2020/5/12 C# #miB18 6 - C# 2 TURRFTHER | Microsoft Docs

C# Coding Conventions (C#
Programming Guide)

2015/07/20 - " Q@ & +4
EXAB

ERE=FiTE Y

M E B E 1B A

LR 1B A

k- Yakay

Coding conventions serve the following purposes:

e They create a consistent look to the code, so that readers can focus on content, not
layout.

e They enable readers to understand the code more quickly by making assumptions
based on previous experience.

e They facilitate copying, changing, and maintaining the code.
e They demonstrate C# best practices.

The guidelines in this article are used by Microsoft to develop samples and documentation.

Naming Conventions

e In short examples that do not include using directives, use namespace qualifications.
If you know that a namespace is imported by default in a project, you do not have to
fully qualify the names from that namespace. Qualified names can be broken after a
dot (.) if they are too long for a single line, as shown in the following example.

c# ™ %

P

var currentPerformanceCounterCategory = new System.Diagnostics.
PerformanceCounterCategory();

P

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

11

2020/5/12 Ci#t #RIS1B B - C# 723VRRETH5R | Microsoft Docs
® YOu do not have to change the names ot objects that were Created by using the

Visual Studio designer tools to make them fit other guidelines.

Layout Conventions

Good layout uses formatting to emphasize the structure of your code and to make the
code easier to read. Microsoft examples and samples conform to the following

conventions:

e Use the default Code Editor settings (smart indenting, four-character indents, tabs
saved as spaces). For more information, see Options, Text Editor, C#, Formatting.

e Write only one statement per line.
e Write only one declaration per line.

¢ If continuation lines are not indented automatically, indent them one tab stop (four

spaces).
e Add at least one blank line between method definitions and property definitions.

e Use parentheses to make clauses in an expression apparent, as shown in the following

code.
C# D 155
if ((vall > val2) && (vall > val3))
{
// Take appropriate action.
¥

Commenting Conventions

e Place the comment on a separate line, not at the end of a line of code.
e Begin comment text with an uppercase letter.
e End comment text with a period.

¢ Insert one space between the comment delimiter (//) and the comment text, as shown
in the following example.

2
Rt
i

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions 2/11

2020/5/12 C# #miB18 6 - C# 2 TURRFTHER | Microsoft Docs
C#

// The following declaration creates a query. It does not run
// the query.

e Do not create formatted blocks of asterisks around comments.

Language Guidelines

The following sections describe practices that the C# team follows to prepare code

examples and samples.

String Data Type

e Use string_interpolation to concatenate short strings, as shown in the following code.

C# Iy 3

string displayName = $"{nameList[n].LastName}, {nameList[n].FirstName}";

e To append strings in loops, especially when you are working with large amounts of

text, use a StringBuilder object.

C# Dy

Rt
pi

var phrase =
"la”;
var manyPhrases = new StringBuilder();

for (var i = 0; i < 10000; i++)

{
manyPhrases.Append(phrase);

}

//Console.WriteLine("tra" + manyPhrases);

Implicitly Typed Local Variables

e Use implicit typing for local variables when the type of the variable is obvious from
the right side of the assignment, or when the precise type is not important.

C# I

it
P

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

3/M1

2020/5/12

C# #mIB1E A - C# 2 TL5Z 515 | Microsoft Docs

// When the type of a variable is clear from the context, use var
// in the declaration.

var varl = "This is clearly a string.";
var var2 = 27;
var var3 = Convert.ToInt32(Console.ReadLine());

e Do not use var when the type is not apparent from the right side of the assignment.

C# Iy 3

// When the type of a variable is not clear from the context, use an
// explicit type.
int var4 = ExampleClass.ResultSoFar();

e Do not rely on the variable name to specify the type of the variable. It might not be

correct.

C# ™

e
i

// Naming the following variable inputInt is misleading.
// It is a string.

var inputInt = Console.ReadLine();
Console.WriteLine(inputInt);

e Avoid the use of var in place of dynamic.

e Use implicit typing to determine the type of the loop variable in for loops.

The following example uses implicit typing in a for statement.

C# I

it
pii

var phrase =
"la”;
var manyPhrases = new StringBuilder();
for (var i = ©; i < 10000; i++)
{

manyPhrases.Append(phrase);

}

//Console.WriteLine("tra" + manyPhrases);

e Do not use implicit typing to determine the type of the loop variable in foreach loops.

The following example uses explicit typing in a foreach statement.

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

4/11

2020/5/12 C# #miB18 6 - C# 2 TURRFTHER | Microsoft Docs

C# T

it
P

foreach (var ch in laugh)

{
if (ch == 'h'")
Console.Write("H");
else
Console.Write(ch);
}

Console.WriteLine();

OF:3-

Be careful not to accidentally change a type of an element of the iterable

System.Collections.lEnumerable in a foreach statement, which changes the

execution of a query.

Unsigned Data Type

In general, use int rather than unsigned types. The use of int is common throughout C#,

and it is easier to interact with other libraries when you use int.

Arrays

Use the concise syntax when you initialize arrays on the declaration line.
C# O s

// Preferred syntax. Note that you cannot use var here instead of string[].

string[] vowelsl = { "a", "e", "i", "o", "u" };

// If you use explicit instantiation, you can use var.

var vowels2 = new string[] { "a", "e", "i", "o", "u" };

// If you specify an array size, you must initialize the elements one at a
time.

var vowels3 = new string[5];

vowels3[@] = "a";

vowels3[1] "e";

// And so on.

~ 1

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

5/1

2020/5/12 C# #RIB1ERI - C# B I(FEETIER | Microsoft Docs
Delegates

Use the concise syntax to create instances of a delegate type.
C# D s

// First, in class Program, define the delegate type and a method that
// has a matching signature.

// Define the type.
public delegate void Del(string message);

// Define a method that has a matching signature.
public static void DelMethod(string str)

{
Console.WritelLine("DelMethod argument: {@}", str);
}
C# D s
// In the Main method, create an instance of Del.
// Preferred: Create an instance of Del by using condensed syntax.
Del exampleDel2 = DelMethod;
// The following declaration uses the full syntax.
Del exampleDell = new Del(DelMethod);
try-catch and using Statements in Exception Handling
e Use a try-catch statement for most exception handling.
C# D 152
static string GetValueFromArray(string[] array, int index)
{
try
{
return array[index];
}
catch (System.IndexOutOfRangeException ex)
{
Console.WriteLine("Index is out of range: {@}", index);
throw;
}
}

—~ 1er 1 1 . Pl —~n . . oar 1 . e n

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions 6/11

2020/5/12 C# #RIE1EH) - C# 7255157 | Microsoft Docs
e SImplity your code by using the C# using_statement. It you have a try-tinally.

statement in which the only code in the finally block is a call to the Dispose

method, use a using statement instead.

C# M &

pii

// This try-finally statement only calls Dispose in the finally block.
Font fontl = new Font("Arial", 10.0f);

try
{
byte charset = fontl.GdiCharSet;
}
finally
{
if (fontl != null)
{
((IDisposable)fontl).Dispose();
}
¥

// You can do the same thing with a using statement.
using (Font font2 = new Font("Arial", 10.0f))

{
byte charset = font2.GdiCharSet;

&& and || Operators

To avoid exceptions and increase performance by skipping unnecessary comparisons, use
&& instead of & and || instead of | when you perform comparisons, as shown in the
following example.

C# ™

it
P

Console.Write("Enter a dividend: ");
var dividend = Convert.ToInt32(Console.ReadlLine());

Console.Write("Enter a divisor: ");
var divisor = Convert.ToInt32(Console.ReadlLine());

// If the divisor is @, the second clause in the following condition
// causes a run-time error. The && operator short circuits when the
// first expression is false. That is, it does not evaluate the

// second expression. The & operator evaluates both, and causes

// a run-time error when divisor is @.

if ((divisor != @) && (dividend / divisor > 0))

{

FfAaneAala Llndi+al anal"NiiA+dAant s " AiviiAdand / Aividiean)e
https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

7M1

2020/5/12 C# #miB18 6 - C# 2 TURRFTHER | Microsoft Docs

LUIIDULT . NI LLTLLIIT| YUuULLTIIL. 1Yy 5, ULVLIUTIIU / ULVLIDUI),

else

{

Console.WritelLine("Attempted division by © ends up here.");

New Operator

e Use the concise form of object instantiation, with implicit typing, as shown in the
following declaration.

C# D 152
var instancel = new ExampleClass();

The previous line is equivalent to the following declaration.
C# D 155
ExampleClass instance2 = new ExampleClass();

e Use object initializers to simplify object creation.

C# I

i
pii

// Object initializer.
var instance3 = new ExampleClass { Name = "Desktop", ID = 37414,
Location = "Redmond", Age = 2.3 };

// Default constructor and assignment statements.
var instanced4 = new ExampleClass();
instance4.Name = "Desktop";

instance4.ID = 37414;

instance4.Location = "Redmond";

instance4.Age = 2.3;

Event Handling

If you are defining an event handler that you do not need to remove later, use a lambda
expression.

C# I

it
P

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

8/1

2020/5/12 C# #RIB1ERI - C# B I(FEETIER | Microsoft Docs
public Form2()

{
// You can use a lambda expression to define an event handler.
this.Click += (s, e) =>
{
MessageBox. Show(
((MouseEventArgs)e).Location.ToString());
};
}
C# D s

// Using a lambda expression shortens the following traditional definition.
public Forml()

{
this.Click += new EventHandler(Forml_Click);
}
void Forml_Click(object sender, EventArgs e)
{
MessageBox.Show(((MouseEventArgs)e).Location.ToString());
}

Static Members

Call static members by using the class name: ClassName.StaticMember. This practice makes
code more readable by making static access clear. Do not qualify a static member defined
in a base class with the name of a derived class. While that code compiles, the code
readability is misleading, and the code may break in the future if you add a static member
with the same name to the derived class.

LINQ Queries

e Use meaningful names for query variables. The following example uses
seattleCustomers for customers who are located in Seattle.

C# I

it
P

var seattleCustomers = from customer in customers
where customer.City == "Seattle"
select customer.Name;

1. 1 Pl . r P}

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

91

2020/5/12 Ci#t #RIS1B B - C# 723VRRETH5R | Microsoft Docs
® Use allases 1o make sure that property names of anonymous types are correctly

capitalized, using Pascal casing.

C# D

Rt
P

var localDistributors =

from customer in customers

join distributor in distributors on customer.City equals
distributor.City

select new { Customer = customer, Distributor = distributor };

e Rename properties when the property names in the result would be ambiguous. For
example, if your query returns a customer name and a distributor ID, instead of
leaving them as Name and 1D in the result, rename them to clarify that Name is the

name of a customer, and 1D is the ID of a distributor.

C# Iy w3

var localDistributors2 =

from customer in customers

join distributor in distributors on customer.City equals
distributor.City

select new { CustomerName = customer.Name, DistributorID =
distributor.ID };

e Use implicit typing in the declaration of query variables and range variables.

C# TL:-Ed
var seattleCustomers = from customer in customers
where customer.City == "Seattle"
select customer.Name;
e Align query clauses under the from clause, as shown in the previous examples.
e Use where clauses before other query clauses to ensure that later query clauses
operate on the reduced, filtered set of data.
C# O 5

var seattleCustomers2 = from customer in customers
where customer.City == "Seattle"
orderby customer.Name
select customer;

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

10/11

2020/5/12 C# #miB18 6 - C# 2 TURRFTHER | Microsoft Docs

e Use multiple from clauses instead of a join clause to access inner collections. For
example, a collection of student objects might each contain a collection of test

scores. When the following query is executed, it returns each score that is over 90,
along with the last name of the student who received the score.

S

C# ™ &

P

// Use a compound from to access the inner sequence within each element.
var scoreQuery = from student in students

from score in student.Scores

where score > 90

select new { Last = student.LastName, score };

Security

Follow the guidelines in Secure Coding_Guidelines.

See also

¢ Visual Basic Coding Conventions
e Secure Coding Guidelines

WWEHAMRB=EIS ?
2 Yes 47 No

https://docs.microsoft.com/zh-tw/dotnet/csharp/programming-guide/inside-a-program/coding-conventions 11711

