2023/1/10 £48:37 Lazy<T> Class (System) | Microsoft Learn

Lazy<T> Class

Reference

Definition

Namespace: System

Assembly: mscorlib.dll

Provides support for lazy initialization.

In this article

Definition
Examples
Remarks
Constructors
Properties
Methods
Applies to
Thread Safety

See also

C#

[System.Runtime.InteropServices.ComVisible(false)]
[System.Serializable]
public class Lazy<T>

Type Parameters
T
The type of object that is being lazily initialized.

Inheritance Object — Lazy<T>
Derived System.Lazy<T,TMetadata>

Attributes ComVisibleAttribute, SerializableAttribute

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S... 1/10

2023/1/10 £48:37 Lazy<T> Class (System) | Microsoft Learn

Examples

The following example demonstrates the use of the Lazy<T> class to provide lazy
initialization with access from multiple threads.

® Note

The example uses the Lazy<T>(Func<T>) constructor. It also demonstrates the use of
the Lazy<T>(Func<T>, Boolean) constructor (specifying true for isThreadsafe) and
the Lazy<T>(Func<T>, LazyThreadSafetyMode) constructor (specifying
LazyThreadSafetyMode.ExecutionAndPublication for mode). To switch to a different

constructor, just change which constructors are commented out.

For an example that demonstrates exception caching using the same constructors, see
the Lazy<T>(Func<T>) constructor.

The example defines a LargeObject class that will be initialized lazily by one of several
threads. The four key sections of code illustrate the creation of the initializer, the factory
method, the actual initialization, and the constructor of the Largeobject class, which
displays a message when the object is created. At the beginning of the Main method, the

example creates the thread-safe lazy initializer for LargeObject:

C#

lazyLargeObject = new Lazy<LargeObject>(InitLargeObject);

// The following lines show how to use other constructors to achieve exactly
the

// same result as the previous line:

//lazylLargeObject = new Lazy<LargeObject>(InitLargeObject, true);
//lazylLargeObject = new Lazy<LargeObject>(InitLargeObject,

// LazyThreadSafetyMode.ExecutionAndPublication);

The factory method shows the creation of the object, with a placeholder for further
initialization:

C#

static LargeObject InitLargeObject()

{
LargeObject large = new LargeObject(Thread.CurrentThread.ManagedThreadld);

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S...

2/10

2023/1/10 £48:37 Lazy<T> Class (System) | Microsoft Learn

// Perform additional initialization here.
return large;

Note that the first two code sections could be combined by using a lambda function, as

shown here:

C#

lazylargeObject = new Lazy<LargeObject>(() =>

{
LargeObject large = new LargeObject(Thread.CurrentThread.ManagedThreadld);
// Perform additional initialization here.
return large;

1)

The example pauses, to indicate that an indeterminate period may elapse before lazy
initialization occurs. When you press the Enter key, the example creates and starts three
threads. The ThreadProc method that's used by all three threads calls the Value property.

The first time this happens, the Largeobject instance is created:

C#
LargeObject large = lazylLargeObject.Value;

// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the

// object after creation. You must lock the object before accessing
it,

// unless the type is thread safe. (LargeObject is not thread safe.)
lock(large)

{

large.Data[@] = Thread.CurrentThread.ManagedThreadId;
Console.WritelLine("Initialized by thread {0}; last used by thread {1}.",
large.InitializedBy, large.Data[@]);

The constructor of the Largeobject class, which includes the last key section of code,

displays a message and records the identity of the initializing thread. The output from the
program appears at the end of the full code listing.

C#

int initBy = 0;
public LargeObject(int initializedBy)

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF 1%261%3DEN-US%26k%3Dk(S...

3/10

2023/1/10 £48:37 Lazy<T> Class (System) | Microsoft Learn

{

initBy = initializedBy;

Console.WritelLine("LargeObject was created on thread id {@}.", initBy);
}
® Note

For simplicity, this example uses a global instance of Lazy<T>, and all the methods are
static (Shared in Visual Basic). These are not requirements for the use of lazy

initialization.

C#

using System;
using System.Threading;

class Program

{
static Lazy<LargeObject> lazylLargeObject = null;

static LargeObject InitLargeObject()
{
LargeObject large = new
LargeObject(Thread.CurrentThread.ManagedThreadId);
// Perform additional initialization here.
return large;

static void Main()
{
// The lazy initializer is created here. LargeObject is not created un-
til the
// ThreadProc method executes.
lazylLargeObject = new Lazy<LargeObject>(InitLargeObject);

// The following lines show how to use other constructors to achieve
exactly the
// same result as the previous line:

//lazylLargeObject = new Lazy<lLargeObject>(InitLargeObject, true);
//lazylLargeObject = new Lazy<LargeObject>(InitLargeObject,
//

LazyThreadSafetyMode.ExecutionAndPublication);

Console.Writeline(
"\r\nLargeObject is not created until you access the Value property
of the lazy" +
"\r\ninitializer. Press Enter to create LargeObject.");

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S... 4/10

2023/1/10 £48:37 Lazy<T> Class (System) | Microsoft Learn

Console.ReadlLine();

// Create and start 3 threads, each of which uses LargeObject.
Thread[] threads = new Thread[3];
for (int 1 = 0; i < 3; i++)
{
threads[i] = new Thread(ThreadProc);
threads[i].Start();

// Wait for all 3 threads to finish.
foreach (Thread t in threads)

{
t.Join();

Console.WriteLine("\r\nPress Enter to end the program");
Console.ReadLine();

}
static void ThreadProc(object state)
{
LargeObject large = lazylLargeObject.Value;
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't pro-
tect the
// object after creation. You must lock the object before
accessing it,
// unless the type is thread safe. (LargeObject is not
thread safe.)
lock(large)
{
large.Data[@] = Thread.CurrentThread.ManagedThreadId;
Console.WritelLine("Initialized by thread {0}; last used by thread
{1}.%,
large.InitializedBy, large.Data[®@]);
}
}

class LargeObject

{
public int InitializedBy { get { return initBy; } }

int initBy = 0;
public LargeObject(int initializedBy)
{
initBy = initializedBy;
Console.WritelLine("LargeObject was created on thread id {@}.", initBy);

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S... 5/10

2023/1/10 £48:37 Lazy<T> Class (System) | Microsoft Learn
public long[] Data = new long[100000000];

/* This example produces output similar to the following:

LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject.

LargeObject was created on thread id 3.

Initialized by thread 3; last used by thread 3.
Initialized by thread 3; last used by thread 4.
Initialized by thread 3; last used by thread 5.

Press Enter to end the program

*/

Remarks

Use lazy initialization to defer the creation of a large or resource-intensive object, or the
execution of a resource-intensive task, particularly when such creation or execution might

not occur during the lifetime of the program.

To prepare for lazy initialization, you create an instance of Lazy<T>. The type argument of
the Lazy<T> object that you create specifies the type of the object that you want to
initialize lazily. The constructor that you use to create the Lazy<T> object determines the
characteristics of the initialization. Lazy initialization occurs the first time the Lazy<T>.Value

property is accessed.
In most cases, choosing a constructor depends on your answers to two questions:

o Will the lazily initialized object be accessed from more than one thread? If so, the
Lazy<T> object might create it on any thread. You can use one of the simple
constructors whose default behavior is to create a thread-safe Lazy<T> object, so that
only one instance of the lazily instantiated object is created no matter how many
threads try to access it. To create a Lazy<T> object that is not thread safe, you must

use a constructor that enables you to specify no thread safety.

X Caution

Making the Lazy<T> object thread safe does not protect the lazily initialized
object. If multiple threads can access the lazily initialized object, you must make
its properties and methods safe for multithreaded access.

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S... 6/10

2023/1/10 £478:37 Lazy<T> Class (System) | Microsoft Learn

e Does lazy initialization require a lot of code, or does the lazily initialized object have a
parameterless constructor that does everything you need and doesn't throw
exceptions? If you need to write initialization code or if exceptions need to be
handled, use one of the constructors that takes a factory method. Write your
initialization code in the factory method.

The following table shows which constructor to choose, based on these two factors:

Object will be If no initialization code is required If initialization code is required,

accessed by (parameterless constructor), use use

Multiple Lazy<T>() Lazy<T>(Func<T>)

threads

One thread Lazy<T>(Boolean) with isThreadSafe set Lazy<T>(Func<T>, Boolean) with
to false. isThreadSafe set to false.

You can use a lambda expression to specify the factory method. This keeps all the
initialization code in one place. The lambda expression captures the context, including any

arguments you pass to the lazily initialized object's constructor.

Exception caching When you use factory methods, exceptions are cached. That is, if the
factory method throws an exception the first time a thread tries to access the Value
property of the Lazy<T> object, the same exception is thrown on every subsequent
attempt. This ensures that every call to the Value property produces the same result and
avoids subtle errors that might arise if different threads get different results. The Lazy<T>
stands in for an actual T that otherwise would have been initialized at some earlier point,
usually during startup. A failure at that earlier point is usually fatal. If there is a potential for
a recoverable failure, we recommend that you build the retry logic into the initialization
routine (in this case, the factory method), just as you would if you weren't using lazy
initialization.

Alternative to locking In certain situations, you might want to avoid the overhead of the
Lazy<T> object's default locking behavior. In rare situations, there might be a potential for
deadlocks. In such cases, you can use the Lazy<T>(LazyThreadSafetyMode) or Lazy<T>
(Func<T>, LazyThreadSafetyMode) constructor, and specify
LazyThreadSafetyMode.PublicationOnly. This enables the Lazy<T> object to create a copy
of the lazily initialized object on each of several threads if the threads call the Value
property simultaneously. The Lazy<T> object ensures that all threads use the same
instance of the lazily initialized object and discards the instances that are not used. Thus,

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S... 7/10

20231/10 L£48:37 Lazy<T> Class (System) | Microsoft Learn

the cost of reducing the locking overhead is that your program might sometimes create
and discard extra copies of an expensive object. In most cases, this is unlikely. The
examples for the Lazy<T>(LazyThreadSafetyMode) and Lazy<T>(Func<T>,

LazyThreadSafetyMode) constructors demonstrate this behavior.

@® Important

When you specify LazyThreadSafetyMode.PublicationOnly, exceptions are never

cached, even if you specify a factory method.

Equivalent constructors In addition to enabling the use of
LazyThreadSafetyMode.PublicationOnly, the Lazy <T>(LazyThreadSafetyMode) and
Lazy<T>(Func<T>, LazyThreadSafetyMode) constructors can duplicate the functionality of
the other constructors. The following table shows the parameter values that produce
equivalent behavior.

For constructors that For

To create a Lazy<T> For constructors that

object that is have a have a Boolean constructors
LazyThreadSafetyMode isThreadsafe parameter, with no thread
mode parameter, set set isThreadSafe to safety
mode to parameters
Fully thread safe; uses ExecutionAndPublication true All such
locking to ensure that constructors are
only one thread fully thread
initializes the value. safe.

Not thread safe. None false Not applicable.

Fully thread safe; threads PublicationOnly Not applicable. Not applicable.
race to initialize the

value.

Other capabilities For information about the use of Lazy<T> with thread-static fields, or as

the backing store for properties, see Lazy Initialization.

Constructors

Lazy<T>() Initializes a new instance of the Lazy<T> class. When lazy
initialization occurs, the parameterless constructor of the target

type is used.

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S... 8/10

2023/1/10 £%78:37

Lazy<T>(Boolean)

Lazy<T>(Func<T>)

Lazy<T>(Func<T>, Boolean)

Lazy<T>(Func<T>, LazyThread
SafetyMode)

Lazy<T>(LazyThreadSafety
Mode)

Properties

IsValueCreated

Value

Methods

Equals(Object)

GetHashCode()
GetType()
MemberwiseClone()

ToString()

Lazy<T> Class (System) | Microsoft Learn

Initializes a new instance of the Lazy<T> class. When lazy
initialization occurs, the parameterless constructor of the target
type and the specified initialization mode are used.

Initializes a new instance of the Lazy<T> class. When lazy
initialization occurs, the specified initialization function is used.

Initializes a new instance of the Lazy<T> class. When lazy
initialization occurs, the specified initialization function and
initialization mode are used.

Initializes a new instance of the Lazy<T> class that uses the
specified initialization function and thread-safety mode.

Initializes a new instance of the Lazy<T> class that uses the
parameterless constructor of T and the specified thread-safety
mode.

Gets a value that indicates whether a value has been created for
this Lazy<T> instance.

Gets the lazily initialized value of the current Lazy<T> instance.

Determines whether the specified object is equal to the current
object.
(Inherited from Object)

Serves as the default hash function.
(Inherited from Object)

Gets the Type of the current instance.
(Inherited from Object)

Creates a shallow copy of the current Object.
(Inherited from Object)

Creates and returns a string representation of the Value property
for this instance.

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(S...

9/10

2023/1/10 £478:37 Lazy<T> Class (System) | Microsoft Learn

Applies to

Product Versions
.NET Core 1.0, Core 1.1, Core 2.0, Core 2.1, Core 2.2, Core 3.0, Core 3.1,5,6, 7

.NET Framework 40,45,45.1,452,46,46.1,462,47,47.1,472,4.8,4.8.1

.NET Standard 1.0,1.1,12,13,14,15,16, 2.0, 2.1
uwp 10.0

Xamarin.iOS 10.8

Xamarin.Mac 3.0

Thread Safety

By default, all public and protected members of the Lazy<T> class are thread safe and may
be used concurrently from multiple threads. These thread-safety guarantees may be

removed optionally and per instance, using parameters to the type's constructors.

See also

e LazyThreadSafetyMode
e Lazy Initialization

e Lazy Expressions (F#)

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1?view=netframework-4.8&f1url=%3Fappld%3DDev16IDEF1%261%3DEN-US%26k%3Dk(... 10/10

