LINQ and Performance

% Steffen Ploetz
“ 16 Nov 2022 CPOL

Is LINQ the right technology for processing large amounts of data in runtime-relevant environments?

Anyone using LINQ should not only be aware of the advantages, but also pay attention to the
disadvantages - performance is definitely one of the significant considerations.

It has been 15 years (2007) since Microsoft introduced LINQ in .NET 3.5. That should be enough time
for it to mature into an all-around useful tool.

The use of LINQ has several aspects:

e Deferred execution and lazy evaluation (better utilization of multi-threading capable systems)
e Shortening of the code (readability and reusability)
e Runtime overhead of the technologies used (performance)

In this article, | will take a look at one aspect of LINQ only - performance.

LINQ has - at least in my environment - electrified all C# programmers with its appearance and
subsequently led to massive use of this technology.

I would like to ask here, how much of the marketing shine remains, if one looks at LINQ completely
soberly - as an innovative combination of extension methods and anonymous delegates (lambda
expressions) with deferred execution (yield)?

To answer this question for the performance aspect, | want to filter an object list with LINQ and sort
the result.

The first specificity of this approach is that LINQ has to process the list up to the last element. Thus, |
intentionally eliminate runtime advantages that can be achieved using Any() or First() and focus
on cases where it is mandatory to process all elements.

The second specificity of this approach is that LINQ works against the main memory (and not against
a database). Thus, | intentionally eliminate the runtime influences that accesses to a database would
introduce - no matter if it is a (small) in-memory database, a classic server database or a hybrid of

them. One typical application of LINQ - database queries - is therefore not reasonably represented in

the tests. This is because adding database queries to the tests would also be well suited to falsify the
results:

e The effectiveness of LINQ database queries is influenced more by the database driver than by
the programming approach.

¢ If the LINQ database queries are executed against a cached database, the results then still come
from main memory.

e How stupid does the programming approach have to be to be compared to LINQ? | would
expect stored procedures (parameterizable and already compiled SQL queries) to be vastly
superior to LINQ queries.

Update 1: In the comments section, there are a lot of comments that address the self-imposed
restriction of not using LINQ for database accesses in the tests. They range from criticism (this leaves
out the essential use case) to agreement (stored SQL procedures are the better way for efficient
database queries anyway). With my approach, | only and exclusively wanted to eliminate the side
effects that database accesses would bring to the tests. No more and no less.

Of course, the results depend on the multithreading capability of the underlying runtime system,
operating system and hardware - so only comparing_different approaches with each other that are

running_in the same environment is useful. For this reason, | have prepared 4 test cases that can be
compared with each other.

o Test case 1: LINQ with C++ (without and with ordering)

e Test case 2: classic (for(...) loops, if(...) and sort(...)) with C++ (without and with
ordering)

e Test case 3: LINQ with C# (without and with ordering)

e Test case 4: classic (for(...) loops, if(...) and sort(...)) with C# (without and with
ordering)

And the test cases will be executed on two different environments ...

Test on Win10

The first test environment is a Lenovo T550 with i7-5600U @ 2.6GHz, Windows 10 x64, .NET 4.7.2 and
16GB memory.

The C++ test results are:

B ChData\ LYNO-SimulationTest' Releasel LY NO-Simmulation Test . exe — O x

peee Result
@88 Resul
868 Resul
Result
868 Resul
868 Resul
868 Resul
868 Resul
Result:
Result
Result:
Result
Resul
86660 Resul
888 Result
80000 Result:

ordered), run

not ordered), run
ordered), run

not ordered), run
ordered), run

not ordered), run
ordered), run

‘not ordered), run
(ordered), run
{ordered), run
{ordered), run
ic (ordered), run
irdered), run
{ordered), run
rdered), run
{ordered), run

[FHRE S B S R

oo 0

L

pEaaaaaaa
M mmmImMmImMmrmMm

L
C

s e

e

Wk R

i
I T g g N ey e T T g W
= N N e e - e)
M mimImImMmTmMmTImMImM

]]]]]]]]

o T

(i)

e The C++ code has been compiled for x86 architecture with ISO C++ 14 Standard and /O2
optimization flag.
e |'ve tested x64 architecture as well - but without observable differences.

The C# test results are:

B ChData\ LING-Test\ LINC- Test) bin\Releaset LINC- Test.exe — O =

Result:
Result
Result:
Resul
Resul
Result:
Result
866608 Result: SP606
808 Resul 880
8688 Resul Beee
@oe Resu oo
pEEEe Resu Boe6
@808 Resu o0
@68 Resu oo
800008 Resu 80000
80006 Result: 200060

ordered), run

not ordered), run
ordered), run

not ordered), run
ordered), run

not ordered), run
ordered), run

ic (not ordered), run
{ordered), run »
{(ordered), run
rdered), run
(ordered), run
(ordered), run
{ordered), run
yrdered), run
{ordered), run

m

oo] | e T v]
18]

TR WA N B L R

[]

o B B B P R T R
fle fmle fln fdn fdn feln s s
= S I R e R R R)

m mmmmm

oo T | o] v o B
L R Pt e e
o 0 o o O

(=]

ime:
ime:
ime:
ime: 0
ime:
ime:
ime:
ime:

Lo]

(]

=]

Test on openSUSE

The second test environment is a Lenovo T520 with i5-2540M @ 2.6GHz, openSUSE Leap 15.4 x64,
.NET 6.0 and 12 GB memory.

Update 1: When | first published the tests, .NET 6.0 was current and .NET 7.0 was just around the
corner. Many comments in the comments section raise the question if the results won't be much
better with .NET 7.0. At the end of the article | have added measurements that cover this issue.

The C++ test results are:

s Terminal - steffen@localhost:...orTest/bin/Release + - + X
File Edit View Terminal Tabs Help
steffen@p200300ccofO30f67cdefeel7led7750d:~/Projects/CodeBlocks/LINQ-SumulatorTes]
t/bin/Release>

LINQ (not ordered), run @ -> Time: 0.008394298 - To be: 80000 Result: 80000
Classic (not ordered), run 0 -> Time: 0.002444084 sec To be: 80000 Result: 80000
LINQ (not ordered), run 1 -> Time: 0.006051372 sec To be: 80000 Result: 80000
Classic (not ordered), run 1 -> Time: 0.001291909 To be: 80000 Result: 80000
LINQ (not ordered), run -> Time: 0.00683667 sec To be: 80000 Result: 80000
Classic (not ordered), run -> Time: 0.001244364 sec To be: 80000 Result: 80000
LINQ (not ordered), run -> Time: 0.005269867 sec To be: 80000 Result: 80000
Classic (not ordered), run -> Time: 0.001236021 sec To be: 80000 Result: 80000
LINQ (ordered), run @ -> Time: 0.011532112 sec To be: 80000 Result: 80000
Classic (ordered), run @ -> Time: 0.005204993 sec To be: 80000 Result: 80600

LINQ (ordered), run 1 -> Time: 0.010443046 sec To : 80000 Result: 80000
Classic (ordered), run -> Time: 0.005546519 s To : 80000 Result: 80000

LINQ (ordered), run Time: 0.010595727 sec To : 80000 Result: 8000600
Classic (ordered), run Time: 5 To : 80000 Result: 80000

LINQ (ordered), run Time: 9114 37 s To : 80000 Result: 80000
Classic (ordered), run Time: 0.005281643 sec To : 80000 Result: 860060

o8]

(WS I VS R S

N

W b

e The C++ code has been compiled with GNU C++ 12-Ip154 defaults and /O3 optimization flag.

The C# test results are:

* Terminal - steffen@localhost:...e/net6.0/linux-x64 (on p200300ccof030fad32636d4a8fa7bab7.dip0.t-ip + — +
File Edit View Terminal Tabs Help
steffen@p200300cc9fO30fad32636d4a8faTbab7:~/Projects/dotNET/LINQ-Test/bin/Releas
e/net6.0/linux—x64> PEARLIEEIRs

LINQ (not ordered), run 8 -> Time:
Classic (not ordered), run > Time:
LINQ (not ordered), run > Time:
Classic (not ordered), run > Time:
LINQ (not ordered), run 2 -> Time:
Classic (not ordered), run 2 -> Time:
LINQ (not ordered), run 3 -> Time:

To : 80000 5 : 80000
- To : 80000 R : 8000
c To . 80000 . 80000
To : 80000 Result: 80000
c To : 80080 Result: 80000
- To be: 80000 Result: 80000
- To : 80000 Result: 800060
c To be: 80000 Result: 80000

M D D D
0o o0 n

(S T T T T R RO T 1 R ¥
M @D @
2 s B 8]

1]
~

.0878963

Classic (not ordered), run 3 -> Time:
LINQ (ordered), run > Time: 0.0446850 sec be: 80060 Result: 80600
Classic (ordered), run > Time: 0.0336500 sec be: 80060 Result: 806600

Time: 0.0331585
Time: 0.0318524
Time: 0.0349818
Time:
Time:
Time:

be: 80000 Result: 80000
80000 Result: 80000
80000 Result: 80600
80000 Result: 80000
80000 Result: 80000
80000 Result: 80000

LINQ (ordered), run
Classic (ordered), run
LINQ (ordered), run
Classic (ordered), run
LINQ (ordered), run
Classic (ordered), run

[
m M M M M @
noo0nNon

(. T T ' T ¥ R ¥ B
(3]

L5 I R T S R L

Comparison of the Results

To better compare the results, | ignore the worst test run (highest run time) and take the median of
the three remaining test runs. Which produces this summary picture:

line system
1 Win 10
2 Win 10
3 Win 10
4 Win 10

5 Win 10
6 Win 10
7 Win 10

8 Win 10

9 openSUSE
10 openSUSE
11 openSUSE
12 openSUSE

13 openSUSE
14 openSUSE

15 openSUSE

HW

T550
T550
T550
T550

T550

T550

T550

T550

T520
1520
1520
1520

T520

1520

1520

code attempt ordering

C++
C#
C++

C#
C++

C#

C++

C#

C++

C#

C++

C#

C++

C#

C++

16 openSUSE T520 C#

Discussion of the Expectations and Results

C++ vs. C#

¢ | expect a clear advantage of C++ over C#.

e Expectation met.

LINQ
LINQ
classic

classic

LINQ
LINQ
classic

classic

LINQ
LINQ
classic

classic

LINQ
LINQ
classic

classic

no
no
no

no

yes

yes

yes

yes
no
no
no

no

yes

yes

yes

yes

median
11.5 ms
13.0 ms
2.5 ms
53 ms

21.2 ms

55.0 ms

8.2 ms

53.7 ms

6.0 ms
16.3 ms
1.2 ms

8.1 ms

10.5 ms

32.2 ms

5.2 ms

31.0 ms

C++ vs. C#
13 % better
13 % worse
112 % better

112 % worse

159 % better

159 % worse

554 % better

554 % worse

171 % better
171 % worse
575 % better

575 % worse

206 % better

206 % worse

496 % better

496 % worse

LINQ vs. classic

~3 times worse

~3 times better

inconsistent (C++
~2.5 times worse,
C# comparable)

inconsistent (C++
~2.5 times better,
C# compaable)

~3.5 times worse

~3.5 times better

inconsistent (C++
~2 times worse,
C# comparable)

inconsistent (C++
~2 times better,
C# comparable)

C++ is up to ~5.5-times faster than C# - this is not dramatic for applications, but can become a
knockout criterion for platforms and services. Obviously, STL and C++ compiler optimizers do an

excellent job here.

Update 1: There are some comments in the comments section that seem to refer to the comparison
between C++ and C# being unfair.

The core points are the statements that C++ was invented to develop close to hardware (operating
systems, platforms, drivers, ...) and C# was invented to develop fast and least error-prone (application
system level).

In general, | share the view, even if | have a problem with "inventing" - after all, it was an evolutionary
development.

Nevertheless, | generally agree with the thesis, in a few cases | also use a combination of C++ and C#
for my real projects at the application system level - because even with .NET Core or .NET 7.0, mixed
mode DLLs can be written with little effort.

LINQ vs. classic (for(...) loops, if(...) and sort(...))

o | expect LINQ to have a clear disadvantage over the classic approach.
e Expectation met. However, not as clearly as expected.

LINQ is always worse than the classic approach (for(...) loops, if(...) and sort(...)) for C++ but
not for C#.

| think the reason LINQ holds up so well in C# is because of the special data structures. While LINQ in
C++ uses vector<Element> for source data and results, LINQ in C# uses List<Element> for source
data and System.Linqg.Enumerable.WhereListIterator<Element> or
System.Linq.OrderedEnumerable<Element, int> for results. The second datatype provides explicit
access to the sort criterion and could also be seen as no longer comparable or cheating. But let's be
mild.

Win10 vs. openSUSE

| don't want to comment it further, but the tests seem to run faster om Linux with much weaker
hardware. Maybe it's because of Microsoft Defender - which is ALWAYS running in my Windows
machines.

The quite acceptable results for C# compared to C++ surprised me (I had expected at least one power
of ten as the difference) as well as pleased me (apparently 15 years of development have really had a
positive effect on C#).

Nevertheless, | wanted to be sure that C# is really that strong. So | simply multiplied the amount of
data twenty times from 640000 to 12800000.

The scaled C+ + test results are:

v Terminal - steffen@localhost:...orTest/bin/Release +t - + X
File Edit View Terminal Tabs Help
steffene@ 100300cc3f030f67c4efee1?led??5@d:warojectstodeBlocksjLINQ—SumulatorTesthian

elease>

LINQ (not ordered), run @ -> Time: 0. sec To be: 1600000 Result: 1600000
Classic (not orderﬂd); run @ -> Time: 0.036335732 sec To be: 1600000 Result: 1600000
LINQ (not ordered), run > Time: 0.10891088 s > 1600000 Result: 1600000
Classic (not ordered), run > Time: 0.0 D437 s To be: 1600000 Result: 1600000
LINQ (not ordered), run 2 -> Time: 0.109496879 sec To be: 1600000 Result: 16000080
Classic (not ordered), run 2 -> Time: 0.035541164 sec To be: 1600000 Result: 1600000
LINQ (not ordered), run > Time: 0.10¢ To be: 1600000 Result: 1600000
Classic (not ordered), run 3 -> Time: 0.0 3 sec To be: 1600000 Result: 1600000
LINQ (ordered), run @ -> Time: @.232“6’b1g ; : 1600000 Result: 1600000
Classic (ordered), run > Time: 0.121536514 s : 1600000 Result: 1600000
LINQ (ordered), run > Time: 0.235924944 sec : 1600000 Result: 1600000
Classic (ordered), run > Time: 0.123634458 sec 21 1600000 Result: 1600000
LINQ (ordered), run 2 -> Time: 0.23775 3 : 1600000 Result: 1600000
Classic (ordered), run 2 -> Time: 0.125234768 s : 1600000 Result: 1600000
LINQ (ordered), run > Time: 0.236946256 s : 1600000 Result: 1600000
Classic (ordered), run 3 -> Time: 0.1 44982 sec : 1600000 Result: 1600000

The scaled C# test results are:

* Terminal - steffen@localhost:...e/net6.0/linux-x64 (on p200300cc9f030fad32636d4as8fa’ba67.dip0.t-ipconnect. + -

File Edit View Terminal Tabs Help
steffen@p200300cc9f030fad32636d4a8fatbab?:~/Projects/dotNET/LINQ-Test/bin/Release/netb
RCFAR LIPS GEN . /L INQ-Test
LINQ (not ordered), run
Classic (not ordered), run
LINQ (not ordered), run
Classic (not ordered), run
LINQ (not ordered), run
Classic (not ordered), run
LINQ (not ordered), run

To be: 1600000 Result: 1600000
c To be: 1600008 Result: 16060000
c To be: 1600000 Result: 1600000
To be: 16008000 Result: 1600000
c To be: 1600000 Result: 1600000
c To be: 16000008 Result: 16060000
c To be: 1600008 Result: 1600000
c To be: 1600000 Result: 1600000

Time:
Time:
Time:
Time: “.1@b5r54
Time: 0.17 lw4ﬂi
Time: ’
Time:
Time:

e i I <>]
Q.

m
(3]

Q

[TV TV SV R T BV B B
Ly m
-

(TSI TR I S N

Classic (not ordered), run :
LINQ (ordered), run > Time: 0.6818162 : 1600000 Result: 1600000
Classic (ordered), run > Time: 0.6836 SEC be: 1600000 Result: 1600000

4]
s

Time: 0. sec be: 1600000 Result: 1600000
Time: ©.6521390 s : 1600000 Result: 1606000
Time: 0.6361483 sec : 1600000 Result: 1600000
Time: 0.6487451 sec >: 1600000 Result: 1600000
Time: 0.9221625 sec : 1600000 Result: 1600000
Time: 0.8348759 sec be: 1600000 Result: 1600000

LINQ (ordered), run
Classic (ordered), run
LINQ (ordered), run
Classic (ordered), run
LINQ (ordered), run
Classic (ordered), run

[

(TR TR S T (6

Which produces this summary picture:

line system HW code attempt ordering median C++ vs.C# LINQ vs. classic
1 openSUSE T520 C++ LINQ no 108.9 ms 58 % better
~2.5 times worse
2 openSUSE T520 C# LINQ no 171.8 ms 58 % worse
3 openSUSE T520 C++ classic no 359 ms 197 % better
~2.5 times better
4 openSUSE T520 C# classic no 106.7 ms 197 % worse

5 openSUSE T520 C++ LINQ yes 250.9 ms 153 % better inconsistent (C++

line system HW code attempt ordering median C++ vs.C# LINQ vs. classic

~2 times worse,

6 openSUSE T520 C# LINQ yes 636.4 ms 153 % worse C# comparable)
7 openSUSE T520 C++ classic yes 135.1 ms 383 % better inconsistent (C++
~2 times better,
8 openSUSE T520 C# classic yes 652.1 ms 383% worse C# comparable)
Discussion

All statements already made for the smaller data set are confirmed.

Update 1: The following code (C++ and C#) represents the initial version (first code generation) of my
tests except for bug fixes (that have been integrated meanwhile). Many comments in the comment
section make suggestions to make the code more efficient. This ranges from more modern notations
(e.g. for the properties) to recommendations for benchmark libraries.

First of all, thanks for that! | have tried/implemented many of these suggestions. For the suggestions
to make the C++ code more efficient, it turned out that the GNU C++ compiler optimizes so
efficiently that the code changes had no measurable effects. For the suggestions to make the C# code
more efficient, with a lot of good will you can read an improvement into the measurement results -
but the C# compiler also optimizes very efficiently.

From the suggestions for benchmark libraries, | only took the idea of providing a clean interface for
result evaluation and presenting the results more compactly and clearly. The benchmark libraries for
C++ and C# differ so much that it would affect the comparability of the approaches too much and so |
decided to use a self-implemented solution that works exactly identically in C++ and C#.

| am happy to provide the enhanced code here:
Improved code for C++ Download LINQ-SimulationTest.zip
Improved code for C# Download LINQ-Test.zip

The C++ Test Code (first code generation)
The code is exactly the same for Win10 and openSUSE.

C++

#tinclude <iostream>
#include <iomanip>
#tinclude <vector>
#tinclude <chrono>
#include "booling.h"

using namespace std;
using namespace booling;

static const size_t VECTORSIZE = 640000,

class Element

{
private:
int tag;
int order;
int data;
public:
int getTag() const { return tag; }
void setTag(int t) { tag = t; }
int getOrder() const { return order; }
void setOrder(int o) { order = o; }
int getData() const { return data; }
void setData(int d) { data = d; }
inline bool operator<(const Element& b)
{
return this->order * VECTORSIZE + this->data < b.order* VECTORSIZE + b.data;
}
}s5
void checkResults(vector<Element> resultVector)
{
int d = 9;
int o = 9;
for (auto it = resultVector.begin(); it != resultVector.end(); it++)
{
if (d > it->getData() & & o > it->getOrder())
throw "Ordering failed";
d = it->getData();
o = it->getOrder();
}
}

void testClasic(vector<Element> testVector, bool order, int run)

{

auto startTime = chrono::high_resolution_clock: :now();
vector<Element> resultVector;
for (auto it = testVector.begin(); it != testVector.end(); it++)

{
if (it->getTag() < 1)

{
resultVector.push_back(*it);
}
}
if(order)

sort(resultVector.begin(), resultVector.end());

if (resultVector.size() != VECTORSIZE / 8)
throw "Number of result elements not correct!";

checkResults(resultVector);
auto endTime = chrono::high_resolution_clock: :now();

auto ordering = (order ? "ordered" : "not ordered");

double timeTaken = chrono::duration_cast<chrono::nanoseconds>
(endTime - startTime).count() / 1000000000.0;

cout << "Classic (" << ordering << "), run " << run << -> Time: "

<< setprecision(9) << timeTaken << sec" << " To be: "
<< VECTORSIZE / 8 << " Result: " << resultVector.size() << endl;

}

void testLINQ(vector<Element> testVector, bool order, int run)

{

auto startTime = chrono::high_resolution_clock: :now();

auto resultVector = (order ?
from(testVector).where([](const Element& element)
{ return element.getTag() < 1; })
.orderBy([](const Element& element)
{ return element.getOrder() * VECTORSIZE +
element.getData(); })
.toStdvector() :
from(testVector).where([](const Element& element)
{ return element.getTag() < 1; })
.toStdVector());
if (resultVector.size() != VECTORSIZE / 8)
throw "Number of result elements not correct!"”;

checkResults(resultVector);
auto endTime = chrono::high_resolution_clock: :now();

auto ordering = (order ? "ordered" : "not ordered");

double timeTaken = chrono::duration_cast<chrono::nanoseconds>
(endTime - startTime).count() / 1000000000.0;

-> Time: "

cout << "LINQ (" << ordering << "), run " << run <<

<< setprecision(9) << timeTaken << sec" << " To be:
<< VECTORSIZE / 8 << " Result: " << resultVector.size() << endl;

}

int main()
{
vector<Element> testVector(VECTORSIZE);
for (size_t index = ©; index < VECTORSIZE; index++)

{
testVector[index].setTag(index % 8);
testVector[index].setOrder(index % 12);
testVector[index].setData(index);

}

for (int run = ©; run < 4; run++)

{
testLINQ(testVector, false, run);
testClasic(testVector, false, run);

for (int run = ©; run < 4; run++)

{
testLINQ(testVector, true, run);

testClasic(testVector, true, run);

}

int i;
cin >> i;

return 0;

The C# Test Code (first code generation)
The code is exactly the same for Win10 and openSUSE.

C#

using System;

using System.Collections.Generic;
using System.Diagnostics;

using System.Ling;

namespace LINQtest

{
public static class Settings
{
public const int VECTORSIZE = 640000;
}

class Element : IComparable<Element>

{

private int tag;
private int order;
private int data;

public Element(int t, int o, int d)

{
tag = t;
order = o;
data = d;
}

public int Tag { get { return tag; } set { tag = value; } }
public int Order { get { return order; } set { order = value; } }
public int Data { get { return data; } set { data = value; } }

public int CompareTo(Element? b)
{
if (b == null)
return 1;
return (b.order * Settings.VECTORSIZE + b.data) -
(order * Settings.VECTORSIZE + data);

}

class Program

{

static void checkResults(IEnumerable<Element> resultVector)

{

int d = 9;

int o = 0;

foreach (var element in resultVector)
{

if (d > element.Data & & o > element.Order)
throw new Exception("Ordering failed");
element.Data;

element.Order;

d
o}

}

static void testClasic(List<Element> testVector, bool order, int run)

{
Stopwatch sw = new Stopwatch();

sw.Start();

var resultVector = new List<Element>(testVector.Count / 8);

foreach (var element in testVector)

{
if (element.Tag < 1)
resultVector.Add(element);
}
if (order)

resultVector.Sort();

if (resultVector.Count != Settings.VECTORSIZE / 8)

throw new Exception("Number of result elements not correct!");

checkResults(resultVector);

sw.Stop();

var ordering = (order ? "ordered" : "not ordered");
Console.Writeline(

"Classic ({@0}), run {1} -> Time: {2} sec To be: {3} Result: {4}",

ordering, run, sw.Elapsed.ToString().Substring(7),
Settings.VECTORSIZE / 8, resultVector.Count());

}

static void testLINQ(List<Element> testVector, bool order, int run)
{

Stopwatch sw = new Stopwatch();

sw.Start();

var resultVector = (order ?
testVector.Where(element => element.Tag < 1)
.OrderBy(element => element.Order *
Settings.VECTORSIZE + element.Data)
testVector.Where(element => element.Tag < 1)).TolList();

if (resultVector.Count() != Settings.VECTORSIZE / 8)
throw new Exception("Number of result elements not correct!");

checkResults(resultVector);
sw.Stop();

var ordering = (order ? "ordered" : "not ordered");
Console.Writeline(
"LINQ ({e}), run {1} -> Time: {2} sec To be: {3} Result: {4}",
ordering, run, sw.Elapsed.ToString().Substring(7),
Settings.VECTORSIZE / 8, resultVector.Count());

}

static void Main(string[] args)

{

var testVector
for (int index

new List<Element>(Settings.VECTORSIZE);
0; index < Settings.VECTORSIZE; index++)

testVector.Add(new Element(index % 8, index % 12, index));

for (int run = ©; run < 4; run++)

testLINQ(testVector, false, run);
testClasic(testVector, false, run);

for (int run = 0; run < 4; run++)

testLINQ(testVector, true, run);
testClasic(testVector, true, run);

var key = Console.ReadKey();

Code Compilation on Win10

| used Visual Studio 2019 projects for C++ and C#.

Code Compilation on openSUSE

To compile the C++ code, | created a Code::Blocks 20.3 project and used the gcc-c++ 12.
To compile the C# code | used NET6.0 SDK and this shell script:

Shell

[<-- The path to the *.scproj file
|<-- The target folder (the result will also be in the bin/Release folder).

dotnet publish . --configuration Release --framework net6.0 --output ./pub
--self-contained false --runtime linux-x64 --verbosity quiet

Update 1: In the meantime, | upgraded from .NET 6.0 to .NET 7.0. All | had to do for the conversion of
the tests was to change from net6.0 to net7.0 in the shell script and in the project file (*.csproj).

| wanted to know how far apart LINQ and the classic approach (for(...) loops, if(...) and
sort(...)) arein their respective best manifestations.

It turns out that for C++, the classic approach is the most performant while for C#, the use of LINQ is
recommended. And there seem to be good reasons for this. While LINQ for C++ only means
additional overhead, LINQ in C# can more than compensate this additional overhead by the special
data structures (System.Ling.Enumerable.WherelListIterator<Element> and
System.Ling.OrderedEnumerable<Element, int>).

Update 1: In the meantime, | upgraded from .NET 6.0 to .NET 7.0. The following shows the
measurement results on openSUSE (on Win10 it has already been shown that the spread of the
measurement results hardly allows reliable statements).

These measurement results were obtained with the enhanced code, the more compact and clearer
output of the measurement results (new clean benchmark interface) and the increase of the runs to 9
evaluated runs.

| repeated the tests 3 times - and could not detect any acceleration on .NET 7.0:

Platform environment: Unix

Runtime environment: .NETCoreApp,Version=<code>v6.0</code>

| Measurement set | N | Mean | Error | StdDev | Ratio |
[| oo [E— [R— [E— | oo |
LINQ (not ordered)	9	©.197s	©.037s	©.020s	1.00
Classic (not ordered)	9	©.106 s	©.000s	©.000s	.54
LINQ (ordered)	9	®©.658s	©.e41s	©.019 s	3.35
Classic (ordered)	9	©.686s	©.037s	©.020s	3.49
Measurement set	N	Mean	Error	StdDev	Ratio
[oo [E— [R— [R—	-			
LINQ (not ordered)	9	©.197s	©.e38s	©.020s	1.00
Classic (not ordered)	9	©.106 s	©.0006s	©.000s	0.54
LINQ (ordered)	9	®©.659s	©.041s	©.019s	3.35
Classic (ordered)	9	®©.699s	©.036s	©.019s	3.51
Measurement set [N	Mean	Error	StdDev	Ratio	
[E———	---e- [E——	oo .	-----		
LINQ (not ordered)	9	©.196s	©.035s	©.019s	1.e0

| Classic (not ordered) | 9| ©.106 s | ©.001s | ©.001s | .54 |

| LINQ (ordered) | 9| ©.659s | ©0.039s | ©.018s | 3.36 |
| Classic (ordered) | 9| ©.691s | ©.035s | ©.019s | 3.53 |
Platform environment: Unix

Runtime environment: .NETCoreApp,Version=<code>v7.0</code>

| Measurement set | N | Mean | Error | StdDev | Ratio |
[————— | e [E— [R— [— | - |
LINQ (not ordered) [9	©.196s	©.038s	©.020s	1.00	
Classic (not ordered)	9	®©.165s	©.e01s	©.000s	0.54
LINQ (ordered)	9	e.661s	©.050s	©.025s	3.38
Classic (ordered)	9	©.764s	©.035s	©.019s	3.91
Measurement set	N	Mean	Error	StdDev	Ratio
[———	----- [E—	oo -	-----		
LINQ (not ordered)	9	©.198s	©.e38s	©.020s	1.00
Classic (not ordered)	9	©.108s	©.000s	©.000s	.55
LINQ (ordered)	9	©.660s	©.042s	©.020s	3.33
Classic (ordered)	9	©.778 s	©.036 s	©.018 s	3.93
Measurement set	N	Mean	Error	StdDev	Ratio
[oo [E— [R— [E—	oo			
LINQ (not ordered)	9	©.197 s	©.038s	©.020s	1.00
Classic (not ordered)	9	©.103s	©.001s	©.001s	.52
LINQ (ordered)	9	®©.657s	©.e42s	©.019s	3.33
Classic (ordered)	9	©.771 s	©.836 s	©.019 s	3.91

e 15t November, 2022: Initial version

o 6™ November, 2022: Correction: The sorting in C++ was not switched off. Consequently, all
measurements for C++ had to be redone as well.

e 9th November, 2022: Correction: The sorting in C# was sorting the input data instead the result
data, all measurements for C# had to be redone as well.

e 161" November, 2022: Update 1 - Enhanced code for C++ and C#, .NET 7.0

This article, along with any associated source code and files, is licensed under The Code Project Open
License (CPOL)

Written By

Steffen Ploetz
CEO Symbioworld GmbH
= Germany

| am currently the CEO of Symbioworld GmbH and as such responsible for personnel management,
information security, data protection and certifications. Furthermore, as a senior programmer, | am
responsible for the automatic layout engine, the simulation (Activity Based Costing), the automatic
creation of Word/RTF reports and the data transformation in complex migration projects.

The main focus of my work as a programmer is the development of Microsoft Azure Services using C#
and Visual Studio.

Privately, | am interested in C++ and Linux in addition to C#. | like the approach of open source
software and like to support OSS with own contributions.

Comments and Discussions

=53 messages have been posted for this article Visit
https://www.codeproject.com/Articles/5345621/LINQ-and-Performance to post and view
comments on this article, or click here to get a print view with messages.

Permalink Article Copyright 2022 by Steffen Ploetz
Advertise Everything else Copyright © CodeProject,
Privacy 1999-2022
Cookies

Terms of Use Web03 2.8:2022-11-08:1

