the same time. As each requires action, you'd turn your attention
to that task, take care of the next action, then await for something else that requires your attention.

You start a task and hold on to the Task object that represents the work. You'll await each task before working
with its result.

Let's make these changes to the breakfast code. The first step is to store the tasks for operations when they start,
rather than awaiting them:

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

Coffee cup = PourCoffee();
Console.WriteLine("coffee is ready");
Task<Egg> eggTask = FryEggs(2);
Egg eggs = await eggTask;
Console.WriteLine("eggs are ready");
Task<Bacon> baconTask = FryBacon(3);
Bacon bacon = await baconTask;
Console.WriteLine("bacon is ready");
Task<Toast> toastTask = ToastBread(2);
Toast toast = await toastTask;
ApplyButter(toast);
ApplyJam(toast);
Console.WriteLine("toast is ready");
Juice oj = PourOJ();
Console.WriteLine("oj is ready");

Console.WriteLine("Breakfast is ready!");

Coffee cup = PourCoffee();
Console.WriteLine("coffee is ready");
Task<Egg> eggTask = FryEggs(2);
Task<Bacon> baconTask = FryBacon(3);
Task<Toast> toastTask = ToastBread(2);
Toast toast = await toastTask;
ApplyButter(toast);
ApplyJam(toast);
Console.WriteLine("toast is ready");
Juice oj = PourOJ();
Console.WriteLine("oj is ready");

Egg eggs = await eggTask;
Console.WriteLine("eggs are ready");
Bacon bacon = await baconTask;
Console.WriteLine("bacon is ready");

Console.WriteLine("Breakfast is ready!");

Composition with tasks

IMPORTANTIMPORTANT

Next, you can move the await statements for the bacon and eggs to the end of the method, before serving
breakfast:

The preceding code works better. You start all the asynchronous tasks at once. You await each task only when you
need the results. The preceding code may be similar to code in a web application that makes requests of different
microservices, then combines the results into a single page. You'll make all the requests immediately, then await

all those tasks and compose the web page.

You have everything ready for breakfast at the same time except the toast. Making the toast is the composition of
an asynchronous operation (toasting the bread), and synchronous operations (adding the butter and the jam).
Updating this code illustrates an important concept:

The composition of an asynchronous operation followed by synchronous work is an asynchronous operation. Stated
another way, if any portion of an operation is asynchronous, the entire operation is asynchronous.

The preceding code showed you that you can use Task or Task<TResult> objects to hold running tasks. You
await each task before using its result. The next step is to create methods that represent the combination of

other work. Before serving breakfast, you want to await the task that represents toasting the bread before adding

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1

async Task<Toast> makeToastWithButterAndJamAsync(int number)
{
 var plainToast = await ToastBreadAsync(number);
 ApplyButter(plainToast);
 ApplyJam(plainToast);
 return plainToast;
}

static async Task Main(string[] args)
{
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");
 var eggsTask = FryEggsAsync(2);
 var baconTask = FryBaconAsync(3);
 var toastTask = makeToastWithButterAndJamAsync(2);

 var eggs = await eggsTask;
 Console.WriteLine("eggs are ready");
 var bacon = await baconTask;
 Console.WriteLine("bacon is ready");
 var toast = await toastTask;
 Console.WriteLine("toast is ready");
 Juice oj = PourOJ();
 Console.WriteLine("oj is ready");

 Console.WriteLine("Breakfast is ready!");

 async Task<Toast> makeToastWithButterAndJamAsync(int number)
 {
 var plainToast = await ToastBreadAsync(number);
 ApplyButter(plainToast);
 ApplyJam(plainToast);
 return plainToast;
 }
}

Await tasks efficiently

await Task.WhenAll(eggTask, baconTask, toastTask);
Console.WriteLine("eggs are ready");
Console.WriteLine("bacon is ready");
Console.WriteLine("toast is ready");
Console.WriteLine("Breakfast is ready!");

butter and jam. You can represent that work with the following code:

The preceding method has the async modifier in its signature. That signals to the compiler that this method
contains an await statement; it contains asynchronous operations. This method represents the task that toasts
the bread, then adds butter and jam. This method returns a Task<TResult> that represents the composition of
those three operations. The main block of code now becomes:

The previous change illustrated an important technique for working with asynchronous code. You compose tasks
by separating the operations into a new method that returns a task. You can choose when to await that task. You
can start other tasks concurrently.

The series of await statements at the end of the preceding code can be improved by using methods of the Task

class. One of those APIs is WhenAll, which returns a Task that completes when all the tasks in its argument list
have completed, as shown in the following code:

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

var allTasks = new List<Task>{eggsTask, baconTask, toastTask};
while (allTasks.Any())
{
 Task finished = await Task.WhenAny(allTasks);
 if (finished == eggsTask)
 {
 Console.WriteLine("eggs are ready");
 }
 else if (finished == baconTask)
 {
 Console.WriteLine("bacon is ready");
 }
 else if (finished == toastTask)
 {
 Console.WriteLine("toast is ready");
 }
 allTasks.Remove(finished);
}
Console.WriteLine("Breakfast is ready!");

static async Task Main(string[] args)
{
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");
 var eggsTask = FryEggsAsync(2);
 var baconTask = FryBaconAsync(3);
 var toastTask = makeToastWithButterAndJamAsync(2);

 var allTasks = new List<Task>{eggsTask, baconTask, toastTask};
 while (allTasks.Any())
 {
 Task finished = await Task.WhenAny(allTasks);
 if (finished == eggsTask)
 {
 Console.WriteLine("eggs are ready");
 }
 else if (finished == baconTask)
 {
 Console.WriteLine("bacon is ready");
 }
 else if (finished == toastTask)
 {
 Console.WriteLine("toast is ready");
 }
 allTasks.Remove(finished);
 }
 Console.WriteLine("Breakfast is ready!");

 async Task<Toast> makeToastWithButterAndJamAsync(int number)
 {
 var plainToast = await ToastBreadAsync(number);
 ApplyButter(plainToast);
 ApplyJam(plainToast);
 return plainToast;
 }
}

Another option is to use WhenAny, which returns a Task<Task> that completes when any of its arguments
completes. You can await the returned task, knowing that it has already finished. The following code shows how
you could use WhenAny to await the first task to finish and then process its result. After processing the result
from the completed task, you remove that completed task from the list of tasks passed to WhenAny .

After all those changes, the final version of Main looks like the following code:

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany

This final code is asynchronous. It more accurately reflects how a person would cook a breakfast. Compare the
preceding code with the first code sample in this article. The core actions are still clear from reading the code. You
can read this code the same way you'd read those instructions for making a breakfast at the beginning of this
article. The language features for async and await provide the translation every person makes to follow those
written instructions: start tasks as you can and don't block waiting for tasks to complete.

Task asynchronous programming model
6/25/2019 • 16 minutes to read • Edit Online

Async improves responsiveness

APPLICATION AREA .NET TYPES WITH ASYNC METHODS
WINDOWS RUNTIME TYPES WITH ASYNC
METHODS

Web access HttpClient SyndicationClient

Working with files StreamWriter, StreamReader, XmlReader StorageFile

Working with images MediaCapture, BitmapEncoder,
BitmapDecoder

WCF programming Synchronous and Asynchronous
Operations

Async methods are easier to write

You can avoid performance bottlenecks and enhance the overall responsiveness of your application by using
asynchronous programming. However, traditional techniques for writing asynchronous applications can be
complicated, making them difficult to write, debug, and maintain.

C# 5 introduced a simplified approach, async programming, that leverages asynchronous support in the .NET
Framework 4.5 and higher, .NET Core, and the Windows Runtime. The compiler does the difficult work that the
developer used to do, and your application retains a logical structure that resembles synchronous code. As a result,
you get all the advantages of asynchronous programming with a fraction of the effort.

This topic provides an overview of when and how to use async programming and includes links to support topics
that contain details and examples.

Asynchrony is essential for activities that are potentially blocking, such as web access. Access to a web resource
sometimes is slow or delayed. If such an activity is blocked in a synchronous process, the entire application must
wait. In an asynchronous process, the application can continue with other work that doesn't depend on the web
resource until the potentially blocking task finishes.

The following table shows typical areas where asynchronous programming improves responsiveness. The listed
APIs from .NET and the Windows Runtime contain methods that support async programming.

Asynchrony proves especially valuable for applications that access the UI thread because all UI-related activity
usually shares one thread. If any process is blocked in a synchronous application, all are blocked. Your application
stops responding, and you might conclude that it has failed when instead it's just waiting.

When you use asynchronous methods, the application continues to respond to the UI. You can resize or minimize a
window, for example, or you can close the application if you don't want to wait for it to finish.

The async-based approach adds the equivalent of an automatic transmission to the list of options that you can
choose from when designing asynchronous operations. That is, you get all the benefits of traditional asynchronous
programming but with much less effort from the developer.

The async and await keywords in C# are the heart of async programming. By using those two keywords, you can

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/task-asynchronous-programming-model.md
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/uwp/api/windows.web.syndication.syndicationclient
https://docs.microsoft.com/dotnet/api/system.io.streamwriter
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/uwp/api/windows.storage.storagefile
https://docs.microsoft.com/uwp/api/windows.media.capture.mediacapture
https://docs.microsoft.com/uwp/api/windows.graphics.imaging.bitmapencoder
https://docs.microsoft.com/uwp/api/windows.graphics.imaging.bitmapdecoder
https://docs.microsoft.com/en-us/dotnet/framework/wcf/synchronous-and-asynchronous-operations
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await

async Task<int> AccessTheWebAsync()
{
 // You need to add a reference to System.Net.Http to declare client.
 using (HttpClient client = new HttpClient())
 {
 Task<string> getStringTask = client.GetStringAsync("https://docs.microsoft.com");

 DoIndependentWork();

 string urlContents = await getStringTask;

 return urlContents.Length;
 }
}

string urlContents = await client.GetStringAsync("https://docs.microsoft.com");

use resources in the .NET Framework, .NET Core, or the Windows Runtime to create an asynchronous method
almost as easily as you create a synchronous method. Asynchronous methods that you define by using the async

keyword are referred to as async methods.

The following example shows an async method. Almost everything in the code should look completely familiar to
you.

You can find a complete Windows Presentation Foundation (WPF) example file at the end of this topic, and you can
download the sample from Async Sample: Example from "Asynchronous Programming with Async and Await".

You can learn several practices from the preceding sample. Start with the method signature. It includes the async

modifier. The return type is Task<int> (See "Return Types" section for more options). The method name ends in
Async . In the body of the method, GetStringAsync returns a Task<string> . That means that when you await the

task you'll get a string (urlContents). Before awaiting the task, you can do work that doesn't rely on the string

from GetStringAsync .

Pay close attention to the await operator. It suspends AccessTheWebAsync ;

AccessTheWebAsync can't continue until getStringTask is complete.
Meanwhile, control returns to the caller of AccessTheWebAsync .
Control resumes here when getStringTask is complete.
The await operator then retrieves the string result from getStringTask .

The return statement specifies an integer result. Any methods that are awaiting AccessTheWebAsync retrieve the
length value.

If AccessTheWebAsync doesn't have any work that it can do between calling GetStringAsync and awaiting its
completion, you can simplify your code by calling and awaiting in the following single statement.

The following characteristics summarize what makes the previous example an async method.

The method signature includes an async modifier.

The name of an async method, by convention, ends with an "Async" suffix.

The return type is one of the following types:

Task<TResult> if your method has a return statement in which the operand has type TResult .

Task if your method has no return statement or has a return statement with no operand.

https://code.msdn.microsoft.com/Async-Sample-Example-from-9b9f505c
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

What happens in an async method

void if you're writing an async event handler.

Any other type that has a GetAwaiter method (starting with C# 7.0).

For more information, see the Return Types and Parameters section.

The method usually includes at least one await expression, which marks a point where the method can't
continue until the awaited asynchronous operation is complete. In the meantime, the method is suspended,
and control returns to the method's caller. The next section of this topic illustrates what happens at the
suspension point.

In async methods, you use the provided keywords and types to indicate what you want to do, and the compiler
does the rest, including keeping track of what must happen when control returns to an await point in a suspended
method. Some routine processes, such as loops and exception handling, can be difficult to handle in traditional
asynchronous code. In an async method, you write these elements much as you would in a synchronous solution,
and the problem is solved.

For more information about asynchrony in previous versions of the .NET Framework, see TPL and Traditional .NET
Framework Asynchronous Programming.

The most important thing to understand in asynchronous programming is how the control flow moves from
method to method. The following diagram leads you through the process.

The numbers in the diagram correspond to the following steps, initiated when the user clicks the "start" button.

1. An event handler calls and awaits the AccessTheWebAsync async method.

2. AccessTheWebAsync creates an HttpClient instance and calls the GetStringAsync asynchronous method to
download the contents of a website as a string.

3. Something happens in GetStringAsync that suspends its progress. Perhaps it must wait for a website to
download or some other blocking activity. To avoid blocking resources, GetStringAsync yields control to its
caller, AccessTheWebAsync .

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/tpl-and-traditional-async-programming
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getstringasync

API async methods

NOTENOTE

GetStringAsync returns a Task<TResult>, where TResult is a string, and AccessTheWebAsync assigns the
task to the getStringTask variable. The task represents the ongoing process for the call to GetStringAsync ,
with a commitment to produce an actual string value when the work is complete.

4. Because getStringTask hasn't been awaited yet, AccessTheWebAsync can continue with other work that
doesn't depend on the final result from GetStringAsync . That work is represented by a call to the
synchronous method DoIndependentWork .

5. DoIndependentWork is a synchronous method that does its work and returns to its caller.

6. AccessTheWebAsync has run out of work that it can do without a result from getStringTask .
AccessTheWebAsync next wants to calculate and return the length of the downloaded string, but the method

can't calculate that value until the method has the string.

Therefore, AccessTheWebAsync uses an await operator to suspend its progress and to yield control to the
method that called AccessTheWebAsync . AccessTheWebAsync returns a Task<int> to the caller. The task
represents a promise to produce an integer result that's the length of the downloaded string.

If GetStringAsync (and therefore getStringTask) completes before AccessTheWebAsync awaits it, control
remains in AccessTheWebAsync . The expense of suspending and then returning to AccessTheWebAsync would be
wasted if the called asynchronous process (getStringTask) has already completed and AccessTheWebAsync

doesn't have to wait for the final result.

Inside the caller (the event handler in this example), the processing pattern continues. The caller might do
other work that doesn't depend on the result from AccessTheWebAsync before awaiting that result, or the
caller might await immediately. The event handler is waiting for AccessTheWebAsync , and AccessTheWebAsync

is waiting for GetStringAsync .

7. GetStringAsync completes and produces a string result. The string result isn't returned by the call to
GetStringAsync in the way that you might expect. (Remember that the method already returned a task in

step 3.) Instead, the string result is stored in the task that represents the completion of the method,
getStringTask . The await operator retrieves the result from getStringTask . The assignment statement

assigns the retrieved result to urlContents .

8. When AccessTheWebAsync has the string result, the method can calculate the length of the string. Then the
work of AccessTheWebAsync is also complete, and the waiting event handler can resume. In the full example
at the end of the topic, you can confirm that the event handler retrieves and prints the value of the length
result. If you are new to asynchronous programming, take a minute to consider the difference between
synchronous and asynchronous behavior. A synchronous method returns when its work is complete (step 5),
but an async method returns a task value when its work is suspended (steps 3 and 6). When the async
method eventually completes its work, the task is marked as completed and the result, if any, is stored in the
task.

For more information about control flow, see Control Flow in Async Programs (C#).

You might be wondering where to find methods such as GetStringAsync that support async programming. The
.NET Framework 4.5 or higher and .NET Core contain many members that work with async and await . You can
recognize them by the "Async" suffix that’s appended to the member name, and by their return type of Task or
Task<TResult>. For example, the System.IO.Stream class contains methods such as CopyToAsync, ReadAsync, and
WriteAsync alongside the synchronous methods CopyTo, Read, and Write.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.io.stream.copytoasync
https://docs.microsoft.com/dotnet/api/system.io.stream.readasync
https://docs.microsoft.com/dotnet/api/system.io.stream.writeasync
https://docs.microsoft.com/dotnet/api/system.io.stream.copyto
https://docs.microsoft.com/dotnet/api/system.io.stream.read
https://docs.microsoft.com/dotnet/api/system.io.stream.write

Threads

async and await

Return types and parameters

The Windows Runtime also contains many methods that you can use with async and await in Windows apps.
For more information, see Threading and async programming for UWP development, and Asynchronous
programming (Windows Store apps) and Quickstart: Calling asynchronous APIs in C# or Visual Basic if you use
earlier versions of the Windows Runtime.

Async methods are intended to be non-blocking operations. An await expression in an async method doesn’t
block the current thread while the awaited task is running. Instead, the expression signs up the rest of the method
as a continuation and returns control to the caller of the async method.

The async and await keywords don't cause additional threads to be created. Async methods don't require
multithreading because an async method doesn't run on its own thread. The method runs on the current
synchronization context and uses time on the thread only when the method is active. You can use Task.Run to move
CPU-bound work to a background thread, but a background thread doesn't help with a process that's just waiting
for results to become available.

The async-based approach to asynchronous programming is preferable to existing approaches in almost every
case. In particular, this approach is better than the BackgroundWorker class for I/O-bound operations because the
code is simpler and you don't have to guard against race conditions. In combination with the Task.Run method,
async programming is better than BackgroundWorker for CPU-bound operations because async programming
separates the coordination details of running your code from the work that Task.Run transfers to the threadpool.

If you specify that a method is an async method by using the async modifier, you enable the following two
capabilities.

The marked async method can use await to designate suspension points. The await operator tells the
compiler that the async method can't continue past that point until the awaited asynchronous process is
complete. In the meantime, control returns to the caller of the async method.

The suspension of an async method at an await expression doesn't constitute an exit from the method, and
finally blocks don’t run.

The marked async method can itself be awaited by methods that call it.

An async method typically contains one or more occurrences of an await operator, but the absence of await

expressions doesn’t cause a compiler error. If an async method doesn’t use an await operator to mark a
suspension point, the method executes as a synchronous method does, despite the async modifier. The compiler
issues a warning for such methods.

async and await are contextual keywords. For more information and examples, see the following topics:

async

await

An async method typically returns a Task or a Task<TResult>. Inside an async method, an await operator is
applied to a task that's returned from a call to another async method.

You specify Task<TResult> as the return type if the method contains a return statement that specifies an operand
of type TResult .

You use Task as the return type if the method has no return statement or has a return statement that doesn't return

https://docs.microsoft.com/windows/uwp/threading-async/
https://docs.microsoft.com/previous-versions/windows/apps/hh464924(v=win.10)
https://docs.microsoft.com/previous-versions/windows/apps/hh452713(v=win.10)
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.run
https://docs.microsoft.com/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.run
https://docs.microsoft.com/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/return
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

// Signature specifies Task<TResult>
async Task<int> GetTaskOfTResultAsync()
{
 int hours = 0;
 await Task.Delay(0);
 // Return statement specifies an integer result.
 return hours;
}

// Calls to GetTaskOfTResultAsync
Task<int> returnedTaskTResult = GetTaskOfTResultAsync();
int intResult = await returnedTaskTResult;
// or, in a single statement
int intResult = await GetTaskOfTResultAsync();

// Signature specifies Task
async Task GetTaskAsync()
{
 await Task.Delay(0);
 // The method has no return statement.
}

// Calls to GetTaskAsync
Task returnedTask = GetTaskAsync();
await returnedTask;
// or, in a single statement
await GetTaskAsync();

an operand.

Starting with C# 7.0, you can also specify any other return type, provided that the type includes a GetAwaiter

method. ValueTask<TResult> is an example of such a type. It is available in the System.Threading.Tasks.Extension
NuGet package.

The following example shows how you declare and call a method that returns a Task<TResult> or a Task.

Each returned task represents ongoing work. A task encapsulates information about the state of the asynchronous
process and, eventually, either the final result from the process or the exception that the process raises if it doesn't
succeed.

An async method can also have a void return type. This return type is used primarily to define event handlers,
where a void return type is required. Async event handlers often serve as the starting point for async programs.

An async method that has a void return type can’t be awaited, and the caller of a void-returning method can't
catch any exceptions that the method throws.

An async method can't declare in, ref or out parameters, but the method can call methods that have such
parameters. Similarly, an async method can't return a value by reference, although it can call methods with ref
return values.

For more information and examples, see Async Return Types (C#). For more information about how to catch
exceptions in async methods, see try-catch.

Asynchronous APIs in Windows Runtime programming have one of the following return types, which are similar
to tasks:

IAsyncOperation<TResult>, which corresponds to Task<TResult>

IAsyncAction, which corresponds to Task

IAsyncActionWithProgress<TProgress>

https://docs.microsoft.com/dotnet/api/system.threading.tasks.valuetask-1
https://www.nuget.org/packages/System.Threading.Tasks.Extensions/
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncoperation_tresult_
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncaction
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncactionwithprogress_tprogress_

Naming convention

Related topics and samples (Visual Studio)
TITLE DESCRIPTION SAMPLE

Walkthrough: Accessing the Web by
Using async and await (C#)

Shows how to convert a synchronous
WPF solution to an asynchronous WPF
solution. The application downloads a
series of websites.

Async Sample: Accessing the Web
Walkthrough

How to: Extend the async Walkthrough
by Using Task.WhenAll (C#)

Adds Task.WhenAll to the previous
walkthrough. The use of WhenAll

starts all the downloads at the same
time.

How to: Make Multiple Web Requests in
Parallel by Using async and await (C#)

Demonstrates how to start several
tasks at the same time.

Async Sample: Make Multiple Web
Requests in Parallel

Async Return Types (C#) Illustrates the types that async methods
can return and explains when each type
is appropriate.

Control Flow in Async Programs (C#) Traces in detail the flow of control
through a succession of await
expressions in an asynchronous
program.

Async Sample: Control Flow in Async
Programs

Fine-Tuning Your Async Application (C#) Shows how to add the following
functionality to your async solution:

- Cancel an Async Task or a List of Tasks
(C#)
- Cancel Async Tasks after a Period of
Time (C#)
- Cancel Remaining Async Tasks after
One Is Complete (C#)
- Start Multiple Async Tasks and Process
Them As They Complete (C#)

Async Sample: Fine Tuning Your
Application

Handling Reentrancy in Async Apps (C#) Shows how to handle cases in which an
active asynchronous operation is
restarted while it’s running.

IAsyncOperationWithProgress<TResult, TProgress>

By convention, methods that return commonly awaitable types (e.g. Task , Task<T> , ValueTask , ValueTask<T>)
should have names that end with "Async". Methods that start an asynchronous operation but do not return an
awaitable type should not have names that end with "Async", but may start with "Begin", "Start", or some other
verb to suggest this method does not return or throw the result of the operation.

You can ignore the convention where an event, base class, or interface contract suggests a different name. For
example, you shouldn’t rename common event handlers, such as Button1_Click .

https://docs.microsoft.com/uwp/api/windows.foundation.iasyncoperationwithprogress_tresult_tprogress_
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://code.msdn.microsoft.com/Async-Make-Multiple-Web-49adb82e
https://code.msdn.microsoft.com/Async-Sample-Control-Flow-5c804fc0
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

WhenAny: Bridging between the .NET
Framework and the Windows Runtime

Shows how to bridge between Task
types in the .NET Framework and
IAsyncOperations in the Windows
Runtime so that you can use WhenAny
with a Windows Runtime method.

Async Sample: Bridging between .NET
and Windows Runtime (AsTask and
WhenAny)

Async Cancellation: Bridging between
the .NET Framework and the Windows
Runtime

Shows how to bridge between Task
types in the .NET Framework and
IAsyncOperations in the Windows
Runtime so that you can use
CancellationTokenSource with a
Windows Runtime method.

Async Sample: Bridging between .NET
and Windows Runtime (AsTask &
Cancellation)

Using Async for File Access (C#) Lists and demonstrates the benefits of
using async and await to access files.

Task-based Asynchronous Pattern (TAP) Describes a new pattern for asynchrony
in the .NET Framework. The pattern is
based on the Task and Task<TResult>
types.

Async Videos on Channel 9 Provides links to a variety of videos
about async programming.

TITLE DESCRIPTION SAMPLE

Complete example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add a using directive and a reference for System.Net.Http;
using System.Net.Http;

namespace AsyncFirstExample
{
 public partial class MainWindow : Window
 {
 // Mark the event handler with async so you can use await in it.
 private async void StartButton_Click(object sender, RoutedEventArgs e)
 {
 // Call and await separately.
 //Task<int> getLengthTask = AccessTheWebAsync();
 //// You can do independent work here.
 //int contentLength = await getLengthTask;

The following code is the MainWindow.xaml.cs file from the Windows Presentation Foundation (WPF) application
that this topic discusses. You can download the sample from Async Sample: Example from "Asynchronous
Programming with Async and Await".

https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2013/jj635140(v=vs.120)
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://code.msdn.microsoft.com/Async-Sample-Bridging-d6a2f739
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource
https://code.msdn.microsoft.com/Async-Sample-Bridging-9479eca3
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://channel9.msdn.com/search?term=async &type=All#pubDate=year&ch9Search&lang-en=en
https://code.msdn.microsoft.com/Async-Sample-Example-from-9b9f505c

 int contentLength = await AccessTheWebAsync();

 resultsTextBox.Text +=
 $"\r\nLength of the downloaded string: {contentLength}.\r\n";
 }

 // Three things to note in the signature:
 // - The method has an async modifier.
 // - The return type is Task or Task<T>. (See "Return Types" section.)
 // Here, it is Task<int> because the return statement returns an integer.
 // - The method name ends in "Async."
 async Task<int> AccessTheWebAsync()
 {
 // You need to add a reference to System.Net.Http to declare client.
 using (HttpClient client = new HttpClient())
 {
 // GetStringAsync returns a Task<string>. That means that when you await the
 // task you'll get a string (urlContents).
 Task<string> getStringTask = client.GetStringAsync("https://docs.microsoft.com");

 // You can do work here that doesn't rely on the string from GetStringAsync.
 DoIndependentWork();

 // The await operator suspends AccessTheWebAsync.
 // - AccessTheWebAsync can't continue until getStringTask is complete.
 // - Meanwhile, control returns to the caller of AccessTheWebAsync.
 // - Control resumes here when getStringTask is complete.
 // - The await operator then retrieves the string result from getStringTask.
 string urlContents = await getStringTask;

 // The return statement specifies an integer result.
 // Any methods that are awaiting AccessTheWebAsync retrieve the length value.
 return urlContents.Length;
 }
 }

 void DoIndependentWork()
 {
 resultsTextBox.Text += "Working\r\n";
 }
 }
}

// Sample Output:

// Working

// Length of the downloaded string: 25035.

See also
async
await
Asynchronous programming
Async overview

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/standard/async

Walkthrough: Accessing the Web by Using async and
await (C#)
5/23/2019 • 16 minutes to read • Edit Online

NOTENOTE

Create a WPF application

Design a simple WPF MainWindow

You can write asynchronous programs more easily and intuitively by using async/await features. You can write
asynchronous code that looks like synchronous code and let the compiler handle the difficult callback functions
and continuations that asynchronous code usually entails.

For more information about the Async feature, see Asynchronous Programming with async and await (C#).

This walkthrough starts with a synchronous Windows Presentation Foundation (WPF) application that sums the
number of bytes in a list of websites. The walkthrough then converts the application to an asynchronous solution
by using the new features.

If you don't want to build the applications yourself, you can download Async Sample: Accessing the Web
Walkthrough (C# and Visual Basic).

To run the examples, you must have Visual Studio 2012 or newer and the .NET Framework 4.5 or newer installed on your
computer.

1. Start Visual Studio.

2. On the menu bar, choose File > New > Project.

The New Project dialog box opens.

3. In the Installed Templates pane, choose Visual C#, and then choose WPF Application from the list of
project types.

4. In the Name text box, enter AsyncExampleWPF , and then choose the OK button.

The new project appears in Solution Explorer.

1. In the Visual Studio Code Editor, choose the MainWindow.xaml tab.

2. If the Toolbox window isn’t visible, open the View menu, and then choose Toolbox.

3. Add a Button control and a TextBox control to the MainWindow window.

4. Highlight the TextBox control and, in the Properties window, set the following values:

Set the Name property to resultsTextBox .

Set the Height property to 250.

Set the Width property to 500.

On the Text tab, specify a monospaced font, such as Lucida Console or Global Monospace.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await.md
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f

Add a reference

Add necessary using directives

Create a synchronous app

5. Highlight the Button control and, in the Properties window, set the following values:

Set the Name property to startButton .

Change the value of the Content property from Button to Start.

6. Position the text box and the button so that both appear in the MainWindow window.

For more information about the WPF XAML Designer, see Creating a UI by using XAML Designer.

1. In Solution Explorer, highlight your project's name.

2. On the menu bar, choose Project > Add Reference.

The Reference Manager dialog box appears.

3. At the top of the dialog box, verify that your project is targeting the .NET Framework 4.5 or higher.

4. In the Assemblies category, choose Framework if it isn’t already chosen.

5. In the list of names, select the System.Net.Http check box.

6. Choose the OK button to close the dialog box.

using System.Net.Http;
using System.Net;
using System.IO;

1. In Solution Explorer, open the shortcut menu for MainWindow.xaml.cs, and then choose View Code.

2. Add the following using directives at the top of the code file if they’re not already present.

resultsTextBox.Clear();
SumPageSizes();
resultsTextBox.Text += "\r\nControl returned to startButton_Click.";

1. In the design window, MainWindow.xaml, double-click the Start button to create the startButton_Click

event handler in MainWindow.xaml.cs.

2. In MainWindow.xaml.cs, copy the following code into the body of startButton_Click :

The code calls the method that drives the application, SumPageSizes , and displays a message when control
returns to startButton_Click .

3. The code for the synchronous solution contains the following four methods:

SumPageSizes , which gets a list of webpage URLs from SetUpURLList and then calls
GetURLContents and DisplayResults to process each URL.

SetUpURLList , which makes and returns a list of web addresses.

GetURLContents , which downloads the contents of each website and returns the contents as a byte
array.

https://docs.microsoft.com/visualstudio/designers/creating-a-ui-by-using-xaml-designer-in-visual-studio

private void SumPageSizes()
{
 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 var total = 0;
 foreach (var url in urlList)
 {
 // GetURLContents returns the contents of url as a byte array.
 byte[] urlContents = GetURLContents(url);

 DisplayResults(url, urlContents);

 // Update the total.
 total += urlContents.Length;
 }

 // Display the total count for all of the web addresses.
 resultsTextBox.Text += $"\r\n\r\nTotal bytes returned: {total}\r\n";
}

private List<string> SetUpURLList()
{
 var urls = new List<string>
 {
 "https://msdn.microsoft.com/library/windows/apps/br211380.aspx",
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/hh290136.aspx",
 "https://msdn.microsoft.com/library/ee256749.aspx",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
}

private byte[] GetURLContents(string url)
{
 // The downloaded resource ends up in the variable named content.
 var content = new MemoryStream();

 // Initialize an HttpWebRequest for the current URL.
 var webReq = (HttpWebRequest)WebRequest.Create(url);

 // Send the request to the Internet resource and wait for
 // the response.
 // Note: you can't use HttpWebRequest.GetResponse in a Windows Store app.
 using (WebResponse response = webReq.GetResponse())
 {
 // Get the data stream that is associated with the specified URL.
 using (Stream responseStream = response.GetResponseStream())
 {
 // Read the bytes in responseStream and copy them to content.
 responseStream.CopyTo(content);
 }
 }

 // Return the result as a byte array.
 return content.ToArray();
}

DisplayResults , which displays the number of bytes in the byte array for each URL.

Copy the following four methods, and then paste them under the startButton_Click event handler in
MainWindow.xaml.cs:

Test the synchronous solution

msdn.microsoft.com/library/windows/apps/br211380.aspx 383832
msdn.microsoft.com 33964
msdn.microsoft.com/library/hh290136.aspx 225793
msdn.microsoft.com/library/ee256749.aspx 143577
msdn.microsoft.com/library/hh290138.aspx 237372
msdn.microsoft.com/library/hh290140.aspx 128279
msdn.microsoft.com/library/dd470362.aspx 157649
msdn.microsoft.com/library/aa578028.aspx 204457
msdn.microsoft.com/library/ms404677.aspx 176405
msdn.microsoft.com/library/ff730837.aspx 143474

Total bytes returned: 1834802

Control returned to startButton_Click.

Convert GetURLContents to an asynchronous method

}

private void DisplayResults(string url, byte[] content)
{
 // Display the length of each website. The string format
 // is designed to be used with a monospaced font, such as
 // Lucida Console or Global Monospace.
 var bytes = content.Length;
 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 resultsTextBox.Text += $"\n{displayURL,-58} {bytes,8}";
}

Choose the F5 key to run the program, and then choose the Start button.

Output that resembles the following list should appear:

Notice that it takes a few seconds to display the counts. During that time, the UI thread is blocked while it waits
for requested resources to download. As a result, you can't move, maximize, minimize, or even close the display
window after you choose the Start button. These efforts fail until the byte counts start to appear. If a website isn’t
responding, you have no indication of which site failed. It is difficult even to stop waiting and close the program.

NOTENOTE

using (WebResponse response = webReq.GetResponseAsync())

1. To convert the synchronous solution to an asynchronous solution, the best place to start is in
GetURLContents because the calls to the HttpWebRequest method GetResponse and to the Stream method

CopyTo are where the application accesses the web. The .NET Framework makes the conversion easy by
supplying asynchronous versions of both methods.

For more information about the methods that are used in GetURLContents , see WebRequest.

As you follow the steps in this walkthrough, several compiler errors appear. You can ignore them and continue with
the walkthrough.

Change the method that's called in the third line of GetURLContents from GetResponse to the
asynchronous, task-based GetResponseAsync method.

https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest.getresponse
https://docs.microsoft.com/dotnet/api/system.io.stream
https://docs.microsoft.com/dotnet/api/system.io.stream.copyto
https://docs.microsoft.com/dotnet/api/system.net.webrequest
https://docs.microsoft.com/dotnet/api/system.net.webrequest.getresponseasync

using (WebResponse response = await webReq.GetResponseAsync())

//Task<WebResponse> responseTask = webReq.GetResponseAsync();
//using (WebResponse response = await responseTask)

2. GetResponseAsync returns a Task<TResult>. In this case, the task return variable, TResult , has type
WebResponse. The task is a promise to produce an actual WebResponse object after the requested data has
been downloaded and the task has run to completion.

To retrieve the WebResponse value from the task, apply an await operator to the call to GetResponseAsync ,
as the following code shows.

The await operator suspends the execution of the current method, GetURLContents , until the awaited task
is complete. In the meantime, control returns to the caller of the current method. In this example, the
current method is GetURLContents , and the caller is SumPageSizes . When the task is finished, the promised
WebResponse object is produced as the value of the awaited task and assigned to the variable response .

The previous statement can be separated into the following two statements to clarify what happens.

The call to webReq.GetResponseAsync returns a Task(Of WebResponse) or Task<WebResponse> . Then an await
operator is applied to the task to retrieve the WebResponse value.

If your async method has work to do that doesn’t depend on the completion of the task, the method can
continue with that work between these two statements, after the call to the async method and before the
await operator is applied. For examples, see How to: Make Multiple Web Requests in Parallel by Using

async and await (C#) and How to: Extend the async Walkthrough by Using Task.WhenAll (C#).

3. Because you added the await operator in the previous step, a compiler error occurs. The operator can be
used only in methods that are marked with the async modifier. Ignore the error while you repeat the
conversion steps to replace the call to CopyTo with a call to CopyToAsync .

await responseStream.CopyToAsync(content);

// CopyToAsync returns a Task, not a Task<T>.
//Task copyTask = responseStream.CopyToAsync(content);

// When copyTask is completed, content contains a copy of
// responseStream.
//await copyTask;

Change the name of the method that’s called to CopyToAsync.

The CopyTo or CopyToAsync method copies bytes to its argument, content , and doesn’t return a
meaningful value. In the synchronous version, the call to CopyTo is a simple statement that doesn't
return a value. The asynchronous version, CopyToAsync , returns a Task. The task functions like
"Task(void)" and enables the method to be awaited. Apply Await or await to the call to
CopyToAsync , as the following code shows.

The previous statement abbreviates the following two lines of code.

4. All that remains to be done in GetURLContents is to adjust the method signature. You can use the await

operator only in methods that are marked with the async modifier. Add the modifier to mark the method
as an async method, as the following code shows.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.net.webresponse
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/dotnet/api/system.io.stream.copytoasync
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async

Convert SumPageSizes to an asynchronous method

private async byte[] GetURLContents(string url)

private async Task<byte[]> GetURLContentsAsync(string url)

5. The return type of an async method can only be Task, Task<TResult>, or void in C#. Typically, a return
type of void is used only in an async event handler, where void is required. In other cases, you use
Task(T) if the completed method has a return statement that returns a value of type T, and you use Task

if the completed method doesn’t return a meaningful value. You can think of the Task return type as
meaning "Task(void)."

For more information, see Async Return Types (C#).

Method GetURLContents has a return statement, and the statement returns a byte array. Therefore, the
return type of the async version is Task(T), where T is a byte array. Make the following changes in the
method signature:

Change the return type to Task<byte[]> .

By convention, asynchronous methods have names that end in "Async," so rename the method
GetURLContentsAsync .

The following code shows these changes.

With those few changes, the conversion of GetURLContents to an asynchronous method is complete.

byte[] urlContents = await GetURLContentsAsync(url);

// GetURLContentsAsync returns a Task<T>. At completion, the task
// produces a byte array.
//Task<byte[]> getContentsTask = GetURLContentsAsync(url);
//byte[] urlContents = await getContentsTask;

1. Repeat the steps from the previous procedure for SumPageSizes . First, change the call to GetURLContents

to an asynchronous call.

Change the name of the method that’s called from GetURLContents to GetURLContentsAsync , if you
haven't already done so.

Apply await to the task that GetURLContentsAsync returns to obtain the byte array value.

The following code shows these changes.

The previous assignment abbreviates the following two lines of code.

2. Make the following changes in the method's signature:

Mark the method with the async modifier.

Add "Async" to the method name.

There is no task return variable, T, this time because SumPageSizesAsync doesn’t return a value for T.
(The method has no return statement.) However, the method must return a Task to be awaitable.
Therefore, change the return type of the method from void to Task .

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/return

Convert startButton_Click to an asynchronous method

Test the asynchronous solution

private async Task SumPageSizesAsync()

The following code shows these changes.

The conversion of SumPageSizes to SumPageSizesAsync is complete.

// One-step async call.
await SumPageSizesAsync();

// Two-step async call.
//Task sumTask = SumPageSizesAsync();
//await sumTask;

// Disable the button until the operation is complete.
startButton.IsEnabled = false;

// Reenable the button in case you want to run the operation again.
startButton.IsEnabled = true;

private async void startButton_Click(object sender, RoutedEventArgs e)

1. In the event handler, change the name of the called method from SumPageSizes to SumPageSizesAsync , if
you haven’t already done so.

2. Because SumPageSizesAsync is an async method, change the code in the event handler to await the result.

The call to SumPageSizesAsync mirrors the call to CopyToAsync in GetURLContentsAsync . The call returns a
Task , not a Task(T) .

As in previous procedures, you can convert the call by using one statement or two statements. The
following code shows these changes.

3. To prevent accidentally reentering the operation, add the following statement at the top of
startButton_Click to disable the Start button.

You can reenable the button at the end of the event handler.

For more information about reentrancy, see Handling Reentrancy in Async Apps (C#).

4. Finally, add the async modifier to the declaration so that the event handler can await SumPagSizesAsync .

Typically, the names of event handlers aren’t changed. The return type isn’t changed to Task because
event handlers must return void .

The conversion of the project from synchronous to asynchronous processing is complete.

1. Choose the F5 key to run the program, and then choose the Start button.

2. Output that resembles the output of the synchronous solution should appear. However, notice the
following differences.

Replace method GetURLContentsAsync with a .NET Framework
method

Example code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;

The results don’t all occur at the same time, after the processing is complete. For example, both
programs contain a line in startButton_Click that clears the text box. The intent is to clear the text
box between runs if you choose the Start button for a second time, after one set of results has
appeared. In the synchronous version, the text box is cleared just before the counts appear for the
second time, when the downloads are completed and the UI thread is free to do other work. In the
asynchronous version, the text box clears immediately after you choose the Start button.

Most importantly, the UI thread isn’t blocked during the downloads. You can move or resize the
window while the web resources are being downloaded, counted, and displayed. If one of the
websites is slow or not responding, you can cancel the operation by choosing the Close button (the
x in the red field in the upper-right corner).

// Declare an HttpClient object and increase the buffer size. The
// default buffer size is 65,536.
HttpClient client =
 new HttpClient() { MaxResponseContentBufferSize = 1000000 };

byte[] urlContents = await client.GetByteArrayAsync(url);

1. The .NET Framework 4.5 provides many async methods that you can use. One of them, the HttpClient
method GetByteArrayAsync(String), does just what you need for this walkthrough. You can use it instead
of the GetURLContentsAsync method that you created in an earlier procedure.

The first step is to create an HttpClient object in method SumPageSizesAsync . Add the following
declaration at the start of the method.

2. In SumPageSizesAsync, replace the call to your GetURLContentsAsync method with a call to the HttpClient

method.

3. Remove or comment out the GetURLContentsAsync method that you wrote.

4. Choose the F5 key to run the program, and then choose the Start button.

The behavior of this version of the project should match the behavior that the "To test the asynchronous
solution" procedure describes but with even less effort from you.

The following code contains the full example of the conversion from a synchronous to an asynchronous solution
by using the asynchronous GetURLContentsAsync method that you wrote. Notice that it strongly resembles the
original, synchronous solution.

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getbytearrayasync#System_Net_Http_HttpClient_GetByteArrayAsync_System_String_

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add the following using directives, and add a reference for System.Net.Http.
using System.Net.Http;
using System.IO;
using System.Net;

namespace AsyncExampleWPF
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 // Disable the button until the operation is complete.
 startButton.IsEnabled = false;

 resultsTextBox.Clear();

 // One-step async call.
 await SumPageSizesAsync();

 // Two-step async call.
 //Task sumTask = SumPageSizesAsync();
 //await sumTask;

 resultsTextBox.Text += "\r\nControl returned to startButton_Click.\r\n";

 // Reenable the button in case you want to run the operation again.
 startButton.IsEnabled = true;
 }

 private async Task SumPageSizesAsync()
 {
 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 var total = 0;

 foreach (var url in urlList)
 {
 byte[] urlContents = await GetURLContentsAsync(url);

 // The previous line abbreviates the following two assignment statements.

 // GetURLContentsAsync returns a Task<T>. At completion, the task
 // produces a byte array.
 //Task<byte[]> getContentsTask = GetURLContentsAsync(url);
 //byte[] urlContents = await getContentsTask;

 DisplayResults(url, urlContents);

 // Update the total.
 total += urlContents.Length;
 }
 // Display the total count for all of the websites.
 resultsTextBox.Text +=
 $"\r\n\r\nTotal bytes returned: {total}\r\n";
 }

 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>

 {
 "https://msdn.microsoft.com/library/windows/apps/br211380.aspx",
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/hh290136.aspx",
 "https://msdn.microsoft.com/library/ee256749.aspx",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }

 private async Task<byte[]> GetURLContentsAsync(string url)
 {
 // The downloaded resource ends up in the variable named content.
 var content = new MemoryStream();

 // Initialize an HttpWebRequest for the current URL.
 var webReq = (HttpWebRequest)WebRequest.Create(url);

 // Send the request to the Internet resource and wait for
 // the response.
 using (WebResponse response = await webReq.GetResponseAsync())

 // The previous statement abbreviates the following two statements.

 //Task<WebResponse> responseTask = webReq.GetResponseAsync();
 //using (WebResponse response = await responseTask)
 {
 // Get the data stream that is associated with the specified url.
 using (Stream responseStream = response.GetResponseStream())
 {
 // Read the bytes in responseStream and copy them to content.
 await responseStream.CopyToAsync(content);

 // The previous statement abbreviates the following two statements.

 // CopyToAsync returns a Task, not a Task<T>.
 //Task copyTask = responseStream.CopyToAsync(content);

 // When copyTask is completed, content contains a copy of
 // responseStream.
 //await copyTask;
 }
 }
 // Return the result as a byte array.
 return content.ToArray();
 }

 private void DisplayResults(string url, byte[] content)
 {
 // Display the length of each website. The string format
 // is designed to be used with a monospaced font, such as
 // Lucida Console or Global Monospace.
 var bytes = content.Length;
 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 resultsTextBox.Text += $"\n{displayURL,-58} {bytes,8}";
 }
 }
}

The following code contains the full example of the solution that uses the HttpClient method,
GetByteArrayAsync .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add the following using directives, and add a reference for System.Net.Http.
using System.Net.Http;
using System.IO;
using System.Net;

namespace AsyncExampleWPF
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 resultsTextBox.Clear();

 // Disable the button until the operation is complete.
 startButton.IsEnabled = false;

 // One-step async call.
 await SumPageSizesAsync();

 //// Two-step async call.
 //Task sumTask = SumPageSizesAsync();
 //await sumTask;

 resultsTextBox.Text += "\r\nControl returned to startButton_Click.\r\n";

 // Reenable the button in case you want to run the operation again.
 startButton.IsEnabled = true;
 }

 private async Task SumPageSizesAsync()
 {
 // Declare an HttpClient object and increase the buffer size. The
 // default buffer size is 65,536.
 HttpClient client =
 new HttpClient() { MaxResponseContentBufferSize = 1000000 };

 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 var total = 0;

 foreach (var url in urlList)
 {
 // GetByteArrayAsync returns a task. At completion, the task
 // produces a byte array.
 byte[] urlContents = await client.GetByteArrayAsync(url);

 // The following two lines can replace the previous assignment statement.

 // The following two lines can replace the previous assignment statement.
 //Task<byte[]> getContentsTask = client.GetByteArrayAsync(url);
 //byte[] urlContents = await getContentsTask;

 DisplayResults(url, urlContents);

 // Update the total.
 total += urlContents.Length;
 }

 // Display the total count for all of the websites.
 resultsTextBox.Text +=
 $"\r\n\r\nTotal bytes returned: {total}\r\n";
 }

 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com/library/windows/apps/br211380.aspx",
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/hh290136.aspx",
 "https://msdn.microsoft.com/library/ee256749.aspx",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }

 private void DisplayResults(string url, byte[] content)
 {
 // Display the length of each website. The string format
 // is designed to be used with a monospaced font, such as
 // Lucida Console or Global Monospace.
 var bytes = content.Length;
 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 resultsTextBox.Text += $"\n{displayURL,-58} {bytes,8}";
 }
 }
}

See also
Async Sample: Accessing the Web Walkthrough (C# and Visual Basic)
async
await
Asynchronous Programming with async and await (C#)
Async Return Types (C#)
Task-based Asynchronous Programming (TAP)
How to: Extend the async Walkthrough by Using Task.WhenAll (C#)
How to: Make Multiple Web Requests in Parallel by Using async and await (C#)

https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://www.microsoft.com/download/details.aspx?id=19957

How to: Extend the async Walkthrough by Using
Task.WhenAll (C#)
4/28/2019 • 10 minutes to read • Edit Online

IMPORTANTIMPORTANT

To add Task.WhenAll to your GetURLContentsAsync solutionTo add Task.WhenAll to your GetURLContentsAsync solution

You can improve the performance of the async solution in Walkthrough: Accessing the Web by Using async and
await (C#) by using the Task.WhenAll method. This method asynchronously awaits multiple asynchronous
operations, which are represented as a collection of tasks.

You might have noticed in the walkthrough that the websites download at different rates. Sometimes one of the
websites is very slow, which delays all the remaining downloads. When you run the asynchronous solutions that
you build in the walkthrough, you can end the program easily if you don't want to wait, but a better option would
be to start all the downloads at the same time and let faster downloads continue without waiting for the one that’s
delayed.

You apply the Task.WhenAll method to a collection of tasks. The application of WhenAll returns a single task that
isn’t complete until every task in the collection is completed. The tasks appear to run in parallel, but no additional
threads are created. The tasks can complete in any order.

The following procedures describe extensions to the async applications that are developed in Walkthrough: Accessing the
Web by Using async and await (C#). You can develop the applications by either completing the walkthrough or downloading
the code from Developer Code Samples.

To run the example, you must have Visual Studio 2012 or later installed on your computer.

private async Task<int> ProcessURLAsync(string url)
{
 var byteArray = await GetURLContentsAsync(url);
 DisplayResults(url, byteArray);
 return byteArray.Length;
}

1. Add the ProcessURLAsync method to the first application that's developed in Walkthrough: Accessing the
Web by Using async and await (C#).

If you downloaded the code from Developer Code Samples, open the AsyncWalkthrough project,
and then add ProcessURLAsync to the MainWindow.xaml.cs file.

If you developed the code by completing the walkthrough, add ProcessURLAsync to the application
that includes the GetURLContentsAsync method. The MainWindow.xaml.cs file for this application is
the first example in the "Complete Code Examples from the Walkthrough" section.

The ProcessURLAsync method consolidates the actions in the body of the foreach loop in
SumPageSizesAsync in the original walkthrough. The method asynchronously downloads the contents of a

specified website as a byte array, and then displays and returns the length of the byte array.

2. Comment out or delete the foreach loop in SumPageSizesAsync , as the following code shows.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/how-to-extend-the-async-walkthrough-by-using-task-whenall.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f

To add Task.WhenAll to the HttpClient.GetByteArrayAsync solutionTo add Task.WhenAll to the HttpClient.GetByteArrayAsync solution

//var total = 0;
//foreach (var url in urlList)
//{
// byte[] urlContents = await GetURLContentsAsync(url);

// // The previous line abbreviates the following two assignment statements.
// // GetURLContentsAsync returns a Task<T>. At completion, the task
// // produces a byte array.
// //Task<byte[]> getContentsTask = GetURLContentsAsync(url);
// //byte[] urlContents = await getContentsTask;

// DisplayResults(url, urlContents);

// // Update the total.
// total += urlContents.Length;
//}

// Create a query.
IEnumerable<Task<int>> downloadTasksQuery =
 from url in urlList select ProcessURLAsync(url);

// Use ToArray to execute the query and start the download tasks.
Task<int>[] downloadTasks = downloadTasksQuery.ToArray();

// Await the completion of all the running tasks.
int[] lengths = await Task.WhenAll(downloadTasks);

//// The previous line is equivalent to the following two statements.
//Task<int[]> whenAllTask = Task.WhenAll(downloadTasks);
//int[] lengths = await whenAllTask;

int total = lengths.Sum();

3. Create a collection of tasks. The following code defines a query that, when executed by the ToArray
method, creates a collection of tasks that download the contents of each website. The tasks are started
when the query is evaluated.

Add the following code to method SumPageSizesAsync after the declaration of urlList .

4. Apply Task.WhenAll to the collection of tasks, downloadTasks . Task.WhenAll returns a single task that
finishes when all the tasks in the collection of tasks have completed.

In the following example, the await expression awaits the completion of the single task that WhenAll

returns. The expression evaluates to an array of integers, where each integer is the length of a downloaded
website. Add the following code to SumPageSizesAsync , just after the code that you added in the previous
step.

5. Finally, use the Sum method to calculate the sum of the lengths of all the websites. Add the following line
to SumPageSizesAsync .

1. Add the following version of ProcessURLAsync to the second application that's developed in Walkthrough:
Accessing the Web by Using async and await (C#).

If you downloaded the code from Developer Code Samples, open the
AsyncWalkthrough_HttpClient project, and then add ProcessURLAsync to the MainWindow.xaml.cs
file.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.toarray
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.sum
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f

async Task<int> ProcessURLAsync(string url, HttpClient client)
{
 byte[] byteArray = await client.GetByteArrayAsync(url);
 DisplayResults(url, byteArray);
 return byteArray.Length;
}

//var total = 0;
//foreach (var url in urlList)
//{
// // GetByteArrayAsync returns a Task<T>. At completion, the task
// // produces a byte array.
// byte[] urlContent = await client.GetByteArrayAsync(url);

// // The previous line abbreviates the following two assignment
// // statements.
// Task<byte[]> getContentTask = client.GetByteArrayAsync(url);
// byte[] urlContent = await getContentTask;

// DisplayResults(url, urlContent);

// // Update the total.
// total += urlContent.Length;
//}

// Create a query.
IEnumerable<Task<int>> downloadTasksQuery =
 from url in urlList select ProcessURLAsync(url, client);

// Use ToArray to execute the query and start the download tasks.
Task<int>[] downloadTasks = downloadTasksQuery.ToArray();

If you developed the code by completing the walkthrough, add ProcessURLAsync to the application
that uses the HttpClient.GetByteArrayAsync method. The MainWindow.xaml.cs file for this
application is the second example in the "Complete Code Examples from the Walkthrough" section.

The ProcessURLAsync method consolidates the actions in the body of the foreach loop in
SumPageSizesAsync in the original walkthrough. The method asynchronously downloads the contents of a

specified website as a byte array, and then displays and returns the length of the byte array.

The only difference from the ProcessURLAsync method in the previous procedure is the use of the
HttpClient instance, client .

2. Comment out or delete the For Each or foreach loop in SumPageSizesAsync , as the following code shows.

3. Define a query that, when executed by the ToArray method, creates a collection of tasks that download the
contents of each website. The tasks are started when the query is evaluated.

Add the following code to method SumPageSizesAsync after the declaration of client and urlList .

4. Next, apply Task.WhenAll to the collection of tasks, downloadTasks . Task.WhenAll returns a single task that
finishes when all the tasks in the collection of tasks have completed.

In the following example, the await expression awaits the completion of the single task that WhenAll

returns. When complete, the await expression evaluates to an array of integers, where each integer is the
length of a downloaded website. Add the following code to SumPageSizesAsync , just after the code that you
added in the previous step.

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.toarray

To test the Task.WhenAll solutionsTo test the Task.WhenAll solutions

Example

// Add the following using directives, and add a reference for System.Net.Http.
using System.Net.Http;
using System.IO;
using System.Net;

namespace AsyncExampleWPF_WhenAll
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 resultsTextBox.Clear();

 // Two-step async call.
 Task sumTask = SumPageSizesAsync();
 await sumTask;

 // One-step async call.
 //await SumPageSizesAsync();

 resultsTextBox.Text += "\r\nControl returned to startButton_Click.\r\n";
 }

 private async Task SumPageSizesAsync()
 {
 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 // Create a query.
 IEnumerable<Task<int>> downloadTasksQuery =
 from url in urlList select ProcessURLAsync(url);

 // Use ToArray to execute the query and start the download tasks.
 Task<int>[] downloadTasks = downloadTasksQuery.ToArray();

// Await the completion of all the running tasks.
int[] lengths = await Task.WhenAll(downloadTasks);

//// The previous line is equivalent to the following two statements.
//Task<int[]> whenAllTask = Task.WhenAll(downloadTasks);
//int[] lengths = await whenAllTask;

int total = lengths.Sum();

5. Finally, use the Sum method to get the sum of the lengths of all the websites. Add the following line to
SumPageSizesAsync .

For either solution, choose the F5 key to run the program, and then choose the Start button. The output
should resemble the output from the async solutions in Walkthrough: Accessing the Web by Using async and
await (C#). However, notice that the websites appear in a different order each time.

The following code shows the extensions to the project that uses the GetURLContentsAsync method to download
content from the web.

https://docs.microsoft.com/dotnet/api/system.linq.enumerable.sum

 // You can do other work here before awaiting.

 // Await the completion of all the running tasks.
 int[] lengths = await Task.WhenAll(downloadTasks);

 //// The previous line is equivalent to the following two statements.
 //Task<int[]> whenAllTask = Task.WhenAll(downloadTasks);
 //int[] lengths = await whenAllTask;

 int total = lengths.Sum();

 //var total = 0;
 //foreach (var url in urlList)
 //{
 // byte[] urlContents = await GetURLContentsAsync(url);

 // // The previous line abbreviates the following two assignment statements.
 // // GetURLContentsAsync returns a Task<T>. At completion, the task
 // // produces a byte array.
 // //Task<byte[]> getContentsTask = GetURLContentsAsync(url);
 // //byte[] urlContents = await getContentsTask;

 // DisplayResults(url, urlContents);

 // // Update the total.
 // total += urlContents.Length;
 //}

 // Display the total count for all of the websites.
 resultsTextBox.Text +=
 $"\r\n\r\nTotal bytes returned: {total}\r\n";
 }

 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/windows/apps/br211380.aspx",
 "https://msdn.microsoft.com/library/hh290136.aspx",
 "https://msdn.microsoft.com/library/ee256749.aspx",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }

 // The actions from the foreach loop are moved to this async method.
 private async Task<int> ProcessURLAsync(string url)
 {
 var byteArray = await GetURLContentsAsync(url);
 DisplayResults(url, byteArray);
 return byteArray.Length;
 }

 private async Task<byte[]> GetURLContentsAsync(string url)
 {
 // The downloaded resource ends up in the variable named content.
 var content = new MemoryStream();

 // Initialize an HttpWebRequest for the current URL.
 var webReq = (HttpWebRequest)WebRequest.Create(url);

 // Send the request to the Internet resource and wait for

 // the response.
 using (WebResponse response = await webReq.GetResponseAsync())
 {
 // Get the data stream that is associated with the specified url.
 using (Stream responseStream = response.GetResponseStream())
 {
 await responseStream.CopyToAsync(content);
 }
 }

 // Return the result as a byte array.
 return content.ToArray();

 }

 private void DisplayResults(string url, byte[] content)
 {
 // Display the length of each website. The string format
 // is designed to be used with a monospaced font, such as
 // Lucida Console or Global Monospace.
 var bytes = content.Length;
 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 resultsTextBox.Text += $"\n{displayURL,-58} {bytes,8}";
 }
 }
}

Example

// Add the following using directives, and add a reference for System.Net.Http.
using System.Net.Http;
using System.IO;
using System.Net;

namespace AsyncExampleWPF_HttpClient_WhenAll
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 resultsTextBox.Clear();

 // One-step async call.
 await SumPageSizesAsync();

 // Two-step async call.
 //Task sumTask = SumPageSizesAsync();
 //await sumTask;

 resultsTextBox.Text += "\r\nControl returned to startButton_Click.\r\n";
 }

 private async Task SumPageSizesAsync()
 {
 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

The following code shows the extensions to the project that uses method HttpClient.GetByteArrayAsync to
download content from the web.

 // Declare an HttpClient object and increase the buffer size. The
 // default buffer size is 65,536.
 HttpClient client = new HttpClient() { MaxResponseContentBufferSize = 1000000 };

 // Create a query.
 IEnumerable<Task<int>> downloadTasksQuery =
 from url in urlList select ProcessURLAsync(url, client);

 // Use ToArray to execute the query and start the download tasks.
 Task<int>[] downloadTasks = downloadTasksQuery.ToArray();

 // You can do other work here before awaiting.

 // Await the completion of all the running tasks.
 int[] lengths = await Task.WhenAll(downloadTasks);

 //// The previous line is equivalent to the following two statements.
 //Task<int[]> whenAllTask = Task.WhenAll(downloadTasks);
 //int[] lengths = await whenAllTask;

 int total = lengths.Sum();

 //var total = 0;
 //foreach (var url in urlList)
 //{
 // // GetByteArrayAsync returns a Task<T>. At completion, the task
 // // produces a byte array.
 // byte[] urlContent = await client.GetByteArrayAsync(url);

 // // The previous line abbreviates the following two assignment
 // // statements.
 // Task<byte[]> getContentTask = client.GetByteArrayAsync(url);
 // byte[] urlContent = await getContentTask;

 // DisplayResults(url, urlContent);

 // // Update the total.
 // total += urlContent.Length;
 //}

 // Display the total count for all of the web addresses.
 resultsTextBox.Text +=
 $"\r\n\r\nTotal bytes returned: {total}\r\n";
 }

 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/hh290136.aspx",
 "https://msdn.microsoft.com/library/ee256749.aspx",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }

 // The actions from the foreach loop are moved to this async method.
 async Task<int> ProcessURLAsync(string url, HttpClient client)
 {
 byte[] byteArray = await client.GetByteArrayAsync(url);
 DisplayResults(url, byteArray);
 return byteArray.Length;
 }

 }

 private void DisplayResults(string url, byte[] content)
 {
 // Display the length of each web site. The string format
 // is designed to be used with a monospaced font, such as
 // Lucida Console or Global Monospace.
 var bytes = content.Length;
 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 resultsTextBox.Text += $"\n{displayURL,-58} {bytes,8}";
 }
 }
}

See also
Task.WhenAll
Walkthrough: Accessing the Web by Using async and await (C#)

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall

How to: Make Multiple Web Requests in Parallel by
Using async and await (C#)
4/28/2019 • 5 minutes to read • Edit Online

var result = await someWebAccessMethodAsync(url);

// The following line creates and starts the task.
var myTask = someWebAccessMethodAsync(url);

// While the task is running, you can do other work that doesn't depend
// on the results of the task.
//

// The application of await suspends the rest of this method until the task is complete.
var result = await myTask;

NOTENOTE

To set up the projectTo set up the project

In an async method, tasks are started when they’re created. The await operator is applied to the task at the point in
the method where processing can’t continue until the task finishes. Often a task is awaited as soon as it’s created,
as the following example shows.

However, you can separate creating the task from awaiting the task if your program has other work to accomplish
that doesn’t depend on the completion of the task.

Between starting a task and awaiting it, you can start other tasks. The additional tasks implicitly run in parallel, but
no additional threads are created.

The following program starts three asynchronous web downloads and then awaits them in the order in which
they’re called. Notice, when you run the program, that the tasks don’t always finish in the order in which they’re
created and awaited. They start to run when they’re created, and one or more of the tasks might finish before the
method reaches the await expressions.

To complete this project, you must have Visual Studio 2012 or higher and the .NET Framework 4.5 or higher installed on
your computer.

For another example that starts multiple tasks at the same time, see How to: Extend the async Walkthrough by
Using Task.WhenAll (C#).

You can download the code for this example from Developer Code Samples.

1. To set up a WPF application, complete the following steps. You can find detailed instructions for these steps
in Walkthrough: Accessing the Web by Using async and await (C#).

Create a WPF application that contains a text box and a button. Name the button startButton , and
name the text box resultsTextBox .

Add a reference for System.Net.Http.

In the MainWindow.xaml.cs file, add a using directive for System.Net.Http .

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/how-to-make-multiple-web-requests-in-parallel-by-using-async-and-await.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://code.msdn.microsoft.com/Async-Make-Multiple-Web-49adb82e
https://docs.microsoft.com/dotnet/api/system.net.http

To add the codeTo add the code

resultsTextBox.Clear();
await CreateMultipleTasksAsync();
resultsTextBox.Text += "\r\n\r\nControl returned to startButton_Click.\r\n";

async Task<int> ProcessURLAsync(string url, HttpClient client)
{
 var byteArray = await client.GetByteArrayAsync(url);
 DisplayResults(url, byteArray);
 return byteArray.Length;
}

private void DisplayResults(string url, byte[] content)
{
 // Display the length of each website. The string format
 // is designed to be used with a monospaced font, such as
 // Lucida Console or Global Monospace.
 var bytes = content.Length;
 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 resultsTextBox.Text += $"\n{displayURL,-58} {bytes,8}";
}

1. In the design window, MainWindow.xaml, double-click the button to create the startButton_Click event
handler in MainWindow.xaml.cs.

2. Copy the following code, and paste it into the body of startButton_Click in MainWindow.xaml.cs.

The code calls an asynchronous method, CreateMultipleTasksAsync , which drives the application.

3. Add the following support methods to the project:

ProcessURLAsync uses an HttpClient method to download the contents of a website as a byte array.
The support method, ProcessURLAsync then displays and returns the length of the array.

DisplayResults displays the number of bytes in the byte array for each URL. This display shows
when each task has finished downloading.

Copy the following methods, and paste them after the startButton_Click event handler in
MainWindow.xaml.cs.

4. Finally, define method CreateMultipleTasksAsync , which performs the following steps.

The method declares an HttpClient object,which you need to access method GetByteArrayAsync in
ProcessURLAsync .

The method creates and starts three tasks of type Task<TResult>, where TResult is an integer. As
each task finishes, DisplayResults displays the task's URL and the length of the downloaded
contents. Because the tasks are running asynchronously, the order in which the results appear might
differ from the order in which they were declared.

The method awaits the completion of each task. Each await operator suspends execution of
CreateMultipleTasksAsync until the awaited task is finished. The operator also retrieves the return

value from the call to ProcessURLAsync from each completed task.

When the tasks have been completed and the integer values have been retrieved, the method sums
the lengths of the websites and displays the result.

Copy the following method, and paste it into your solution.

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getbytearrayasync
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1

Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add the following using directive, and add a reference for System.Net.Http.
using System.Net.Http;

namespace AsyncExample_MultipleTasks
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {

private async Task CreateMultipleTasksAsync()
{
 // Declare an HttpClient object, and increase the buffer size. The
 // default buffer size is 65,536.
 HttpClient client =
 new HttpClient() { MaxResponseContentBufferSize = 1000000 };

 // Create and start the tasks. As each task finishes, DisplayResults
 // displays its length.
 Task<int> download1 =
 ProcessURLAsync("https://msdn.microsoft.com", client);
 Task<int> download2 =
 ProcessURLAsync("https://msdn.microsoft.com/library/hh156528(VS.110).aspx", client);
 Task<int> download3 =
 ProcessURLAsync("https://msdn.microsoft.com/library/67w7t67f.aspx", client);

 // Await each task.
 int length1 = await download1;
 int length2 = await download2;
 int length3 = await download3;

 int total = length1 + length2 + length3;

 // Display the total count for the downloaded websites.
 resultsTextBox.Text += $"\r\n\r\nTotal bytes returned: {total}\r\n";
}

5. Choose the F5 key to run the program, and then choose the Start button.

Run the program several times to verify that the three tasks don’t always finish in the same order and that
the order in which they finish isn't necessarily the order in which they’re created and awaited.

The following code contains the full example.

 {
 resultsTextBox.Clear();
 await CreateMultipleTasksAsync();
 resultsTextBox.Text += "\r\n\r\nControl returned to startButton_Click.\r\n";
 }

 private async Task CreateMultipleTasksAsync()
 {
 // Declare an HttpClient object, and increase the buffer size. The
 // default buffer size is 65,536.
 HttpClient client =
 new HttpClient() { MaxResponseContentBufferSize = 1000000 };

 // Create and start the tasks. As each task finishes, DisplayResults
 // displays its length.
 Task<int> download1 =
 ProcessURLAsync("https://msdn.microsoft.com", client);
 Task<int> download2 =
 ProcessURLAsync("https://msdn.microsoft.com/library/hh156528(VS.110).aspx", client);
 Task<int> download3 =
 ProcessURLAsync("https://msdn.microsoft.com/library/67w7t67f.aspx", client);

 // Await each task.
 int length1 = await download1;
 int length2 = await download2;
 int length3 = await download3;

 int total = length1 + length2 + length3;

 // Display the total count for the downloaded websites.
 resultsTextBox.Text += $"\r\n\r\nTotal bytes returned: {total}\r\n";
 }

 async Task<int> ProcessURLAsync(string url, HttpClient client)
 {
 var byteArray = await client.GetByteArrayAsync(url);
 DisplayResults(url, byteArray);
 return byteArray.Length;
 }

 private void DisplayResults(string url, byte[] content)
 {
 // Display the length of each website. The string format
 // is designed to be used with a monospaced font, such as
 // Lucida Console or Global Monospace.
 var bytes = content.Length;
 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 resultsTextBox.Text += $"\n{displayURL,-58} {bytes,8}";
 }
 }
}

See also
Walkthrough: Accessing the Web by Using async and await (C#)
Asynchronous Programming with async and await (C#)
How to: Extend the async Walkthrough by Using Task.WhenAll (C#)

Async Return Types (C#)
6/25/2019 • 7 minutes to read • Edit Online

Task<TResult> Return Type

Async methods can have the following return types:

Task<TResult>, for an async method that returns a value.

Task, for an async method that performs an operation but returns no value.

void , for an event handler.

Starting with C# 7.0, any type that has an accessible GetAwaiter method. The object returned by the
GetAwaiter method must implement the System.Runtime.CompilerServices.ICriticalNotifyCompletion

interface.

For more information about async methods, see Asynchronous Programming with async and await (C#).

Each return type is examined in one of the following sections, and you can find a full example that uses all three
types at the end of the topic.

The Task<TResult> return type is used for an async method that contains a return (C#) statement in which the
operand has type TResult .

In the following example, the GetLeisureHours async method contains a return statement that returns an
integer. Therefore, the method declaration must specify a return type of Task<int> . The FromResult async
method is a placeholder for an operation that returns a string.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/async-return-types.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.icriticalnotifycompletion
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/return
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.fromresult

using System;
using System.Linq;
using System.Threading.Tasks;

public class Example
{
 public static void Main()
 {
 Console.WriteLine(ShowTodaysInfo().Result);
 }

 private static async Task<string> ShowTodaysInfo()
 {
 string ret = $"Today is {DateTime.Today:D}\n" +
 "Today's hours of leisure: " +
 $"{await GetLeisureHours()}";
 return ret;
 }

 static async Task<int> GetLeisureHours()
 {
 // Task.FromResult is a placeholder for actual work that returns a string.
 var today = await Task.FromResult<string>(DateTime.Now.DayOfWeek.ToString());

 // The method then can process the result in some way.
 int leisureHours;
 if (today.First() == 'S')
 leisureHours = 16;
 else
 leisureHours = 5;

 return leisureHours;
 }
}
// The example displays output like the following:
// Today is Wednesday, May 24, 2017
// Today's hours of leisure: 5
// </Snippet >

IMPORTANTIMPORTANT

When GetLeisureHours is called from within an await expression in the ShowTodaysInfo method, the await
expression retrieves the integer value (the value of leisureHours) that's stored in the task returned by the
GetLeisureHours method. For more information about await expressions, see await.

You can better understand how this happens by separating the call to GetLeisureHours from the application of
await , as the following code shows. A call to method GetLeisureHours that isn't immediately awaited returns a
Task<int> , as you would expect from the declaration of the method. The task is assigned to the integerTask

variable in the example. Because integerTask is a Task<TResult>, it contains a Result property of type TResult .
In this case, TResult represents an integer type. When await is applied to integerTask , the await expression
evaluates to the contents of the Result property of integerTask . The value is assigned to the ret variable.

The Result property is a blocking property. If you try to access it before its task is finished, the thread that's currently active
is blocked until the task completes and the value is available. In most cases, you should access the value by using await

instead of accessing the property directly.
The previous example retrieved the value of the Result property to block the main thread so that the ShowTodaysInfo

method could finish execution before the application ended.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1.result#System_Threading_Tasks_Task_1_Result
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1.result
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1.result
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1.result

var integerTask = GetLeisureHours();

// You can do other work that does not rely on integerTask before awaiting.

string ret = $"Today is {DateTime.Today:D}\n" +
 "Today's hours of leisure: " +
 $"{await integerTask}";

Task Return Type

using System;
using System.Threading.Tasks;

public class Example
{
 public static void Main()
 {
 DisplayCurrentInfo().Wait();
 }

 static async Task DisplayCurrentInfo()
 {
 await WaitAndApologize();
 Console.WriteLine($"Today is {DateTime.Now:D}");
 Console.WriteLine($"The current time is {DateTime.Now.TimeOfDay:t}");
 Console.WriteLine("The current temperature is 76 degrees.");
 }

 static async Task WaitAndApologize()
 {
 // Task.Delay is a placeholder for actual work.
 await Task.Delay(2000);
 // Task.Delay delays the following line by two seconds.
 Console.WriteLine("\nSorry for the delay. . . .\n");
 }
}
// The example displays the following output:
// Sorry for the delay. . . .
//
// Today is Wednesday, May 24, 2017
// The current time is 15:25:16.2935649
// The current temperature is 76 degrees.

Async methods that don't contain a return statement or that contain a return statement that doesn't return an
operand usually have a return type of Task. Such methods return void if they run synchronously. If you use a
Task return type for an async method, a calling method can use an await operator to suspend the caller's
completion until the called async method has finished.

In the following example, the WaitAndApologize async method doesn't contain a return statement, so the
method returns a Task object. This enables WaitAndApologize to be awaited. Note that the Task type doesn't
include a Result property because it has no return value.

WaitAndApologize is awaited by using an await statement instead of an await expression, similar to the calling
statement for a synchronous void-returning method. The application of an await operator in this case doesn't
produce a value.

As in the previous Task<TResult> example, you can separate the call to WaitAndApologize from the application of
an await operator, as the following code shows. However, remember that a Task doesn't have a Result

property, and that no value is produced when an await operator is applied to a Task .

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1

Task wait = WaitAndApologize();

string output = $"Today is {DateTime.Now:D}\n" +
 $"The current time is {DateTime.Now.TimeOfDay:t}\n" +
 $"The current temperature is 76 degrees.\n";
await wait;
Console.WriteLine(output);

Void return type

using System;
using System.Threading.Tasks;

public class NaiveButton
{
 public event EventHandler Clicked;

 public void Click()
 {
 Console.WriteLine("Somebody has clicked a button. Let's raise the event...");
 Clicked?.Invoke(this, EventArgs.Empty);
 Console.WriteLine("All listeners are notified.");
 }
}

public class AsyncVoidExample
{
 static TaskCompletionSource<bool> tcs;

 static async Task Main()
 {
 tcs = new TaskCompletionSource<bool>();
 var secondHandlerFinished = tcs.Task;

 var button = new NaiveButton();
 button.Clicked += Button_Clicked_1;
 button.Clicked += Button_Clicked_2_Async;
 button.Clicked += Button_Clicked_3;

The following code separates calling the WaitAndApologize method from awaiting the task that the method
returns.

You use the void return type in asynchronous event handlers, which require a void return type. For methods
other than event handlers that don't return a value, you should return a Task instead, because an async method
that returns void can't be awaited. Any caller of such a method must be able to continue to completion without
waiting for the called async method to finish, and the caller must be independent of any values or exceptions that
the async method generates.

The caller of a void-returning async method can't catch exceptions that are thrown from the method, and such
unhandled exceptions are likely to cause your application to fail. If an exception occurs in an async method that
returns a Task or Task<TResult>, the exception is stored in the returned task and is rethrown when the task is
awaited. Therefore, make sure that any async method that can produce an exception has a return type of Task or
Task<TResult> and that calls to the method are awaited.

For more information about how to catch exceptions in async methods, see the Exceptions in Async Methods
section of the try-catch topic.

The following example shows the behavior of an async event handler. Note that in the example code, an async
event handler must let the main thread know when it finishes. Then the main thread can wait for an async event
handler to complete before exiting the program.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch

 Console.WriteLine("About to click a button...");
 button.Click();
 Console.WriteLine("Button's Click method returned.");

 await secondHandlerFinished;
 }

 private static void Button_Clicked_1(object sender, EventArgs e)
 {
 Console.WriteLine(" Handler 1 is starting...");
 Task.Delay(100).Wait();
 Console.WriteLine(" Handler 1 is done.");
 }

 private static async void Button_Clicked_2_Async(object sender, EventArgs e)
 {
 Console.WriteLine(" Handler 2 is starting...");
 Task.Delay(100).Wait();
 Console.WriteLine(" Handler 2 is about to go async...");
 await Task.Delay(500);
 Console.WriteLine(" Handler 2 is done.");
 tcs.SetResult(true);
 }

 private static void Button_Clicked_3(object sender, EventArgs e)
 {
 Console.WriteLine(" Handler 3 is starting...");
 Task.Delay(100).Wait();
 Console.WriteLine(" Handler 3 is done.");
 }
}

// Expected output:
// About to click a button...
// Somebody has clicked a button. Let's raise the event...
// Handler 1 is starting...
// Handler 1 is done.
// Handler 2 is starting...
// Handler 2 is about to go async...
// Handler 3 is starting...
// Handler 3 is done.
// All listeners are notified.
// Button's Click method returned.
// Handler 2 is done.

Generalized async return types and ValueTask<TResult>
Starting with C# 7.0, an async method can return any type that has an accessible GetAwaiter method.

Because Task and Task<TResult> are reference types, memory allocation in performance-critical paths,
particularly when allocations occur in tight loops, can adversely affect performance. Support for generalized
return types means that you can return a lightweight value type instead of a reference type to avoid additional
memory allocations.

.NET provides the System.Threading.Tasks.ValueTask<TResult> structure as a lightweight implementation of a
generalized task-returning value. To use the System.Threading.Tasks.ValueTask<TResult> type, you must add the
System.Threading.Tasks.Extensions NuGet package to your project. The following example uses the

ValueTask<TResult> structure to retrieve the value of two dice rolls.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.valuetask-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.valuetask-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.valuetask-1

using System;
using System.Threading.Tasks;

class Program
{
 static Random rnd;

 static void Main()
 {
 Console.WriteLine($"You rolled {GetDiceRoll().Result}");
 }

 private static async ValueTask<int> GetDiceRoll()
 {
 Console.WriteLine("...Shaking the dice...");
 int roll1 = await Roll();
 int roll2 = await Roll();
 return roll1 + roll2;
 }

 private static async ValueTask<int> Roll()
 {
 if (rnd == null)
 rnd = new Random();

 await Task.Delay(500);
 int diceRoll = rnd.Next(1, 7);
 return diceRoll;
 }
}
// The example displays output like the following:
// ...Shaking the dice...
// You rolled 8

See also
FromResult
Walkthrough: Accessing the Web by Using async and await (C#)
Control Flow in Async Programs (C#)
async
await

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.fromresult
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await

Control flow in async programs (C#)
4/28/2019 • 9 minutes to read • Edit Online

You can write and maintain asynchronous programs more easily by using the async and await keywords.
However, the results might surprise you if you don't understand how your program operates. This topic traces the
flow of control through a simple async program to show you when control moves from one method to another
and what information is transferred each time.

In general, you mark methods that contain asynchronous code with the async (C#) modifier. In a method that's
marked with an async modifier, you can use an await (C#) operator to specify where the method pauses to wait for
a called asynchronous process to complete. For more information, see Asynchronous Programming with async
and await (C#).

The following example uses async methods to download the contents of a specified website as a string and to
display the length of the string. The example contains the following two methods.

startButton_Click , which calls AccessTheWebAsync and displays the result.

AccessTheWebAsync , which downloads the contents of a website as a string and returns the length of the
string. AccessTheWebAsync uses an asynchronous HttpClient method, GetStringAsync(String), to download
the contents.

Numbered display lines appear at strategic points throughout the program to help you understand how the
program runs and to explain what happens at each point that is marked. The display lines are labeled "ONE"
through "SIX." The labels represent the order in which the program reaches these lines of code.

The following code shows an outline of the program.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/control-flow-in-async-programs.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getstringasync#System_Net_Http_HttpClient_GetStringAsync_System_String_

public partial class MainWindow : Window
{
 // . . .
 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 // ONE
 Task<int> getLengthTask = AccessTheWebAsync();

 // FOUR
 int contentLength = await getLengthTask;

 // SIX
 resultsTextBox.Text +=
 $"\r\nLength of the downloaded string: {contentLength}.\r\n";
 }

 async Task<int> AccessTheWebAsync()
 {
 // TWO
 HttpClient client = new HttpClient();
 Task<string> getStringTask =
 client.GetStringAsync("https://msdn.microsoft.com");

 // THREE
 string urlContents = await getStringTask;

 // FIVE
 return urlContents.Length;
 }
}

ONE: Entering startButton_Click.
 Calling AccessTheWebAsync.

TWO: Entering AccessTheWebAsync.
 Calling HttpClient.GetStringAsync.

THREE: Back in AccessTheWebAsync.
 Task getStringTask is started.
 About to await getStringTask & return a Task<int> to startButton_Click.

FOUR: Back in startButton_Click.
 Task getLengthTask is started.
 About to await getLengthTask -- no caller to return to.

FIVE: Back in AccessTheWebAsync.
 Task getStringTask is complete.
 Processing the return statement.
 Exiting from AccessTheWebAsync.

SIX: Back in startButton_Click.
 Task getLengthTask is finished.
 Result from AccessTheWebAsync is stored in contentLength.
 About to display contentLength and exit.

Length of the downloaded string: 33946.

Set up the program

Each of the labeled locations, "ONE" through "SIX," displays information about the current state of the program.
The following output is produced:

You can download the code that this topic uses from MSDN, or you can build it yourself.

NOTENOTE

Download the programDownload the program

Create the program YourselfCreate the program Yourself

To run the example, you must have Visual Studio 2012 or newer and the .NET Framework 4.5 or newer installed on your
computer.

You can download the application for this topic from Async Sample: Control Flow in Async Programs. The
following steps open and run the program.

1. Unzip the downloaded file, and then start Visual Studio.

2. On the menu bar, choose File > Open > Project/Solution.

3. Navigate to the folder that holds the unzipped sample code, open the solution (.sln) file, and then choose
the F5 key to build and run the project.

The following Windows Presentation Foundation (WPF) project contains the code example for this topic.

To run the project, perform the following steps:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d"
x:Class="AsyncTracer.MainWindow"
 Title="Control Flow Trace" Height="350" Width="592">
 <Grid>
 <Button x:Name="startButton" Content="Start
" HorizontalAlignment="Left" Margin="250,10,0,0" VerticalAlignment="Top" Width="75" Height="24"
Click="startButton_Click" d:LayoutOverrides="GridBox"/>
 <TextBox x:Name="resultsTextBox" HorizontalAlignment="Left" TextWrapping="Wrap"
VerticalAlignment="Bottom" Width="576" Height="265" FontFamily="Lucida Console" FontSize="10"
VerticalScrollBarVisibility="Visible" Grid.ColumnSpan="3"/>
 </Grid>
</Window>

1. Start Visual Studio.

2. On the menu bar, choose File > New > Project.

The New Project dialog box opens.

3. Choose the Installed > Visual C# > Windows Desktop category, and then choose WPF App from the
list of project templates.

4. Enter AsyncTracer as the name of the project, and then choose the OK button.

The new project appears in Solution Explorer.

5. In the Visual Studio Code Editor, choose the MainWindow.xaml tab.

If the tab isn’t visible, open the shortcut menu for MainWindow.xaml in Solution Explorer, and then
choose View Code.

6. In the XAML view of MainWindow.xaml, replace the code with the following code.

A simple window that contains a text box and a button appears in the Design view of MainWindow.xaml.

7. Add a reference for System.Net.Http.

https://code.msdn.microsoft.com/Async-Sample-Control-Flow-5c804fc0
https://docs.microsoft.com/dotnet/api/system.net.http

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add a using directive and a reference for System.Net.Http;
using System.Net.Http;

namespace AsyncTracer
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 // The display lines in the example lead you through the control shifts.
 resultsTextBox.Text += "ONE: Entering startButton_Click.\r\n" +
 " Calling AccessTheWebAsync.\r\n";

 Task<int> getLengthTask = AccessTheWebAsync();

 resultsTextBox.Text += "\r\nFOUR: Back in startButton_Click.\r\n" +
 " Task getLengthTask is started.\r\n" +
 " About to await getLengthTask -- no caller to return to.\r\n";

 int contentLength = await getLengthTask;

 resultsTextBox.Text += "\r\nSIX: Back in startButton_Click.\r\n" +
 " Task getLengthTask is finished.\r\n" +
 " Result from AccessTheWebAsync is stored in contentLength.\r\n" +
 " About to display contentLength and exit.\r\n";

 resultsTextBox.Text +=
 $"\r\nLength of the downloaded string: {contentLength}.\r\n";
 }

 async Task<int> AccessTheWebAsync()
 {
 resultsTextBox.Text += "\r\nTWO: Entering AccessTheWebAsync.";

 // Declare an HttpClient object.
 HttpClient client = new HttpClient();

 resultsTextBox.Text += "\r\n Calling HttpClient.GetStringAsync.\r\n";

 // GetStringAsync returns a Task<string>.
 Task<string> getStringTask = client.GetStringAsync("https://msdn.microsoft.com");

 resultsTextBox.Text += "\r\nTHREE: Back in AccessTheWebAsync.\r\n" +
 " Task getStringTask is started.";

8. In Solution Explorer, open the shortcut menu for MainWindow.xaml.cs, and then choose View Code.

9. In MainWindow.xaml.cs, replace the code with the following code.

Trace the program
Steps ONE and TWOSteps ONE and TWO

 " Task getStringTask is started.";

 // AccessTheWebAsync can continue to work until getStringTask is awaited.

 resultsTextBox.Text +=
 "\r\n About to await getStringTask and return a Task<int> to
startButton_Click.\r\n";

 // Retrieve the website contents when task is complete.
 string urlContents = await getStringTask;

 resultsTextBox.Text += "\r\nFIVE: Back in AccessTheWebAsync." +
 "\r\n Task getStringTask is complete." +
 "\r\n Processing the return statement." +
 "\r\n Exiting from AccessTheWebAsync.\r\n";

 return urlContents.Length;
 }
 }
}

ONE: Entering startButton_Click.
 Calling AccessTheWebAsync.

TWO: Entering AccessTheWebAsync.
 Calling HttpClient.GetStringAsync.

THREE: Back in AccessTheWebAsync.
 Task getStringTask is started.
 About to await getStringTask & return a Task<int> to startButton_Click.

FOUR: Back in startButton_Click.
 Task getLengthTask is started.
 About to await getLengthTask -- no caller to return to.

FIVE: Back in AccessTheWebAsync.
 Task getStringTask is complete.
 Processing the return statement.
 Exiting from AccessTheWebAsync.

SIX: Back in startButton_Click.
 Task getLengthTask is finished.
 Result from AccessTheWebAsync is stored in contentLength.
 About to display contentLength and exit.

Length of the downloaded string: 33946.

10. Choose the F5 key to run the program, and then choose the Start button.

The following output appears:

The first two display lines trace the path as startButton_Click calls AccessTheWebAsync , and AccessTheWebAsync

calls the asynchronous HttpClient method GetStringAsync(String). The following image outlines the calls from
method to method.

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getstringasync#System_Net_Http_HttpClient_GetStringAsync_System_String_

Step THREEStep THREE

Task<string> getStringTask = client.GetStringAsync("https://msdn.microsoft.com");

THREE: Back in AccessTheWebAsync.
 Task getStringTask is started.
 About to await getStringTask & return a Task<int> to startButton_Click.

string urlContents = await getStringTask;

The return type of both AccessTheWebAsync and client.GetStringAsync is Task<TResult>. For AccessTheWebAsync ,
TResult is an integer. For GetStringAsync , TResult is a string. For more information about async method return
types, see Async Return Types (C#).

A task-returning async method returns a task instance when control shifts back to the caller. Control returns from
an async method to its caller either when an await operator is encountered in the called method or when the
called method ends. The display lines that are labeled "THREE" through "SIX" trace this part of the process.

In AccessTheWebAsync , the asynchronous method GetStringAsync(String) is called to download the contents of the
target webpage. Control returns from client.GetStringAsync to AccessTheWebAsync when client.GetStringAsync

returns.

The client.GetStringAsync method returns a task of string that’s assigned to the getStringTask variable in
AccessTheWebAsync . The following line in the example program shows the call to client.GetStringAsync and the

assignment.

You can think of the task as a promise by client.GetStringAsync to produce an actual string eventually. In the
meantime, if AccessTheWebAsync has work to do that doesn't depend on the promised string from
client.GetStringAsync , that work can continue while client.GetStringAsync waits. In the example, the following

lines of output, which are labeled "THREE," represent the opportunity to do independent work

The following statement suspends progress in AccessTheWebAsync when getStringTask is awaited.

The following image shows the flow of control from client.GetStringAsync to the assignment to getStringTask

and from the creation of getStringTask to the application of an await operator.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getstringasync#System_Net_Http_HttpClient_GetStringAsync_System_String_

NOTENOTE

Step FOURStep FOUR

Task<int> getLengthTask = AccessTheWebAsync();

FOUR: Back in startButton_Click.
 Task getLengthTask is started.
 About to await getLengthTask -- no caller to return to.

int contentLength = await getLengthTask;

The await expression suspends AccessTheWebAsync until client.GetStringAsync returns. In the meantime, control
returns to the caller of AccessTheWebAsync , startButton_Click .

Typically, you await the call to an asynchronous method immediately. For example, the following assignment could replace
the previous code that creates and then awaits getStringTask :
string urlContents = await client.GetStringAsync("https://msdn.microsoft.com");

In this topic, the await operator is applied later to accommodate the output lines that mark the flow of control through the
program.

The declared return type of AccessTheWebAsync is Task<int> . Therefore, when AccessTheWebAsync is suspended, it
returns a task of integer to startButton_Click . You should understand that the returned task isn’t getStringTask .
The returned task is a new task of integer that represents what remains to be done in the suspended method,
AccessTheWebAsync . The task is a promise from AccessTheWebAsync to produce an integer when the task is

complete.

The following statement assigns this task to the getLengthTask variable.

As in AccessTheWebAsync , startButton_Click can continue with work that doesn’t depend on the results of the
asynchronous task (getLengthTask) until the task is awaited. The following output lines represent that work.

Progress in startButton_Click is suspended when getLengthTask is awaited. The following assignment statement
suspends startButton_Click until AccessTheWebAsync is complete.

In the following illustration, the arrows show the flow of control from the await expression in AccessTheWebAsync

to the assignment of a value to getLengthTask , followed by normal processing in startButton_Click until
getLengthTask is awaited.

Step FIVEStep FIVE

FIVE: Back in AccessTheWebAsync.
 Task getStringTask is complete.
 Processing the return statement.
 Exiting from AccessTheWebAsync.

When client.GetStringAsync signals that it’s complete, processing in AccessTheWebAsync is released from
suspension and can continue past the await statement. The following lines of output represent the resumption of
processing.

The operand of the return statement, urlContents.Length , is stored in the task that AccessTheWebAsync returns.
The await expression retrieves that value from getLengthTask in startButton_Click .

The following image shows the transfer of control after client.GetStringAsync (and getStringTask) are complete.

Step SIXStep SIX

SIX: Back in startButton_Click.
 Task getLengthTask is finished.
 Result from AccessTheWebAsync is stored in contentLength.
 About to display contentLength and exit.

int contentLength = await getLengthTask;

AccessTheWebAsync runs to completion, and control returns to startButton_Click , which is awaiting the
completion.

When AccessTheWebAsync signals that it’s complete, processing can continue past the await statement in
startButton_Async . In fact, the program has nothing more to do.

The following lines of output represent the resumption of processing in startButton_Async :

The await expression retrieves from getLengthTask the integer value that’s the operand of the return statement in
AccessTheWebAsync . The following statement assigns that value to the contentLength variable.

The following image shows the return of control from AccessTheWebAsync to startButton_Click .

See also
Asynchronous Programming with async and await (C#)
Async Return Types (C#)
Walkthrough: Accessing the Web by Using async and await (C#)
Async Sample: Control Flow in Async Programs (C# and Visual Basic)

https://code.msdn.microsoft.com/Async-Sample-Control-Flow-5c804fc0

Fine-Tuning Your Async Application (C#)
4/28/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

You can add precision and flexibility to your async applications by using the methods and properties that the Task
type makes available. The topics in this section show examples that use CancellationToken and important Task

methods such as Task.WhenAll and Task.WhenAny.

By using WhenAny and WhenAll , you can more easily start multiple tasks and await their completion by
monitoring a single task.

WhenAny returns a task that completes when any task in a collection is complete.

For examples that use WhenAny , see Cancel Remaining Async Tasks after One Is Complete (C#) and Start
Multiple Async Tasks and Process Them As They Complete (C#).

WhenAll returns a task that completes when all tasks in a collection are complete.

For more information and an example that uses WhenAll , see How to: Extend the async Walkthrough by
Using Task.WhenAll (C#).

This section includes the following examples.

Cancel an Async Task or a List of Tasks (C#).

Cancel Async Tasks after a Period of Time (C#)

Cancel Remaining Async Tasks after One Is Complete (C#)

Start Multiple Async Tasks and Process Them As They Complete (C#)

To run the examples, you must have Visual Studio 2012 or newer and the .NET Framework 4.5 or newer installed on your
computer.

The projects create a UI that contains a button that starts the process and a button that cancels it, as the following
image shows. The buttons are named startButton and cancelButton .

You can download the complete Windows Presentation Foundation (WPF) projects from Async Sample: Fine
Tuning Your Application.

Asynchronous Programming with async and await (C#)

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/fine-tuning-your-async-application.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

Cancel an async task or a list of tasks (C#)
4/28/2019 • 10 minutes to read • Edit Online

NOTENOTE

Cancel a task

Download the exampleDownload the example

TIPTIP

Build the exampleBuild the example

You can set up a button that you can use to cancel an async application if you don't want to wait for it to finish. By
following the examples in this topic, you can add a cancellation button to an application that downloads the
contents of one website or a list of websites.

The examples use the UI that Fine-Tuning Your Async Application (C#) describes.

To run the examples, you must have Visual Studio 2012 or newer and the .NET Framework 4.5 or newer installed on your
computer.

The first example associates the Cancel button with a single download task. If you choose the button while the
application is downloading content, the download is canceled.

You can download the complete Windows Presentation Foundation (WPF) project from Async Sample: Fine
Tuning Your Application and then follow these steps.

1. Decompress the file that you downloaded, and then start Visual Studio.

2. On the menu bar, choose File > Open > Project/Solution.

3. In the Open Project dialog box, open the folder that holds the sample code that you decompressed, and
then open the solution (.sln) file for AsyncFineTuningCS.

4. In Solution Explorer, open the shortcut menu for the CancelATask project, and then choose Set as
StartUp Project.

5. Choose the F5 key to run the project (or, press Ctrl+F5 to run the project without debugging it).

If you don't want to download the project, you can review the MainWindow.xaml.cs files at the end of this topic.

The following changes add a Cancel button to an application that downloads a website. If you don't want to
download or build the example, you can review the final product in the "Complete Examples" section at the end of
this topic. Asterisks mark the changes in the code.

To build the example yourself, step by step, follow the instructions in the "Downloading the Example" section, but
choose StarterCode as the StartUp Project instead of CancelATask.

Then add the following changes to the MainWindow.xaml.cs file of that project.

1. Declare a CancellationTokenSource variable, cts , that’s in scope for all methods that access it.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/cancel-an-async-task-or-a-list-of-tasks.md
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

public partial class MainWindow : Window
{
 // ***Declare a System.Threading.CancellationTokenSource.
 CancellationTokenSource cts;

// ***Add an event handler for the Cancel button.
private void cancelButton_Click(object sender, RoutedEventArgs e)
{
 if (cts != null)
 {
 cts.Cancel();
 }
}

2. Add the following event handler for the Cancel button. The event handler uses the
CancellationTokenSource.Cancel method to notify cts when the user requests cancellation.

3. Make the following changes in the event handler for the Start button, startButton_Click .

// ***Instantiate the CancellationTokenSource.
cts = new CancellationTokenSource();

try
{
 // ***Send a token to carry the message if cancellation is requested.
 int contentLength = await AccessTheWebAsync(cts.Token);
 resultsTextBox.Text += $"\r\nLength of the downloaded string: {contentLength}.\r\n";
}
// *** If cancellation is requested, an OperationCanceledException results.
catch (OperationCanceledException)
{
 resultsTextBox.Text += "\r\nDownload canceled.\r\n";
}
catch (Exception)
{
 resultsTextBox.Text += "\r\nDownload failed.\r\n";
}

Instantiate the CancellationTokenSource , cts .

In the call to AccessTheWebAsync , which downloads the contents of a specified website, send the
CancellationTokenSource.Token property of cts as an argument. The Token property propagates
the message if cancellation is requested. Add a catch block that displays a message if the user
chooses to cancel the download operation. The following code shows the changes.

4. In AccessTheWebAsync , use the HttpClient.GetAsync(String, CancellationToken) overload of the GetAsync

method in the HttpClient type to download the contents of a website. Pass ct , the CancellationToken
parameter of AccessTheWebAsync , as the second argument. The token carries the message if the user
chooses the Cancel button.

The following code shows the changes in AccessTheWebAsync .

https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource.cancel
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource.token
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getasync#System_Net_Http_HttpClient_GetAsync_System_String_System_Threading_CancellationToken_
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken

Cancel a list of tasks

Download the exampleDownload the example

Build the exampleBuild the example

// ***Provide a parameter for the CancellationToken.
async Task<int> AccessTheWebAsync(CancellationToken ct)
{
 HttpClient client = new HttpClient();

 resultsTextBox.Text += "\r\nReady to download.\r\n";

 // You might need to slow things down to have a chance to cancel.
 await Task.Delay(250);

 // GetAsync returns a Task<HttpResponseMessage>.
 // ***The ct argument carries the message if the Cancel button is chosen.
 HttpResponseMessage response = await
client.GetAsync("https://msdn.microsoft.com/library/dd470362.aspx", ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 // The result of the method is the length of the downloaded website.
 return urlContents.Length;
}

Ready to download.
Length of the downloaded string: 158125.

Ready to download.
Download canceled.

5. If you don’t cancel the program, it produces the following output.

If you choose the Cancel button before the program finishes downloading the content, the program
produces the following output.

You can extend the previous example to cancel many tasks by associating the same CancellationTokenSource

instance with each task. If you choose the Cancel button, you cancel all tasks that aren’t yet complete.

You can download the complete Windows Presentation Foundation (WPF) project from Async Sample: Fine
Tuning Your Application and then follow these steps.

1. Decompress the file that you downloaded, and then start Visual Studio.

2. On the menu bar, choose File > Open > Project/Solution.

3. In the Open Project dialog box, open the folder that holds the sample code that you decompressed, and
then open the solution (.sln) file for AsyncFineTuningCS.

4. In Solution Explorer, open the shortcut menu for the CancelAListOfTasks project, and then choose Set
as StartUp Project.

5. Choose the F5 key to run the project.

Choose the Ctrl+F5 keys to run the project without debugging it.

If you don't want to download the project, you can review the MainWindow.xaml.cs files at the end of this topic.

https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

To extend the example yourself, step by step, follow the instructions in the "Downloading the Example" section, but
choose CancelATask as the StartUp Project. Add the following changes to that project. Asterisks mark the
changes in the program.

// ***Add a method that creates a list of web addresses.
private List<string> SetUpURLList()
{
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
}

// ***Call SetUpURLList to make a list of web addresses.
List<string> urlList = SetUpURLList();

// ***Add a loop to process the list of web addresses.
foreach (var url in urlList)
{
 // GetAsync returns a Task<HttpResponseMessage>.
 // Argument ct carries the message if the Cancel button is chosen.
 // ***Note that the Cancel button can cancel all remaining downloads.
 HttpResponseMessage response = await client.GetAsync(url, ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 resultsTextBox.Text +=
 $"\r\nLength of the downloaded string: {urlContents.Length}.\r\n";
}

async Task AccessTheWebAsync(CancellationToken ct)

await AccessTheWebAsync(cts.Token);

1. Add a method to create a list of web addresses.

2. Call the method in AccessTheWebAsync .

3. Add the following loop in AccessTheWebAsync to process each web address in the list.

4. Because AccessTheWebAsync displays the lengths, the method doesn't need to return anything. Remove the
return statement, and change the return type of the method to Task instead of Task<TResult>.

Call the method from startButton_Click by using a statement instead of an expression.

5. If you don’t cancel the program, it produces the following output.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1

Complete examples

Example - Cancel a taskExample - Cancel a task

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add a using directive and a reference for System.Net.Http.
using System.Net.Http;

// Add the following using directive for System.Threading.

using System.Threading;
namespace CancelATask
{
 public partial class MainWindow : Window
 {

Length of the downloaded string: 35939.

Length of the downloaded string: 237682.

Length of the downloaded string: 128607.

Length of the downloaded string: 158124.

Length of the downloaded string: 204890.

Length of the downloaded string: 175488.

Length of the downloaded string: 145790.

Downloads complete.

Length of the downloaded string: 35939.

Length of the downloaded string: 237682.

Length of the downloaded string: 128607.

Downloads canceled.

If you choose the Cancel button before the downloads are complete, the output contains the lengths of the
downloads that completed before the cancellation.

The following sections contain the code for each of the previous examples. Notice that you must add a reference
for System.Net.Http.

You can download the projects from Async Sample: Fine Tuning Your Application.

The following code is the complete MainWindow.xaml.cs file for the example that cancels a single task.

https://docs.microsoft.com/dotnet/api/system.net.http
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

 {
 // ***Declare a System.Threading.CancellationTokenSource.
 CancellationTokenSource cts;

 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 // ***Instantiate the CancellationTokenSource.
 cts = new CancellationTokenSource();

 resultsTextBox.Clear();

 try
 {
 // ***Send a token to carry the message if cancellation is requested.
 int contentLength = await AccessTheWebAsync(cts.Token);
 resultsTextBox.Text +=
 $"\r\nLength of the downloaded string: {contentLength}.\r\n";
 }
 // *** If cancellation is requested, an OperationCanceledException results.
 catch (OperationCanceledException)
 {
 resultsTextBox.Text += "\r\nDownload canceled.\r\n";
 }
 catch (Exception)
 {
 resultsTextBox.Text += "\r\nDownload failed.\r\n";
 }

 // ***Set the CancellationTokenSource to null when the download is complete.
 cts = null;
 }

 // ***Add an event handler for the Cancel button.
 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 if (cts != null)
 {
 cts.Cancel();
 }
 }

 // ***Provide a parameter for the CancellationToken.
 async Task<int> AccessTheWebAsync(CancellationToken ct)
 {
 HttpClient client = new HttpClient();

 resultsTextBox.Text += "\r\nReady to download.\r\n";

 // You might need to slow things down to have a chance to cancel.
 await Task.Delay(250);

 // GetAsync returns a Task<HttpResponseMessage>.
 // ***The ct argument carries the message if the Cancel button is chosen.
 HttpResponseMessage response = await
client.GetAsync("https://msdn.microsoft.com/library/dd470362.aspx", ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 // The result of the method is the length of the downloaded website.
 return urlContents.Length;
 }
 }

 // Output for a successful download:

 // Output for a successful download:

 // Ready to download.

 // Length of the downloaded string: 158125.

 // Or, if you cancel:

 // Ready to download.

 // Download canceled.
}

Example - Cancel a list of tasksExample - Cancel a list of tasks

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add a using directive and a reference for System.Net.Http.
using System.Net.Http;

// Add the following using directive for System.Threading.
using System.Threading;

namespace CancelAListOfTasks
{
 public partial class MainWindow : Window
 {
 // Declare a System.Threading.CancellationTokenSource.
 CancellationTokenSource cts;

 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 // Instantiate the CancellationTokenSource.
 cts = new CancellationTokenSource();

 resultsTextBox.Clear();

 try
 {
 await AccessTheWebAsync(cts.Token);
 // ***Small change in the display lines.
 resultsTextBox.Text += "\r\nDownloads complete.";
 }
 catch (OperationCanceledException)
 {
 resultsTextBox.Text += "\r\nDownloads canceled.";
 }
 catch (Exception)

The following code is the complete MainWindow.xaml.cs file for the example that cancels a list of tasks.

 {
 resultsTextBox.Text += "\r\nDownloads failed.";
 }

 // Set the CancellationTokenSource to null when the download is complete.
 cts = null;
 }

 // Add an event handler for the Cancel button.
 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 if (cts != null)
 {
 cts.Cancel();
 }
 }

 // Provide a parameter for the CancellationToken.
 // ***Change the return type to Task because the method has no return statement.
 async Task AccessTheWebAsync(CancellationToken ct)
 {
 // Declare an HttpClient object.
 HttpClient client = new HttpClient();

 // ***Call SetUpURLList to make a list of web addresses.
 List<string> urlList = SetUpURLList();

 // ***Add a loop to process the list of web addresses.
 foreach (var url in urlList)
 {
 // GetAsync returns a Task<HttpResponseMessage>.
 // Argument ct carries the message if the Cancel button is chosen.
 // ***Note that the Cancel button can cancel all remaining downloads.
 HttpResponseMessage response = await client.GetAsync(url, ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 resultsTextBox.Text +=
 $"\r\nLength of the downloaded string: {urlContents.Length}.\r\n";
 }
 }

 // ***Add a method that creates a list of web addresses.
 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }
 }

 // Output if you do not choose to cancel:

 //Length of the downloaded string: 35939.

 //Length of the downloaded string: 237682.

 //Length of the downloaded string: 128607.

 //Length of the downloaded string: 158124.

 //Length of the downloaded string: 204890.

 //Length of the downloaded string: 175488.

 //Length of the downloaded string: 145790.

 //Downloads complete.

 // Sample output if you choose to cancel:

 //Length of the downloaded string: 35939.

 //Length of the downloaded string: 237682.

 //Length of the downloaded string: 128607.

 //Downloads canceled.
}

See also
CancellationTokenSource
CancellationToken
Asynchronous Programming with async and await (C#)
Fine-Tuning Your Async Application (C#)
Async Sample: Fine Tuning Your Application

https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

Cancel async tasks after a period of time (C#)
4/9/2019 • 4 minutes to read • Edit Online

NOTENOTE

Download the example

Build the example

You can cancel an asynchronous operation after a period of time by using the
CancellationTokenSource.CancelAfter method if you don't want to wait for the operation to finish. This method
schedules the cancellation of any associated tasks that aren’t complete within the period of time that’s designated
by the CancelAfter expression.

This example adds to the code that’s developed in Cancel an Async Task or a List of Tasks (C#) to download a list of
websites and to display the length of the contents of each one.

To run the examples, you must have Visual Studio 2012 or newer and the .NET Framework 4.5 or newer installed on your
computer.

You can download the complete Windows Presentation Foundation (WPF) project from Async Sample: Fine
Tuning Your Application and then follow these steps.

1. Decompress the file that you downloaded, and then start Visual Studio.

2. On the menu bar, choose File > Open > Project/Solution.

3. In the Open Project dialog box, open the folder that holds the sample code that you decompressed, and
then open the solution (.sln) file for AsyncFineTuningCS.

4. In Solution Explorer, open the shortcut menu for the CancelAfterTime project, and then choose Set as
StartUp Project.

5. Choose the F5 key to run the project. (Or, press Ctrl+F5 to run the project without debugging it).

6. Run the program several times to verify that the output might show output for all websites, no websites, or
some web sites.

If you don't want to download the project, you can review the MainWindow.xaml.cs file at the end of this topic.

The example in this topic adds to the project that's developed in Cancel an Async Task or a List of Tasks (C#) to
cancel a list of tasks. The example uses the same UI, although the Cancel button isn’t used explicitly.

To build the example yourself, step by step, follow the instructions in the "Downloading the Example" section, but
choose CancelAListOfTasks as the StartUp Project. Add the changes in this topic to that project.

To specify a maximum time before the tasks are marked as canceled, add a call to CancelAfter to
startButton_Click , as the following example shows. The addition is marked with asterisks.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/cancel-async-tasks-after-a-period-of-time.md
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource.cancelafter
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

private async void startButton_Click(object sender, RoutedEventArgs e)
{
 // Instantiate the CancellationTokenSource.
 cts = new CancellationTokenSource();

 resultsTextBox.Clear();

 try
 {
 // ***Set up the CancellationTokenSource to cancel after 2.5 seconds. (You
 // can adjust the time.)
 cts.CancelAfter(2500);

 await AccessTheWebAsync(cts.Token);
 resultsTextBox.Text += "\r\nDownloads succeeded.\r\n";
 }
 catch (OperationCanceledException)
 {
 resultsTextBox.Text += "\r\nDownloads canceled.\r\n";
 }
 catch (Exception)
 {
 resultsTextBox.Text += "\r\nDownloads failed.\r\n";
 }

 cts = null;
}

Length of the downloaded string: 35990.

Length of the downloaded string: 407399.

Length of the downloaded string: 226091.

Downloads canceled.

Complete example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

Run the program several times to verify that the output might show output for all websites, no websites, or some
web sites. The following output is a sample.

The following code is the complete text of the MainWindow.xaml.cs file for the example. Asterisks mark the
elements that were added for this example.

Notice that you must add a reference for System.Net.Http.

You can download the project from Async Sample: Fine Tuning Your Application.

https://docs.microsoft.com/dotnet/api/system.net.http
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

// Add a using directive and a reference for System.Net.Http.
using System.Net.Http;

// Add the following using directive.
using System.Threading;

namespace CancelAfterTime
{
 public partial class MainWindow : Window
 {
 // Declare a System.Threading.CancellationTokenSource.
 CancellationTokenSource cts;

 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 // Instantiate the CancellationTokenSource.
 cts = new CancellationTokenSource();

 resultsTextBox.Clear();

 try
 {
 // ***Set up the CancellationTokenSource to cancel after 2.5 seconds. (You
 // can adjust the time.)
 cts.CancelAfter(2500);

 await AccessTheWebAsync(cts.Token);
 resultsTextBox.Text += "\r\nDownloads succeeded.\r\n";
 }
 catch (OperationCanceledException)
 {
 resultsTextBox.Text += "\r\nDownloads canceled.\r\n";
 }
 catch (Exception)
 {
 resultsTextBox.Text += "\r\nDownloads failed.\r\n";
 }

 cts = null;
 }

 // You can still include a Cancel button if you want to.
 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 if (cts != null)
 {
 cts.Cancel();
 }
 }

 async Task AccessTheWebAsync(CancellationToken ct)
 {
 // Declare an HttpClient object.
 HttpClient client = new HttpClient();

 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 foreach (var url in urlList)
 {
 // GetAsync returns a Task<HttpResponseMessage>.
 // Argument ct carries the message if the Cancel button is chosen.
 // Note that the Cancel button cancels all remaining downloads.
 HttpResponseMessage response = await client.GetAsync(url, ct);

 HttpResponseMessage response = await client.GetAsync(url, ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 resultsTextBox.Text +=
 $"\r\nLength of the downloaded string: {urlContents.Length}.\r\n";
 }
 }

 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/windows/apps/br211380.aspx",
 "https://msdn.microsoft.com/library/hh290136.aspx",
 "https://msdn.microsoft.com/library/ee256749.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }
 }

 // Sample Output:

 // Length of the downloaded string: 35990.

 // Length of the downloaded string: 407399.

 // Length of the downloaded string: 226091.

 // Downloads canceled.
}

See also
Asynchronous Programming with async and await (C#)
Walkthrough: Accessing the Web by Using async and await (C#)
Cancel an Async Task or a List of Tasks (C#)
Fine-Tuning Your Async Application (C#)
Async Sample: Fine Tuning Your Application

https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

Cancel Remaining Async Tasks after One Is Complete
(C#)
7/12/2019 • 6 minutes to read • Edit Online

NOTENOTE

Downloading the Example

Building the Example

By using the Task.WhenAny method together with a CancellationToken, you can cancel all remaining tasks when
one task is complete. The WhenAny method takes an argument that’s a collection of tasks. The method starts all the
tasks and returns a single task. The single task is complete when any task in the collection is complete.

This example demonstrates how to use a cancellation token in conjunction with WhenAny to hold onto the first task
to finish from the collection of tasks and to cancel the remaining tasks. Each task downloads the contents of a
website. The example displays the length of the contents of the first download to complete and cancels the other
downloads.

To run the examples, you must have Visual Studio 2012 or newer and the .NET Framework 4.5 or newer installed on your
computer.

You can download the complete Windows Presentation Foundation (WPF) project from Async Sample: Fine
Tuning Your Application and then follow these steps.

1. Decompress the file that you downloaded, and then start Visual Studio.

2. On the menu bar, choose File, Open, Project/Solution.

3. In the Open Project dialog box, open the folder that holds the sample code that you decompressed, and
then open the solution (.sln) file for AsyncFineTuningCS.

4. In Solution Explorer, open the shortcut menu for the CancelAfterOneTask project, and then choose Set
as StartUp Project.

5. Choose the F5 key to run the project.

Choose the Ctrl+F5 keys to run the project without debugging it.

6. Run the program several times to verify that different downloads finish first.

If you don't want to download the project, you can review the MainWindow.xaml.cs file at the end of this topic.

The example in this topic adds to the project that's developed in Cancel an Async Task or a List of Tasks (C#) to
cancel a list of tasks. The example uses the same UI, although the Cancel button isn’t used explicitly.

To build the example yourself, step by step, follow the instructions in the "Downloading the Example" section, but
choose CancelAListOfTasks as the StartUp Project. Add the changes in this topic to that project.

In the MainWindow.xaml.cs file of the CancelAListOfTasks project, start the transition by moving the processing
steps for each website from the loop in AccessTheWebAsync to the following async method.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/cancel-remaining-async-tasks-after-one-is-complete.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

// ***Bundle the processing steps for a website into one async method.
async Task<int> ProcessURLAsync(string url, HttpClient client, CancellationToken ct)
{
 // GetAsync returns a Task<HttpResponseMessage>.
 HttpResponseMessage response = await client.GetAsync(url, ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 return urlContents.Length;
}

In AccessTheWebAsync , this example uses a query, the ToArray method, and the WhenAny method to create and
start an array of tasks. The application of WhenAny to the array returns a single task that, when awaited, evaluates
to the first task to reach completion in the array of tasks.

Make the following changes in AccessTheWebAsync . Asterisks mark the changes in the code file.

// ***Create a query that, when executed, returns a collection of tasks.
IEnumerable<Task<int>> downloadTasksQuery =
 from url in urlList select ProcessURLAsync(url, client, ct);

// ***Use ToArray to execute the query and start the download tasks.
Task<int>[] downloadTasks = downloadTasksQuery.ToArray();

// ***Call WhenAny and then await the result. The task that finishes
// first is assigned to firstFinishedTask.
Task<int> firstFinishedTask = await Task.WhenAny(downloadTasks);

// ***Cancel the rest of the downloads. You just want the first one.
cts.Cancel();

1. Comment out or delete the loop.

2. Create a query that, when executed, produces a collection of generic tasks. Each call to ProcessURLAsync

returns a Task<TResult> where TResult is an integer.

3. Call ToArray to execute the query and start the tasks. The application of the WhenAny method in the next
step would execute the query and start the tasks without using ToArray , but other methods might not. The
safest practice is to force execution of the query explicitly.

4. Call WhenAny on the collection of tasks. WhenAny returns a Task(Of Task(Of Integer)) or Task<Task<int>> .
That is, WhenAny returns a task that evaluates to a single Task(Of Integer) or Task<int> when it’s awaited.
That single task is the first task in the collection to finish. The task that finished first is assigned to
firstFinishedTask . The type of firstFinishedTask is Task<TResult> where TResult is an integer because

that's the return type of ProcessURLAsync .

5. In this example, you’re interested only in the task that finishes first. Therefore, use
CancellationTokenSource.Cancel to cancel the remaining tasks.

6. Finally, await firstFinishedTask to retrieve the length of the downloaded content.

https://docs.microsoft.com/dotnet/api/system.linq.enumerable.toarray
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource.cancel

Complete Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add a using directive and a reference for System.Net.Http.
using System.Net.Http;

// Add the following using directive.
using System.Threading;

namespace CancelAfterOneTask
{
 public partial class MainWindow : Window
 {
 // Declare a System.Threading.CancellationTokenSource.
 CancellationTokenSource cts;

 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 // Instantiate the CancellationTokenSource.
 cts = new CancellationTokenSource();

 resultsTextBox.Clear();

 try
 {
 await AccessTheWebAsync(cts.Token);
 resultsTextBox.Text += "\r\nDownload complete.";
 }
 catch (OperationCanceledException)
 {
 resultsTextBox.Text += "\r\nDownload canceled.";
 }
 catch (Exception)
 {

var length = await firstFinishedTask;
resultsTextBox.Text += $"\r\nLength of the downloaded website: {length}\r\n";

Run the program several times to verify that different downloads finish first.

The following code is the complete MainWindow.xaml.cs file for the example. Asterisks mark the elements that
were added for this example.

Notice that you must add a reference for System.Net.Http.

You can download the project from Async Sample: Fine Tuning Your Application.

https://docs.microsoft.com/dotnet/api/system.net.http
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

 {
 resultsTextBox.Text += "\r\nDownload failed.";
 }

 // Set the CancellationTokenSource to null when the download is complete.
 cts = null;
 }

 // You can still include a Cancel button if you want to.
 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 if (cts != null)
 {
 cts.Cancel();
 }
 }

 // Provide a parameter for the CancellationToken.
 async Task AccessTheWebAsync(CancellationToken ct)
 {
 HttpClient client = new HttpClient();

 // Call SetUpURLList to make a list of web addresses.
 List<string> urlList = SetUpURLList();

 // ***Comment out or delete the loop.
 //foreach (var url in urlList)
 //{
 // // GetAsync returns a Task<HttpResponseMessage>.
 // // Argument ct carries the message if the Cancel button is chosen.
 // // ***Note that the Cancel button can cancel all remaining downloads.
 // HttpResponseMessage response = await client.GetAsync(url, ct);

 // // Retrieve the website contents from the HttpResponseMessage.
 // byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 // resultsTextBox.Text +=
 // $"\r\nLength of the downloaded string: {urlContents.Length}.\r\n";
 //}

 // ***Create a query that, when executed, returns a collection of tasks.
 IEnumerable<Task<int>> downloadTasksQuery =
 from url in urlList select ProcessURLAsync(url, client, ct);

 // ***Use ToArray to execute the query and start the download tasks.
 Task<int>[] downloadTasks = downloadTasksQuery.ToArray();

 // ***Call WhenAny and then await the result. The task that finishes
 // first is assigned to firstFinishedTask.
 Task<int> firstFinishedTask = await Task.WhenAny(downloadTasks);

 // ***Cancel the rest of the downloads. You just want the first one.
 cts.Cancel();

 // ***Await the first completed task and display the results.
 // Run the program several times to demonstrate that different
 // websites can finish first.
 var length = await firstFinishedTask;
 resultsTextBox.Text += $"\r\nLength of the downloaded website: {length}\r\n";
 }

 // ***Bundle the processing steps for a website into one async method.
 async Task<int> ProcessURLAsync(string url, HttpClient client, CancellationToken ct)
 {
 // GetAsync returns a Task<HttpResponseMessage>.
 HttpResponseMessage response = await client.GetAsync(url, ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 return urlContents.Length;
 }

 // Add a method that creates a list of web addresses.
 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/hh290138.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }
 }
 // Sample output:

 // Length of the downloaded website: 158856

 // Download complete.
}

See also
WhenAny
Fine-Tuning Your Async Application (C#)
Asynchronous Programming with async and await (C#)
Async Sample: Fine Tuning Your Application

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

Start Multiple Async Tasks and Process Them As They
Complete (C#)
4/28/2019 • 5 minutes to read • Edit Online

NOTENOTE

Download an example solution

TIPTIP

Create the program yourself

By using Task.WhenAny, you can start multiple tasks at the same time and process them one by one as they’re
completed rather than process them in the order in which they're started.

The following example uses a query to create a collection of tasks. Each task downloads the contents of a specified
website. In each iteration of a while loop, an awaited call to WhenAny returns the task in the collection of tasks that
finishes its download first. That task is removed from the collection and processed. The loop repeats until the
collection contains no more tasks.

To run the examples, you must have Visual Studio (2012 or newer) and the .NET Framework 4.5 or newer installed on your
computer.

You can download the complete Windows Presentation Foundation (WPF) project from Async Sample: Fine
Tuning Your Application and then follow these steps.

If you don't want to download the project, you can review the MainWindow.xaml.cs file at the end of this topic instead.

1. Extract the files that you downloaded from the .zip file, and then start Visual Studio.

2. On the menu bar, choose File > Open > Project/Solution.

3. In the Open Project dialog box, open the folder that holds the sample code you downloaded, and then
open the solution (.sln) file for AsyncFineTuningCS.

4. In Solution Explorer, open the shortcut menu for the ProcessTasksAsTheyFinish project, and then
choose Set as StartUp Project.

5. Choose the F5 key to run the program (or, press Ctrl+F5 keys to run the program without debugging it).

6. Run the project several times to verify that the downloaded lengths don't always appear in the same order.

This example adds to the code that’s developed in Cancel Remaining Async Tasks after One Is Complete (C#), and
it uses the same UI.

To build the example yourself, step by step, follow the instructions in the Downloading the Example section, but set
CancelAfterOneTask as the startup project. Add the changes in this topic to the AccessTheWebAsync method in
that project. The changes are marked with asterisks.

The CancelAfterOneTask project already includes a query that, when executed, creates a collection of tasks. Each
call to ProcessURLAsync in the following code returns a Task<TResult>, where TResult is an integer :

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/start-multiple-async-tasks-and-process-them-as-they-complete.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1

IEnumerable<Task<int>> downloadTasksQuery = from url in urlList select ProcessURL(url, client, ct);

C a u t i o nC a u t i o n

Complete example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add a using directive and a reference for System.Net.Http.
using System.Net.Http;

In the MainWindow.xaml.cs file of the project, make the following changes to the AccessTheWebAsync method.

List<Task<int>> downloadTasks = downloadTasksQuery.ToList();

Execute the query by applying Enumerable.ToList instead of ToArray.

Add a while loop that performs the following steps for each task in the collection:

Task<int> firstFinishedTask = await Task.WhenAny(downloadTasks);

downloadTasks.Remove(firstFinishedTask);

int length = await firstFinishedTask;
resultsTextBox.Text += $"\r\nLength of the download: {length}";

1. Awaits a call to WhenAny to identify the first task in the collection to finish its download.

2. Removes that task from the collection.

3. Awaits firstFinishedTask , which is returned by a call to ProcessURLAsync . The firstFinishedTask

variable is a Task<TResult> where TReturn is an integer. The task is already complete, but you await
it to retrieve the length of the downloaded website, as the following example shows.

Run the program several times to verify that the downloaded lengths don't always appear in the same order.

You can use WhenAny in a loop, as described in the example, to solve problems that involve a small number of
tasks. However, other approaches are more efficient if you have a large number of tasks to process. For more
information and examples, see Processing tasks as they complete.

The following code is the complete text of the MainWindow.xaml.cs file for the example. Asterisks mark the
elements that were added for this example. Also, take note that you must add a reference for System.Net.Http.

You can download the project from Async Sample: Fine Tuning Your Application.

https://docs.microsoft.com/dotnet/api/system.linq.enumerable.tolist
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.toarray
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://blogs.msdn.microsoft.com/pfxteam/2012/08/02/processing-tasks-as-they-complete/
https://docs.microsoft.com/dotnet/api/system.net.http
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

using System.Net.Http;

// Add the following using directive.
using System.Threading;

namespace ProcessTasksAsTheyFinish
{
 public partial class MainWindow : Window
 {
 // Declare a System.Threading.CancellationTokenSource.
 CancellationTokenSource cts;

 public MainWindow()
 {
 InitializeComponent();
 }

 private async void startButton_Click(object sender, RoutedEventArgs e)
 {
 resultsTextBox.Clear();

 // Instantiate the CancellationTokenSource.
 cts = new CancellationTokenSource();

 try
 {
 await AccessTheWebAsync(cts.Token);
 resultsTextBox.Text += "\r\nDownloads complete.";
 }
 catch (OperationCanceledException)
 {
 resultsTextBox.Text += "\r\nDownloads canceled.\r\n";
 }
 catch (Exception)
 {
 resultsTextBox.Text += "\r\nDownloads failed.\r\n";
 }

 cts = null;
 }

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 if (cts != null)
 {
 cts.Cancel();
 }
 }

 async Task AccessTheWebAsync(CancellationToken ct)
 {
 HttpClient client = new HttpClient();

 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 // ***Create a query that, when executed, returns a collection of tasks.
 IEnumerable<Task<int>> downloadTasksQuery =
 from url in urlList select ProcessURL(url, client, ct);

 // ***Use ToList to execute the query and start the tasks.
 List<Task<int>> downloadTasks = downloadTasksQuery.ToList();

 // ***Add a loop to process the tasks one at a time until none remain.
 while (downloadTasks.Count > 0)
 {
 // Identify the first task that completes.
 Task<int> firstFinishedTask = await Task.WhenAny(downloadTasks);

 // ***Remove the selected task from the list so that you don't

 // ***Remove the selected task from the list so that you don't
 // process it more than once.
 downloadTasks.Remove(firstFinishedTask);

 // Await the completed task.
 int length = await firstFinishedTask;
 resultsTextBox.Text += $"\r\nLength of the download: {length}";
 }
 }

 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/windows/apps/br211380.aspx",
 "https://msdn.microsoft.com/library/hh290136.aspx",
 "https://msdn.microsoft.com/library/dd470362.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }

 async Task<int> ProcessURL(string url, HttpClient client, CancellationToken ct)
 {
 // GetAsync returns a Task<HttpResponseMessage>.
 HttpResponseMessage response = await client.GetAsync(url, ct);

 // Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 return urlContents.Length;
 }
 }
}

// Sample Output:

// Length of the download: 226093
// Length of the download: 412588
// Length of the download: 175490
// Length of the download: 204890
// Length of the download: 158855
// Length of the download: 145790
// Length of the download: 44908
// Downloads complete.

See also
WhenAny
Fine-Tuning Your Async Application (C#)
Asynchronous Programming with async and await (C#)
Async Sample: Fine Tuning Your Application

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea

Handling Reentrancy in Async Apps (C#)
4/11/2019 • 17 minutes to read • Edit Online

NOTENOTE

Recognizing Reentrancy

1. msdn.microsoft.com/library/hh191443.aspx 83732
2. msdn.microsoft.com/library/aa578028.aspx 205273
3. msdn.microsoft.com/library/jj155761.aspx 29019
4. msdn.microsoft.com/library/hh290140.aspx 117152
5. msdn.microsoft.com/library/hh524395.aspx 68959
6. msdn.microsoft.com/library/ms404677.aspx 197325
7. msdn.microsoft.com 42972
8. msdn.microsoft.com/library/ff730837.aspx 146159

TOTAL bytes returned: 890591

When you include asynchronous code in your app, you should consider and possibly prevent reentrancy, which
refers to reentering an asynchronous operation before it has completed. If you don't identify and handle
possibilities for reentrancy, it can cause unexpected results.

In this topic

Recognizing Reentrancy

Handling Reentrancy

Disable the Start Button

Cancel and Restart the Operation

Run Multiple Operations and Queue the Output

Reviewing and Running the Example App

To run the example, you must have Visual Studio 2012 or newer and the .NET Framework 4.5 or newer installed on your
computer.

In the example in this topic, users choose a Start button to initiate an asynchronous app that downloads a series of
websites and calculates the total number of bytes that are downloaded. A synchronous version of the example
would respond the same way regardless of how many times a user chooses the button because, after the first time,
the UI thread ignores those events until the app finishes running. In an asynchronous app, however, the UI thread
continues to respond, and you might reenter the asynchronous operation before it has completed.

The following example shows the expected output if the user chooses the Start button only once. A list of the
downloaded websites appears with the size, in bytes, of each site. The total number of bytes appears at the end.

However, if the user chooses the button more than once, the event handler is invoked repeatedly, and the
download process is reentered each time. As a result, several asynchronous operations are running at the same
time, the output interleaves the results, and the total number of bytes is confusing.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/handling-reentrancy-in-async-apps.md

1. msdn.microsoft.com/library/hh191443.aspx 83732
2. msdn.microsoft.com/library/aa578028.aspx 205273
3. msdn.microsoft.com/library/jj155761.aspx 29019
4. msdn.microsoft.com/library/hh290140.aspx 117152
5. msdn.microsoft.com/library/hh524395.aspx 68959
1. msdn.microsoft.com/library/hh191443.aspx 83732
2. msdn.microsoft.com/library/aa578028.aspx 205273
6. msdn.microsoft.com/library/ms404677.aspx 197325
3. msdn.microsoft.com/library/jj155761.aspx 29019
7. msdn.microsoft.com 42972
4. msdn.microsoft.com/library/hh290140.aspx 117152
8. msdn.microsoft.com/library/ff730837.aspx 146159

TOTAL bytes returned: 890591

5. msdn.microsoft.com/library/hh524395.aspx 68959
1. msdn.microsoft.com/library/hh191443.aspx 83732
2. msdn.microsoft.com/library/aa578028.aspx 205273
6. msdn.microsoft.com/library/ms404677.aspx 197325
3. msdn.microsoft.com/library/jj155761.aspx 29019
4. msdn.microsoft.com/library/hh290140.aspx 117152
7. msdn.microsoft.com 42972
5. msdn.microsoft.com/library/hh524395.aspx 68959
8. msdn.microsoft.com/library/ff730837.aspx 146159

TOTAL bytes returned: 890591

6. msdn.microsoft.com/library/ms404677.aspx 197325
7. msdn.microsoft.com 42972
8. msdn.microsoft.com/library/ff730837.aspx 146159

TOTAL bytes returned: 890591

Handling Reentrancy

Disable the Start ButtonDisable the Start Button

You can review the code that produces this output by scrolling to the end of this topic. You can experiment with the
code by downloading the solution to your local computer and then running the WebsiteDownload project or by
using the code at the end of this topic to create your own project. For more information and instructions, see
Reviewing and Running the Example App.

You can handle reentrancy in a variety of ways, depending on what you want your app to do. This topic presents
the following examples:

Disable the Start Button

Disable the Start button while the operation is running so that the user can't interrupt it.

Cancel and Restart the Operation

Cancel any operation that is still running when the user chooses the Start button again, and then let the
most recently requested operation continue.

Run Multiple Operations and Queue the Output

Allow all requested operations to run asynchronously, but coordinate the display of output so that the
results from each operation appear together and in order.

You can block the Start button while an operation is running by disabling the button at the top of the
StartButton_Click event handler. You can then reenable the button from within a finally block when the

operation finishes so that users can run the app again.

private async void StartButton_Click(object sender, RoutedEventArgs e)
{
 // This line is commented out to make the results clearer in the output.
 //ResultsTextBox.Text = "";

 // ***Disable the Start button until the downloads are complete.
 StartButton.IsEnabled = false;

 try
 {
 await AccessTheWebAsync();
 }
 catch (Exception)
 {
 ResultsTextBox.Text += "\r\nDownloads failed.";
 }
 // ***Enable the Start button in case you want to run the program again.
 finally
 {
 StartButton.IsEnabled = true;
 }
}

Cancel and Restart the OperationCancel and Restart the Operation

To set up this scenario, make the following changes to the basic code that is provided in Reviewing and Running
the Example App. You also can download the finished app from Async Samples: Reentrancy in .NET Desktop Apps.
The name of the project is DisableStartButton.

As a result of the changes, the button doesn't respond while AccessTheWebAsync is downloading the websites, so
the process can’t be reentered.

Instead of disabling the Start button, you can keep the button active but, if the user chooses that button again,
cancel the operation that's already running and let the most recently started operation continue.

For more information about cancellation, see Fine-Tuning Your Async Application (C#).

To set up this scenario, make the following changes to the basic code that is provided in Reviewing and Running
the Example App. You also can download the finished app from Async Samples: Reentrancy in .NET Desktop Apps.
The name of the project is CancelAndRestart.

public partial class MainWindow : Window // Or class MainPage
{
 // *** Declare a System.Threading.CancellationTokenSource.
 CancellationTokenSource cts;

// *** If a download process is already underway, cancel it.
if (cts != null)
{
 cts.Cancel();
}

1. Declare a CancellationTokenSource variable, cts , that’s in scope for all methods.

2. In StartButton_Click , determine whether an operation is already underway. If the value of cts is null, no
operation is already active. If the value isn't null, the operation that is already running is canceled.

3. Set cts to a different value that represents the current process.

https://code.msdn.microsoft.com/Async-Sample-Preventing-a8489f06
https://code.msdn.microsoft.com/Async-Sample-Preventing-a8489f06
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource

private async void StartButton_Click(object sender, RoutedEventArgs e)
{
 // This line is commented out to make the results clearer in the output.
 //ResultsTextBox.Clear();

 // *** If a download process is already underway, cancel it.
 if (cts != null)
 {
 cts.Cancel();
 }

 // *** Now set cts to cancel the current process if the button is chosen again.
 CancellationTokenSource newCTS = new CancellationTokenSource();
 cts = newCTS;

 try
 {
 // ***Send cts.Token to carry the message if there is a cancellation request.
 await AccessTheWebAsync(cts.Token);

 }
 // *** Catch cancellations separately.
 catch (OperationCanceledException)
 {
 ResultsTextBox.Text += "\r\nDownloads canceled.\r\n";
 }
 catch (Exception)
 {
 ResultsTextBox.Text += "\r\nDownloads failed.\r\n";
 }
 // *** When the process is complete, signal that another process can proceed.
 if (cts == newCTS)
 cts = null;
}

// *** Now set cts to a new value that you can use to cancel the current process
// if the button is chosen again.
CancellationTokenSource newCTS = new CancellationTokenSource();
cts = newCTS;

// *** When the process is complete, signal that another process can begin.
if (cts == newCTS)
 cts = null;

4. At the end of StartButton_Click , the current process is complete, so set the value of cts back to null.

The following code shows all the changes in StartButton_Click . The additions are marked with asterisks.

In AccessTheWebAsync , make the following changes.

Add a parameter to accept the cancellation token from StartButton_Click .

Use the GetAsync method to download the websites because GetAsync accepts a CancellationToken
argument.

Before calling DisplayResults to display the results for each downloaded website, check ct to verify that
the current operation hasn’t been canceled.

The following code shows these changes, which are marked with asterisks.

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getasync
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken

// *** Provide a parameter for the CancellationToken from StartButton_Click.
async Task AccessTheWebAsync(CancellationToken ct)
{
 // Declare an HttpClient object.
 HttpClient client = new HttpClient();

 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 var total = 0;
 var position = 0;

 foreach (var url in urlList)
 {
 // *** Use the HttpClient.GetAsync method because it accepts a
 // cancellation token.
 HttpResponseMessage response = await client.GetAsync(url, ct);

 // *** Retrieve the website contents from the HttpResponseMessage.
 byte[] urlContents = await response.Content.ReadAsByteArrayAsync();

 // *** Check for cancellations before displaying information about the
 // latest site.
 ct.ThrowIfCancellationRequested();

 DisplayResults(url, urlContents, ++position);

 // Update the total.
 total += urlContents.Length;
 }

 // Display the total count for all of the websites.
 ResultsTextBox.Text +=
 $"\r\n\r\nTOTAL bytes returned: {total}\r\n";
}

1. msdn.microsoft.com/library/hh191443.aspx 83732
2. msdn.microsoft.com/library/aa578028.aspx 205273
3. msdn.microsoft.com/library/jj155761.aspx 29019
4. msdn.microsoft.com/library/hh290140.aspx 122505
5. msdn.microsoft.com/library/hh524395.aspx 68959
6. msdn.microsoft.com/library/ms404677.aspx 197325
Download canceled.

1. msdn.microsoft.com/library/hh191443.aspx 83732
2. msdn.microsoft.com/library/aa578028.aspx 205273
3. msdn.microsoft.com/library/jj155761.aspx 29019
Download canceled.

1. msdn.microsoft.com/library/hh191443.aspx 83732
2. msdn.microsoft.com/library/aa578028.aspx 205273
3. msdn.microsoft.com/library/jj155761.aspx 29019
4. msdn.microsoft.com/library/hh290140.aspx 117152
5. msdn.microsoft.com/library/hh524395.aspx 68959
6. msdn.microsoft.com/library/ms404677.aspx 197325
7. msdn.microsoft.com 42972
8. msdn.microsoft.com/library/ff730837.aspx 146159

TOTAL bytes returned: 890591

If you choose the Start button several times while this app is running, it should produce results that resemble the
following output.

To eliminate the partial lists, uncomment the first line of code in StartButton_Click to clear the text box each time

 Run Multiple Operations and Queue the OutputRun Multiple Operations and Queue the Output

#Starting group A.
#Task assigned for group A.

A-1. msdn.microsoft.com/library/hh191443.aspx 87389
A-2. msdn.microsoft.com/library/aa578028.aspx 209858
A-3. msdn.microsoft.com/library/jj155761.aspx 30870
A-4. msdn.microsoft.com/library/hh290140.aspx 119027
A-5. msdn.microsoft.com/library/hh524395.aspx 71260
A-6. msdn.microsoft.com/library/ms404677.aspx 199186
A-7. msdn.microsoft.com 53266
A-8. msdn.microsoft.com/library/ff730837.aspx 148020

TOTAL bytes returned: 918876

#Group A is complete.

the user restarts the operation.

This third example is the most complicated in that the app starts another asynchronous operation each time that
the user chooses the Start button, and all the operations run to completion. All the requested operations download
websites from the list asynchronously, but the output from the operations is presented sequentially. That is, the
actual downloading activity is interleaved, as the output in Recognizing Reentrancy shows, but the list of results for
each group is presented separately.

The operations share a global Task, pendingWork , which serves as a gatekeeper for the display process.

To set up this scenario, make the following changes to the basic code that is provided in Reviewing and Running
the Example App. You also can download the finished app from Async Samples: Reentrancy in .NET Desktop Apps.
The name of the project is QueueResults.

The following output shows the result if the user chooses the Start button only once. The letter label, A, indicates
that the result is from the first time the Start button is chosen. The numbers show the order of the URLs in the list
of download targets.

If the user chooses the Start button three times, the app produces output that resembles the following lines. The
information lines that start with a pound sign (#) trace the progress of the application.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://code.msdn.microsoft.com/Async-Sample-Preventing-a8489f06

#Starting group A.
#Task assigned for group A.

A-1. msdn.microsoft.com/library/hh191443.aspx 87389
A-2. msdn.microsoft.com/library/aa578028.aspx 207089
A-3. msdn.microsoft.com/library/jj155761.aspx 30870
A-4. msdn.microsoft.com/library/hh290140.aspx 119027
A-5. msdn.microsoft.com/library/hh524395.aspx 71259
A-6. msdn.microsoft.com/library/ms404677.aspx 199185

#Starting group B.
#Task assigned for group B.

A-7. msdn.microsoft.com 53266

#Starting group C.
#Task assigned for group C.

A-8. msdn.microsoft.com/library/ff730837.aspx 148010

TOTAL bytes returned: 916095

B-1. msdn.microsoft.com/library/hh191443.aspx 87389
B-2. msdn.microsoft.com/library/aa578028.aspx 207089
B-3. msdn.microsoft.com/library/jj155761.aspx 30870
B-4. msdn.microsoft.com/library/hh290140.aspx 119027
B-5. msdn.microsoft.com/library/hh524395.aspx 71260
B-6. msdn.microsoft.com/library/ms404677.aspx 199186

#Group A is complete.

B-7. msdn.microsoft.com 53266
B-8. msdn.microsoft.com/library/ff730837.aspx 148010

TOTAL bytes returned: 916097

C-1. msdn.microsoft.com/library/hh191443.aspx 87389
C-2. msdn.microsoft.com/library/aa578028.aspx 207089

#Group B is complete.

C-3. msdn.microsoft.com/library/jj155761.aspx 30870
C-4. msdn.microsoft.com/library/hh290140.aspx 119027
C-5. msdn.microsoft.com/library/hh524395.aspx 72765
C-6. msdn.microsoft.com/library/ms404677.aspx 199186
C-7. msdn.microsoft.com 56190
C-8. msdn.microsoft.com/library/ff730837.aspx 148010

TOTAL bytes returned: 920526

#Group C is complete.

Global DefinitionsGlobal Definitions

Groups B and C start before group A has finished, but the output for the each group appears separately. All the
output for group A appears first, followed by all the output for group B, and then all the output for group C. The
app always displays the groups in order and, for each group, always displays the information about the individual
websites in the order that the URLs appear in the list of URLs.

However, you can't predict the order in which the downloads actually happen. After multiple groups have been
started, the download tasks that they generate are all active. You can't assume that A-1 will be downloaded before
B-1, and you can't assume that A-1 will be downloaded before A-2.

The sample code contains the following two global declarations that are visible from all methods.

public partial class MainWindow : Window // Class MainPage in Windows Store app.
{
 // ***Declare the following variables where all methods can access them.
 private Task pendingWork = null;
 private char group = (char)('A' - 1);

The Click Event HandlerThe Click Event Handler

private async void StartButton_Click(object sender, RoutedEventArgs e)
{
 // ***Verify that each group's results are displayed together, and that
 // the groups display in order, by marking each group with a letter.
 group = (char)(group + 1);
 ResultsTextBox.Text += $"\r\n\r\n#Starting group {group}.";

 try
 {
 // *** Pass the group value to AccessTheWebAsync.
 char finishedGroup = await AccessTheWebAsync(group);

 // The following line verifies a successful return from the download and
 // display procedures.
 ResultsTextBox.Text += $"\r\n\r\n#Group {finishedGroup} is complete.\r\n";
 }
 catch (Exception)
 {
 ResultsTextBox.Text += "\r\nDownloads failed.";
 }
}

The AccessTheWebAsync MethodThe AccessTheWebAsync Method

The Task variable, pendingWork , oversees the display process and prevents any group from interrupting another
group's display operation. The character variable, group , labels the output from different groups to verify that
results appear in the expected order.

The event handler, StartButton_Click , increments the group letter each time the user chooses the Start button.
Then the handler calls AccessTheWebAsync to run the downloading operation.

This example splits AccessTheWebAsync into two methods. The first method, AccessTheWebAsync , starts all the
download tasks for a group and sets up pendingWork to control the display process. The method uses a Language
Integrated Query (L INQ query) and ToArray to start all the download tasks at the same time.

AccessTheWebAsync then calls FinishOneGroupAsync to await the completion of each download and display its
length.

FinishOneGroupAsync returns a task that's assigned to pendingWork in AccessTheWebAsync . That value prevents
interruption by another operation before the task is complete.

https://docs.microsoft.com/dotnet/api/system.linq.enumerable.toarray

private async Task<char> AccessTheWebAsync(char grp)
{
 HttpClient client = new HttpClient();

 // Make a list of the web addresses to download.
 List<string> urlList = SetUpURLList();

 // ***Kick off the downloads. The application of ToArray activates all the download tasks.
 Task<byte[]>[] getContentTasks = urlList.Select(url => client.GetByteArrayAsync(url)).ToArray();

 // ***Call the method that awaits the downloads and displays the results.
 // Assign the Task that FinishOneGroupAsync returns to the gatekeeper task, pendingWork.
 pendingWork = FinishOneGroupAsync(urlList, getContentTasks, grp);

 ResultsTextBox.Text += $"\r\n#Task assigned for group {grp}. Download tasks are active.\r\n";

 // ***This task is complete when a group has finished downloading and displaying.
 await pendingWork;

 // You can do other work here or just return.
 return grp;
}

The FinishOneGroupAsync MethodThe FinishOneGroupAsync Method

private async Task FinishOneGroupAsync(List<string> urls, Task<byte[]>[] contentTasks, char grp)
{
 // ***Wait for the previous group to finish displaying results.
 if (pendingWork != null) await pendingWork;

 int total = 0;

 // contentTasks is the array of Tasks that was created in AccessTheWebAsync.
 for (int i = 0; i < contentTasks.Length; i++)
 {
 // Await the download of a particular URL, and then display the URL and
 // its length.
 byte[] content = await contentTasks[i];
 DisplayResults(urls[i], content, i, grp);
 total += content.Length;
 }

 // Display the total count for all of the websites.
 ResultsTextBox.Text +=
 $"\r\n\r\nTOTAL bytes returned: {total}\r\n";
}

Points of InterestPoints of Interest

This method cycles through the download tasks in a group, awaiting each one, displaying the length of the
downloaded website, and adding the length to the total.

The first statement in FinishOneGroupAsync uses pendingWork to make sure that entering the method doesn't
interfere with an operation that is already in the display process or that's already waiting. If such an operation is in
progress, the entering operation must wait its turn.

The information lines that start with a pound sign (#) in the output clarify how this example works.

The output shows the following patterns.

A group can be started while a previous group is displaying its output, but the display of the previous
group's output isn't interrupted.

 Reviewing and Running the Example App

NOTENOTE

Downloading the AppDownloading the App

#Starting group A.
#Task assigned for group A. Download tasks are active.

A-1. msdn.microsoft.com/library/hh191443.aspx 87389
A-2. msdn.microsoft.com/library/aa578028.aspx 207089
A-3. msdn.microsoft.com/library/jj155761.aspx 30870
A-4. msdn.microsoft.com/library/hh290140.aspx 119037
A-5. msdn.microsoft.com/library/hh524395.aspx 71260

#Starting group B.
#Task assigned for group B. Download tasks are active.

A-6. msdn.microsoft.com/library/ms404677.aspx 199186
A-7. msdn.microsoft.com 53078
A-8. msdn.microsoft.com/library/ff730837.aspx 148010

TOTAL bytes returned: 915919

B-1. msdn.microsoft.com/library/hh191443.aspx 87388
B-2. msdn.microsoft.com/library/aa578028.aspx 207089
B-3. msdn.microsoft.com/library/jj155761.aspx 30870

#Group A is complete.

B-4. msdn.microsoft.com/library/hh290140.aspx 119027
B-5. msdn.microsoft.com/library/hh524395.aspx 71260
B-6. msdn.microsoft.com/library/ms404677.aspx 199186
B-7. msdn.microsoft.com 53078
B-8. msdn.microsoft.com/library/ff730837.aspx 148010

TOTAL bytes returned: 915908

#Starting group B.
#Task assigned for group B. Download tasks are active.

The pendingWork task is null at the start of FinishOneGroupAsync only for group A, which started first. Group
A hasn’t yet completed an await expression when it reaches FinishOneGroupAsync . Therefore, control hasn't
returned to AccessTheWebAsync , and the first assignment to pendingWork hasn't occurred.

The following two lines always appear together in the output. The code is never interrupted between
starting a group's operation in StartButton_Click and assigning a task for the group to pendingWork .

After a group enters StartButton_Click , the operation doesn't complete an await expression until the
operation enters FinishOneGroupAsync . Therefore, no other operation can gain control during that segment
of code.

To better understand the example app, you can download it, build it yourself, or review the code at the end of this
topic without implementing the app.

To run the example as a Windows Presentation Foundation (WPF) desktop app, you must have Visual Studio 2012 or newer
and the .NET Framework 4.5 or newer installed on your computer.

1. Download the compressed file from Async Samples: Reentrancy in .NET Desktop Apps.

https://code.msdn.microsoft.com/Async-Sample-Preventing-a8489f06

Building the AppBuilding the App

To b u i l d a W P F a p pTo b u i l d a W P F a p p

2. Decompress the file that you downloaded, and then start Visual Studio.

3. On the menu bar, choose File, Open, Project/Solution.

4. Navigate to the folder that holds the decompressed sample code, and then open the solution (.sln) file.

5. In Solution Explorer, open the shortcut menu for the project that you want to run, and then choose Set as
StartUpProject.

6. Choose the CTRL+F5 keys to build and run the project.

The following section provides the code to build the example as a WPF app.

<Window x:Class="WebsiteDownloadWPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:WebsiteDownloadWPF"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Width="517" Height="360">
 <Button x:Name="StartButton" Content="Start" HorizontalAlignment="Left" Margin="-1,0,0,0"
VerticalAlignment="Top" Click="StartButton_Click" Height="53" Background="#FFA89B9B" FontSize="36"
Width="518" />
 <TextBox x:Name="ResultsTextBox" HorizontalAlignment="Left" Margin="-1,53,0,-36"
TextWrapping="Wrap" VerticalAlignment="Top" Height="343" FontSize="10"
ScrollViewer.VerticalScrollBarVisibility="Visible" Width="518" FontFamily="Lucida Console" />
 </Grid>
</Window>

using System;
using System.Collections.Generic;

1. Start Visual Studio.

2. On the menu bar, choose File, New, Project.

The New Project dialog box opens.

3. In the Installed Templates pane, expand Visual C#, and then expand Windows.

4. In the list of project types, choose WPF Application.

5. Name the project WebsiteDownloadWPF , and then choose the OK button.

The new project appears in Solution Explorer.

6. In the Visual Studio Code Editor, choose the MainWindow.xaml tab.

If the tab isn’t visible, open the shortcut menu for MainWindow.xaml in Solution Explorer, and then
choose View Code.

7. In the XAML view of MainWindow.xaml, replace the code with the following code.

A simple window that contains a text box and a button appears in the Design view of MainWindow.xaml.

8. Add a reference for System.Net.Http.

9. In Solution Explorer, open the shortcut menu for MainWindow.xaml.cs, and then choose View Code.

10. In MainWindow.xaml.cs, replace the code with the following code.

https://docs.microsoft.com/dotnet/api/system.net.http

using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

// Add the following using directives, and add a reference for System.Net.Http.
using System.Net.Http;
using System.Threading;

namespace WebsiteDownloadWPF
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private async void StartButton_Click(object sender, RoutedEventArgs e)
 {
 // This line is commented out to make the results clearer in the output.
 //ResultsTextBox.Text = "";

 try
 {
 await AccessTheWebAsync();
 }
 catch (Exception)
 {
 ResultsTextBox.Text += "\r\nDownloads failed.";
 }
 }

 private async Task AccessTheWebAsync()
 {
 // Declare an HttpClient object.
 HttpClient client = new HttpClient();

 // Make a list of web addresses.
 List<string> urlList = SetUpURLList();

 var total = 0;
 var position = 0;

 foreach (var url in urlList)
 {
 // GetByteArrayAsync returns a task. At completion, the task
 // produces a byte array.
 byte[] urlContents = await client.GetByteArrayAsync(url);

 DisplayResults(url, urlContents, ++position);

 // Update the total.
 total += urlContents.Length;
 }

 // Display the total count for all of the websites.
 ResultsTextBox.Text +=
 $"\r\n\r\nTOTAL bytes returned: {total}\r\n";
 }

See also

 private List<string> SetUpURLList()
 {
 List<string> urls = new List<string>
 {
 "https://msdn.microsoft.com/library/hh191443.aspx",
 "https://msdn.microsoft.com/library/aa578028.aspx",
 "https://msdn.microsoft.com/library/jj155761.aspx",
 "https://msdn.microsoft.com/library/hh290140.aspx",
 "https://msdn.microsoft.com/library/hh524395.aspx",
 "https://msdn.microsoft.com/library/ms404677.aspx",
 "https://msdn.microsoft.com",
 "https://msdn.microsoft.com/library/ff730837.aspx"
 };
 return urls;
 }

 private void DisplayResults(string url, byte[] content, int pos)
 {
 // Display the length of each website. The string format is designed
 // to be used with a monospaced font, such as Lucida Console or
 // Global Monospace.

 // Strip off the "https://".
 var displayURL = url.Replace("https://", "");
 // Display position in the URL list, the URL, and the number of bytes.
 ResultsTextBox.Text += $"\n{pos}. {displayURL,-58} {content.Length,8}";
 }
 }
}

11. Choose the CTRL+F5 keys to run the program, and then choose the Start button several times.

12. Make the changes from Disable the Start Button, Cancel and Restart the Operation, or Run Multiple
Operations and Queue the Output to handle the reentrancy.

Walkthrough: Accessing the Web by Using async and await (C#)
Asynchronous Programming with async and await (C#)

Using Async for File Access (C#)
4/28/2019 • 5 minutes to read • Edit Online

Running the Examples

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Text;
using System.Threading.Tasks;

Use of the FileStream Class

You can use the async feature to access files. By using the async feature, you can call into asynchronous methods
without using callbacks or splitting your code across multiple methods or lambda expressions. To make
synchronous code asynchronous, you just call an asynchronous method instead of a synchronous method and add
a few keywords to the code.

You might consider the following reasons for adding asynchrony to file access calls:

Asynchrony makes UI applications more responsive because the UI thread that launches the operation can
perform other work. If the UI thread must execute code that takes a long time (for example, more than 50
milliseconds), the UI may freeze until the I/O is complete and the UI thread can again process keyboard and
mouse input and other events.

Asynchrony improves the scalability of ASP.NET and other server-based applications by reducing the need
for threads. If the application uses a dedicated thread per response and a thousand requests are being
handled simultaneously, a thousand threads are needed. Asynchronous operations often don’t need to use a
thread during the wait. They use the existing I/O completion thread briefly at the end.

The latency of a file access operation might be very low under current conditions, but the latency may
greatly increase in the future. For example, a file may be moved to a server that's across the world.

The added overhead of using the Async feature is small.

Asynchronous tasks can easily be run in parallel.

To run the examples in this topic, you can create a WPF Application or a Windows Forms Application and then
add a Button. In the button's Click event, add a call to the first method in each example.

In the following examples, include the following using statements.

The examples in this topic use the FileStream class, which has an option that causes asynchronous I/O to occur at
the operating system level. By using this option, you can avoid blocking a ThreadPool thread in many cases. To
enable this option, you specify the useAsync=true or options=FileOptions.Asynchronous argument in the
constructor call.

You can’t use this option with StreamReader and StreamWriter if you open them directly by specifying a file path.
However, you can use this option if you provide them a Stream that the FileStream class opened. Note that
asynchronous calls are faster in UI apps even if a ThreadPool thread is blocked, because the UI thread isn’t blocked
during the wait.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/async/using-async-for-file-access.md
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/dotnet/api/system.io.streamwriter
https://docs.microsoft.com/dotnet/api/system.io.stream
https://docs.microsoft.com/dotnet/api/system.io.filestream

Writing Text

public async void ProcessWrite()
{
 string filePath = @"temp2.txt";
 string text = "Hello World\r\n";

 await WriteTextAsync(filePath, text);
}

private async Task WriteTextAsync(string filePath, string text)
{
 byte[] encodedText = Encoding.Unicode.GetBytes(text);

 using (FileStream sourceStream = new FileStream(filePath,
 FileMode.Append, FileAccess.Write, FileShare.None,
 bufferSize: 4096, useAsync: true))
 {
 await sourceStream.WriteAsync(encodedText, 0, encodedText.Length);
 };
}

Task theTask = sourceStream.WriteAsync(encodedText, 0, encodedText.Length);
await theTask;

Reading Text

The following example writes text to a file. At each await statement, the method immediately exits. When the file
I/O is complete, the method resumes at the statement that follows the await statement. Note that the async
modifier is in the definition of methods that use the await statement.

The original example has the statement await sourceStream.WriteAsync(encodedText, 0, encodedText.Length); ,
which is a contraction of the following two statements:

The first statement returns a task and causes file processing to start. The second statement with the await causes
the method to immediately exit and return a different task. When the file processing later completes, execution
returns to the statement that follows the await. For more information, see Control Flow in Async Programs (C#).

The following example reads text from a file. The text is buffered and, in this case, placed into a StringBuilder.
Unlike in the previous example, the evaluation of the await produces a value. The ReadAsync method returns a
Task<Int32>, so the evaluation of the await produces an Int32 value (numRead) after the operation completes. For
more information, see Async Return Types (C#).

https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.io.stream.readasync
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.int32

public async void ProcessRead()
{
 string filePath = @"temp2.txt";

 if (File.Exists(filePath) == false)
 {
 Debug.WriteLine("file not found: " + filePath);
 }
 else
 {
 try
 {
 string text = await ReadTextAsync(filePath);
 Debug.WriteLine(text);
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

private async Task<string> ReadTextAsync(string filePath)
{
 using (FileStream sourceStream = new FileStream(filePath,
 FileMode.Open, FileAccess.Read, FileShare.Read,
 bufferSize: 4096, useAsync: true))
 {
 StringBuilder sb = new StringBuilder();

 byte[] buffer = new byte[0x1000];
 int numRead;
 while ((numRead = await sourceStream.ReadAsync(buffer, 0, buffer.Length)) != 0)
 {
 string text = Encoding.Unicode.GetString(buffer, 0, numRead);
 sb.Append(text);
 }

 return sb.ToString();
 }
}

Parallel Asynchronous I/O
The following example demonstrates parallel processing by writing 10 text files. For each file, the WriteAsync
method returns a task that is then added to a list of tasks. The await Task.WhenAll(tasks); statement exits the
method and resumes within the method when file processing is complete for all of the tasks.

The example closes all FileStream instances in a finally block after the tasks are complete. If each FileStream

was instead created in a using statement, the FileStream might be disposed of before the task was complete.

Note that any performance boost is almost entirely from the parallel processing and not the asynchronous
processing. The advantages of asynchrony are that it doesn’t tie up multiple threads, and that it doesn’t tie up the
user interface thread.

https://docs.microsoft.com/dotnet/api/system.io.stream.writeasync
https://docs.microsoft.com/dotnet/api/system.io.filestream

public async void ProcessWriteMult()
{
 string folder = @"tempfolder\";
 List<Task> tasks = new List<Task>();
 List<FileStream> sourceStreams = new List<FileStream>();

 try
 {
 for (int index = 1; index <= 10; index++)
 {
 string text = "In file " + index.ToString() + "\r\n";

 string fileName = "thefile" + index.ToString("00") + ".txt";
 string filePath = folder + fileName;

 byte[] encodedText = Encoding.Unicode.GetBytes(text);

 FileStream sourceStream = new FileStream(filePath,
 FileMode.Append, FileAccess.Write, FileShare.None,
 bufferSize: 4096, useAsync: true);

 Task theTask = sourceStream.WriteAsync(encodedText, 0, encodedText.Length);
 sourceStreams.Add(sourceStream);

 tasks.Add(theTask);
 }

 await Task.WhenAll(tasks);
 }

 finally
 {
 foreach (FileStream sourceStream in sourceStreams)
 {
 sourceStream.Close();
 }
 }
}

See also

When using the WriteAsync and ReadAsync methods, you can specify a CancellationToken, which you can use to
cancel the operation mid-stream. For more information, see Fine-Tuning Your Async Application (C#) and
Cancellation in Managed Threads.

Asynchronous Programming with async and await (C#)
Async Return Types (C#)
Control Flow in Async Programs (C#)

https://docs.microsoft.com/dotnet/api/system.io.stream.writeasync
https://docs.microsoft.com/dotnet/api/system.io.stream.readasync
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken
https://docs.microsoft.com/en-us/dotnet/standard/threading/cancellation-in-managed-threads

	Cover Page
	Asynchronous Programming with async and await
	Task asynchronous programming model
	Walkthrough: Accessing the Web by Using async and await
	How to: Extend the async Walkthrough by Using Task.WhenAll
	How to: Make Multiple Web Requests in Parallel by Using async and await
	Async Return Types
	Control Flow in Async Programs
	Cancel tasks and processing completed tasks
	Overview
	Cancel an Async Task or a List of Tasks
	Cancel Async Tasks after a Period of Time
	Cancel Remaining Async Tasks after One Is Complete
	Start Multiple Async Tasks and Process Them As They Complete

	Handling Reentrancy in Async Apps
	Using Async for File Access

