
2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 1/12

Rockford Lhotka

Home | Lhotka.net | CSLA .NET

On this page....

Migrating from .NET to .NET
Standard

Search

 Search

Archives

六⽉, 2020 (1)

九⽉, 2019 (3)

八⽉, 2019 (2)

六⽉, 2019 (1)

四⽉, 2019 (2)

⼀⽉, 2019 (1)

⼗⼆⽉, 2018 (1)

⼗⼀⽉, 2018 (1)

⼗⽉, 2018 (1)

九⽉, 2018 (3)

八⽉, 2018 (3)

六⽉, 2018 (4)

五⽉, 2018 (1)

四⽉, 2018 (3)

三⽉, 2018 (4)

⼗⼆⽉, 2017 (1)

⼗⼀⽉, 2017 (2)

⼗⽉, 2017 (1)

九⽉, 2017 (3)

八⽉, 2017 (1)

七⽉, 2017 (1)

六⽉, 2017 (1)

五⽉, 2017 (1)

四⽉, 2017 (2)

三⽉, 2017 (1)

⼆⽉, 2017 (2)

⼀⽉, 2017 (2)

⼗⼆⽉, 2016 (5)

⼗⼀⽉, 2016 (2)

八⽉, 2016 (4)

七⽉, 2016 (2)

六⽉, 2016 (4)

五⽉, 2016 (3)

四⽉, 2016 (4)

三⽉, 2016 (1)

⼆⽉, 2016 (7)

⼀⽉, 2016 (4)

⼗⼆⽉, 2015 (4)

⼗⼀⽉, 2015 (2)

⼗⽉, 2015 (2)

九⽉, 2015 (3)

八⽉, 2015 (3)

七⽉, 2015 (2)

六⽉, 2015 (2)

五⽉, 2015 (1)

⼆⽉, 2015 (1)

⼀⽉, 2015 (1)

⼗⽉, 2014 (1)

八⽉, 2014 (2)

 2 0 1 9年1⽉1 1⽇

« CSLA .NET Version 4.9 New Features | Main | Remaining Relevant as a .NET Developer »

Migrating from .NET to .NET Standard
During 2018 I gave a talk at some VS Live events discussing how one might migrate
existing .NET Framework enterprise apps/code to .NET Core. In this talk I have some
assumptions I think are reasonable:

Most of us can't do a "big bang" rewrite of our apps/code all in one shot
It'll take months or years to migrate from .NET to .NET Core
During this time it is necessary to maintain the existing code while working
on the new code

A lot of existing code is still on .NET 2, 3, and 4
We're talking Windows Forms, WPF, and ASP.NET code - lots of variety

In most cases business logic is embedded in the UI - code-behind
forms/pages or in controllers
Editorial observation: More people should be using CSLA to gain separation
of concerns: keep their business logic in a separate and reusable layer from
the UI or data access 😃

In most cases you are not just migrating from .NET Framework to .NET Core,
but also modernizing/rewriting the UI to also be modern

Replacing Windows Forms and WPF with ASP.NET Core Razor Pages or MVC,
or Xamarin Forms
Maybe upgrading Windows Forms or WPF to the new .NET Core 3.0 support
once it is available

Several people have asked if I'd blog the gist of my presentation, so here it is.

In summary:

Step 0: Understand .NET Core vs .NET Standard
Step 1: Get to .NET 4.6.1 or Higher
Step 2: Separation of Concerns
Step 3: Move Business Code to Shared Library
Step 4: Create .NET Standard Project
Step 5: Mitigate Dependency Conflicts
Step 6: Mitigate Code Conflicts
Step 7: Have a Glass of Bourbon

The code used in my talk and this post is the Net2NetStandard solution on GitHub.

Step 0: Understand .NET Core vs .NET Standard

I've encountered a lot of confusion between .NET Core and .NET Standard and .NET
Framework. It is important to have a good understanding of these terms before
moving forward at all, so you end up in the right place.

.NET Framework is the "legacy" .NET implementation we've been using since
2002, and the long-term goal is to move off .NET Framework onto something
more modern
.NET Core is a new implementation of .NET that currently supports two types of
UI: console and web server. .NET Core 3 is slated to also support Windows
Forms and WPF UI frameworks. It does not currently support Xamarin (iOS,
Android, Mac, Linux), or WebAssembly (mono-wasm/Blazor).
.NET Standard is an interface against which you can write code, and that
interface is implemented by .NET Framework 4.6.1+ and by .NET Core 2+ and
by Xamarin (and by mono and mono-wasm). If you write your code against .NET
Standard, then your compiled DLL can be deployed to .NET Framework, .NET
Core, Xamarin, and other .NET implementations.

As a result, my recommendation is that you should always get as much of your code
into .NET Standard as possible, because the resulting compiled DLL can run
essentially anywhere.

http://www.lhotka.net/weblog
http://www.lhotka.net/
http://www.cslanet.com/
http://www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx#a2b40bb30-2530-4631-a30a-a8f913304b86
http://feeds.feedburner.com/RockfordLhotka
http://www.lhotka.net/weblog/default,month,2020-06.aspx
http://www.lhotka.net/weblog/default,month,2019-09.aspx
http://www.lhotka.net/weblog/default,month,2019-08.aspx
http://www.lhotka.net/weblog/default,month,2019-06.aspx
http://www.lhotka.net/weblog/default,month,2019-04.aspx
http://www.lhotka.net/weblog/default,month,2019-01.aspx
http://www.lhotka.net/weblog/default,month,2018-12.aspx
http://www.lhotka.net/weblog/default,month,2018-11.aspx
http://www.lhotka.net/weblog/default,month,2018-10.aspx
http://www.lhotka.net/weblog/default,month,2018-09.aspx
http://www.lhotka.net/weblog/default,month,2018-08.aspx
http://www.lhotka.net/weblog/default,month,2018-06.aspx
http://www.lhotka.net/weblog/default,month,2018-05.aspx
http://www.lhotka.net/weblog/default,month,2018-04.aspx
http://www.lhotka.net/weblog/default,month,2018-03.aspx
http://www.lhotka.net/weblog/default,month,2017-12.aspx
http://www.lhotka.net/weblog/default,month,2017-11.aspx
http://www.lhotka.net/weblog/default,month,2017-10.aspx
http://www.lhotka.net/weblog/default,month,2017-09.aspx
http://www.lhotka.net/weblog/default,month,2017-08.aspx
http://www.lhotka.net/weblog/default,month,2017-07.aspx
http://www.lhotka.net/weblog/default,month,2017-06.aspx
http://www.lhotka.net/weblog/default,month,2017-05.aspx
http://www.lhotka.net/weblog/default,month,2017-04.aspx
http://www.lhotka.net/weblog/default,month,2017-03.aspx
http://www.lhotka.net/weblog/default,month,2017-02.aspx
http://www.lhotka.net/weblog/default,month,2017-01.aspx
http://www.lhotka.net/weblog/default,month,2016-12.aspx
http://www.lhotka.net/weblog/default,month,2016-11.aspx
http://www.lhotka.net/weblog/default,month,2016-08.aspx
http://www.lhotka.net/weblog/default,month,2016-07.aspx
http://www.lhotka.net/weblog/default,month,2016-06.aspx
http://www.lhotka.net/weblog/default,month,2016-05.aspx
http://www.lhotka.net/weblog/default,month,2016-04.aspx
http://www.lhotka.net/weblog/default,month,2016-03.aspx
http://www.lhotka.net/weblog/default,month,2016-02.aspx
http://www.lhotka.net/weblog/default,month,2016-01.aspx
http://www.lhotka.net/weblog/default,month,2015-12.aspx
http://www.lhotka.net/weblog/default,month,2015-11.aspx
http://www.lhotka.net/weblog/default,month,2015-10.aspx
http://www.lhotka.net/weblog/default,month,2015-09.aspx
http://www.lhotka.net/weblog/default,month,2015-08.aspx
http://www.lhotka.net/weblog/default,month,2015-07.aspx
http://www.lhotka.net/weblog/default,month,2015-06.aspx
http://www.lhotka.net/weblog/default,month,2015-05.aspx
http://www.lhotka.net/weblog/default,month,2015-02.aspx
http://www.lhotka.net/weblog/default,month,2015-01.aspx
http://www.lhotka.net/weblog/default,month,2014-10.aspx
http://www.lhotka.net/weblog/default,month,2014-08.aspx
http://www.lhotka.net/weblog/default,date,2019-01-11.aspx
http://www.lhotka.net/weblog/CSLANETVersion49NewFeatures.aspx
http://www.lhotka.net/weblog/default.aspx
http://www.lhotka.net/weblog/RemainingRelevantAsANETDeveloper.aspx
http://www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx
http://www.lhotka.net/weblog/ct.ashx?id=2b40bb30-2530-4631-a30a-a8f913304b86&url=https%3a%2f%2fvslive.com
http://www.lhotka.net/weblog/ct.ashx?id=2b40bb30-2530-4631-a30a-a8f913304b86&url=https%3a%2f%2fcslanet.com
http://www.lhotka.net/weblog/ct.ashx?id=2b40bb30-2530-4631-a30a-a8f913304b86&url=https%3a%2f%2fgithub.com%2frockfordlhotka%2fnet2netstandard


2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 2/12

七⽉, 2014 (3)

六⽉, 2014 (4)

五⽉, 2014 (2)

四⽉, 2014 (6)

三⽉, 2014 (4)

⼆⽉, 2014 (4)

⼀⽉, 2014 (2)

⼗⼆⽉, 2013 (3)

⼗⽉, 2013 (3)

八⽉, 2013 (5)

七⽉, 2013 (2)

五⽉, 2013 (3)

四⽉, 2013 (2)

三⽉, 2013 (3)

⼆⽉, 2013 (7)

⼀⽉, 2013 (4)

⼗⼆⽉, 2012 (3)

⼗⼀⽉, 2012 (3)

⼗⽉, 2012 (7)

九⽉, 2012 (1)

八⽉, 2012 (4)

七⽉, 2012 (3)

六⽉, 2012 (5)

五⽉, 2012 (4)

四⽉, 2012 (6)

三⽉, 2012 (10)

⼆⽉, 2012 (2)

⼀⽉, 2012 (2)

⼗⼆⽉, 2011 (4)

⼗⼀⽉, 2011 (6)

⼗⽉, 2011 (14)

九⽉, 2011 (5)

八⽉, 2011 (3)

六⽉, 2011 (2)

五⽉, 2011 (1)

四⽉, 2011 (3)

三⽉, 2011 (6)

⼆⽉, 2011 (3)

⼀⽉, 2011 (6)

⼗⼆⽉, 2010 (3)

⼗⼀⽉, 2010 (8)

⼗⽉, 2010 (6)

九⽉, 2010 (6)

八⽉, 2010 (7)

七⽉, 2010 (8)

六⽉, 2010 (6)

五⽉, 2010 (8)

四⽉, 2010 (13)

三⽉, 2010 (7)

⼆⽉, 2010 (5)

⼀⽉, 2010 (9)

⼗⼆⽉, 2009 (6)

⼗⼀⽉, 2009 (8)

⼗⽉, 2009 (11)

九⽉, 2009 (5)

八⽉, 2009 (5)

七⽉, 2009 (10)

六⽉, 2009 (5)

五⽉, 2009 (7)

四⽉, 2009 (7)

三⽉, 2009 (11)

⼆⽉, 2009 (6)

If all you do is get your code to .NET Core, that currently blocks you from reusing
that code on .NET Framework, Xamarin, WebAssembly, and other .NET
implementations.

All that said, it is important to understand that your UI code will almost certainly be
.NET platform specific. In other words, you'll choose to write a console app, a web
site, a mobile app, or a desktop app in a specific implementation of .NET. So your UI
is not portable or reusable to the same degree as non-UI code.

Your non-UI code should always be built with .NET Standard so it is as portable as
possible, enabling reuse of that code in current and future .NET implementations and
UI technologies.

This is why my talk (and this post) are about how to get to .NET Standard, not .NET
Core. .NET Standard gets you to .NET Core plus Xamarin and other platforms.

Step 1: Get to .NET 4.6.1 or Higher

Version 4.6.1 of the .NET Framework is special, because this is the earliest version
that is compatible with .NET Standard 2.0. In reality you'll probably want to get to
4.7.1 or whatever version exists when you start this journey, but the minimum bar is
4.6.1.

Basically, if your existing code won't run on .NET 4.6.1, you'll need to take whatever
steps are necessary to get from your older unsupported version (2? 3? 3.5? 4.0?
4.5?) to 4.6.1 or higher.

Fortunately this is usually not that difficult, because Microsoft has done a good job of
minimizing breaking changes and preserving backward compatibility over time.

Step 2: Separation of Concerns

This is almost certainly the hardest step: if your existing code is "typical" it probably
has tons of non-UI logic in button click or lostfocus event handlers, postback
handlers, or controller methods. People have "enjoyed" this style of coding since VB3
back in the early 1990's and it persists through today.

The problem is that moving the UI to .NET Standard is a whole different thing from
moving business logic or even data access logic to .NET Standard. Yes, .NET Core 3.0
is planned to have Windows Forms and WPF support, so that should help. But I
suspect for most people the migration from .NET Framework to .NET Core ultimately
means rewriting the UI into something more modern.

As a result, any code embedded in the UI or presentation layer needs to be cleaned
up. You need to apply the concept of separation of concerns and get non-UI code out
of the UI. That means no business or data access logic in code-behind or controllers
or viewmodels. The goal should be (in my view) that all business logic (validation,
calculations, manipulation, rules, authorization) is in a separate business layer, and
all data access logic is in its own layer.

http://www.lhotka.net/weblog/default,month,2014-07.aspx
http://www.lhotka.net/weblog/default,month,2014-06.aspx
http://www.lhotka.net/weblog/default,month,2014-05.aspx
http://www.lhotka.net/weblog/default,month,2014-04.aspx
http://www.lhotka.net/weblog/default,month,2014-03.aspx
http://www.lhotka.net/weblog/default,month,2014-02.aspx
http://www.lhotka.net/weblog/default,month,2014-01.aspx
http://www.lhotka.net/weblog/default,month,2013-12.aspx
http://www.lhotka.net/weblog/default,month,2013-10.aspx
http://www.lhotka.net/weblog/default,month,2013-08.aspx
http://www.lhotka.net/weblog/default,month,2013-07.aspx
http://www.lhotka.net/weblog/default,month,2013-05.aspx
http://www.lhotka.net/weblog/default,month,2013-04.aspx
http://www.lhotka.net/weblog/default,month,2013-03.aspx
http://www.lhotka.net/weblog/default,month,2013-02.aspx
http://www.lhotka.net/weblog/default,month,2013-01.aspx
http://www.lhotka.net/weblog/default,month,2012-12.aspx
http://www.lhotka.net/weblog/default,month,2012-11.aspx
http://www.lhotka.net/weblog/default,month,2012-10.aspx
http://www.lhotka.net/weblog/default,month,2012-09.aspx
http://www.lhotka.net/weblog/default,month,2012-08.aspx
http://www.lhotka.net/weblog/default,month,2012-07.aspx
http://www.lhotka.net/weblog/default,month,2012-06.aspx
http://www.lhotka.net/weblog/default,month,2012-05.aspx
http://www.lhotka.net/weblog/default,month,2012-04.aspx
http://www.lhotka.net/weblog/default,month,2012-03.aspx
http://www.lhotka.net/weblog/default,month,2012-02.aspx
http://www.lhotka.net/weblog/default,month,2012-01.aspx
http://www.lhotka.net/weblog/default,month,2011-12.aspx
http://www.lhotka.net/weblog/default,month,2011-11.aspx
http://www.lhotka.net/weblog/default,month,2011-10.aspx
http://www.lhotka.net/weblog/default,month,2011-09.aspx
http://www.lhotka.net/weblog/default,month,2011-08.aspx
http://www.lhotka.net/weblog/default,month,2011-06.aspx
http://www.lhotka.net/weblog/default,month,2011-05.aspx
http://www.lhotka.net/weblog/default,month,2011-04.aspx
http://www.lhotka.net/weblog/default,month,2011-03.aspx
http://www.lhotka.net/weblog/default,month,2011-02.aspx
http://www.lhotka.net/weblog/default,month,2011-01.aspx
http://www.lhotka.net/weblog/default,month,2010-12.aspx
http://www.lhotka.net/weblog/default,month,2010-11.aspx
http://www.lhotka.net/weblog/default,month,2010-10.aspx
http://www.lhotka.net/weblog/default,month,2010-09.aspx
http://www.lhotka.net/weblog/default,month,2010-08.aspx
http://www.lhotka.net/weblog/default,month,2010-07.aspx
http://www.lhotka.net/weblog/default,month,2010-06.aspx
http://www.lhotka.net/weblog/default,month,2010-05.aspx
http://www.lhotka.net/weblog/default,month,2010-04.aspx
http://www.lhotka.net/weblog/default,month,2010-03.aspx
http://www.lhotka.net/weblog/default,month,2010-02.aspx
http://www.lhotka.net/weblog/default,month,2010-01.aspx
http://www.lhotka.net/weblog/default,month,2009-12.aspx
http://www.lhotka.net/weblog/default,month,2009-11.aspx
http://www.lhotka.net/weblog/default,month,2009-10.aspx
http://www.lhotka.net/weblog/default,month,2009-09.aspx
http://www.lhotka.net/weblog/default,month,2009-08.aspx
http://www.lhotka.net/weblog/default,month,2009-07.aspx
http://www.lhotka.net/weblog/default,month,2009-06.aspx
http://www.lhotka.net/weblog/default,month,2009-05.aspx
http://www.lhotka.net/weblog/default,month,2009-04.aspx
http://www.lhotka.net/weblog/default,month,2009-03.aspx
http://www.lhotka.net/weblog/default,month,2009-02.aspx


2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 3/12

⼀⽉, 2009 (9)

⼗⼆⽉, 2008 (5)

⼗⼀⽉, 2008 (4)

⼗⽉, 2008 (7)

九⽉, 2008 (8)

八⽉, 2008 (11)

七⽉, 2008 (11)

六⽉, 2008 (10)

五⽉, 2008 (6)

四⽉, 2008 (8)

三⽉, 2008 (9)

⼆⽉, 2008 (6)

⼀⽉, 2008 (6)

⼗⼆⽉, 2007 (6)

⼗⼀⽉, 2007 (9)

⼗⽉, 2007 (7)

九⽉, 2007 (5)

八⽉, 2007 (8)

七⽉, 2007 (6)

六⽉, 2007 (8)

五⽉, 2007 (7)

四⽉, 2007 (9)

三⽉, 2007 (8)

⼆⽉, 2007 (5)

⼀⽉, 2007 (9)

⼗⼆⽉, 2006 (4)

⼗⼀⽉, 2006 (3)

⼗⽉, 2006 (4)

九⽉, 2006 (9)

八⽉, 2006 (4)

七⽉, 2006 (9)

六⽉, 2006 (4)

五⽉, 2006 (10)

四⽉, 2006 (4)

三⽉, 2006 (11)

⼆⽉, 2006 (3)

⼀⽉, 2006 (13)

⼗⼆⽉, 2005 (6)

⼗⼀⽉, 2005 (7)

⼗⽉, 2005 (4)

九⽉, 2005 (9)

八⽉, 2005 (6)

七⽉, 2005 (7)

六⽉, 2005 (5)

五⽉, 2005 (4)

四⽉, 2005 (7)

三⽉, 2005 (16)

⼆⽉, 2005 (17)

⼀⽉, 2005 (17)

⼗⼆⽉, 2004 (13)

⼗⼀⽉, 2004 (7)

⼗⽉, 2004 (14)

九⽉, 2004 (11)

八⽉, 2004 (7)

七⽉, 2004 (3)

六⽉, 2004 (6)

五⽉, 2004 (3)

四⽉, 2004 (2)

三⽉, 2004 (1)

⼆⽉, 2004 (5)

Categories

  AspNetCore

In short, you'll have a much easier time migrating code outside the UI to .NET
Standard than any code inside the UI.

Step 3: Move Business Code to Shared Library

Now we get to the fun part. This step is in some ways the simplest and yet the most
scary.

Right now your code is in a .NET Framework Class Library project. That means it
compiles specifically for the .NET Framework, and uses .NET Framework specific
dependency references. And this is your existing, running code, so we want to
minimize risk in changing it, because changes to this code and existing references
and even the csproj file will have a direct impact on your production environment.

The Net2NetStandard solution is intentionally stripped down to the bare minimum.
My talk is often a 20 minute lightning talk, so the demo needs to be concise, and this
qualifies. The start point is a .NET Framework Class Library project with some
existing production code. That code uses Newtonsoft.Json and Entity Framework,
with NuGet references to both dependencies.

http://www.lhotka.net/weblog/default,month,2009-01.aspx
http://www.lhotka.net/weblog/default,month,2008-12.aspx
http://www.lhotka.net/weblog/default,month,2008-11.aspx
http://www.lhotka.net/weblog/default,month,2008-10.aspx
http://www.lhotka.net/weblog/default,month,2008-09.aspx
http://www.lhotka.net/weblog/default,month,2008-08.aspx
http://www.lhotka.net/weblog/default,month,2008-07.aspx
http://www.lhotka.net/weblog/default,month,2008-06.aspx
http://www.lhotka.net/weblog/default,month,2008-05.aspx
http://www.lhotka.net/weblog/default,month,2008-04.aspx
http://www.lhotka.net/weblog/default,month,2008-03.aspx
http://www.lhotka.net/weblog/default,month,2008-02.aspx
http://www.lhotka.net/weblog/default,month,2008-01.aspx
http://www.lhotka.net/weblog/default,month,2007-12.aspx
http://www.lhotka.net/weblog/default,month,2007-11.aspx
http://www.lhotka.net/weblog/default,month,2007-10.aspx
http://www.lhotka.net/weblog/default,month,2007-09.aspx
http://www.lhotka.net/weblog/default,month,2007-08.aspx
http://www.lhotka.net/weblog/default,month,2007-07.aspx
http://www.lhotka.net/weblog/default,month,2007-06.aspx
http://www.lhotka.net/weblog/default,month,2007-05.aspx
http://www.lhotka.net/weblog/default,month,2007-04.aspx
http://www.lhotka.net/weblog/default,month,2007-03.aspx
http://www.lhotka.net/weblog/default,month,2007-02.aspx
http://www.lhotka.net/weblog/default,month,2007-01.aspx
http://www.lhotka.net/weblog/default,month,2006-12.aspx
http://www.lhotka.net/weblog/default,month,2006-11.aspx
http://www.lhotka.net/weblog/default,month,2006-10.aspx
http://www.lhotka.net/weblog/default,month,2006-09.aspx
http://www.lhotka.net/weblog/default,month,2006-08.aspx
http://www.lhotka.net/weblog/default,month,2006-07.aspx
http://www.lhotka.net/weblog/default,month,2006-06.aspx
http://www.lhotka.net/weblog/default,month,2006-05.aspx
http://www.lhotka.net/weblog/default,month,2006-04.aspx
http://www.lhotka.net/weblog/default,month,2006-03.aspx
http://www.lhotka.net/weblog/default,month,2006-02.aspx
http://www.lhotka.net/weblog/default,month,2006-01.aspx
http://www.lhotka.net/weblog/default,month,2005-12.aspx
http://www.lhotka.net/weblog/default,month,2005-11.aspx
http://www.lhotka.net/weblog/default,month,2005-10.aspx
http://www.lhotka.net/weblog/default,month,2005-09.aspx
http://www.lhotka.net/weblog/default,month,2005-08.aspx
http://www.lhotka.net/weblog/default,month,2005-07.aspx
http://www.lhotka.net/weblog/default,month,2005-06.aspx
http://www.lhotka.net/weblog/default,month,2005-05.aspx
http://www.lhotka.net/weblog/default,month,2005-04.aspx
http://www.lhotka.net/weblog/default,month,2005-03.aspx
http://www.lhotka.net/weblog/default,month,2005-02.aspx
http://www.lhotka.net/weblog/default,month,2005-01.aspx
http://www.lhotka.net/weblog/default,month,2004-12.aspx
http://www.lhotka.net/weblog/default,month,2004-11.aspx
http://www.lhotka.net/weblog/default,month,2004-10.aspx
http://www.lhotka.net/weblog/default,month,2004-09.aspx
http://www.lhotka.net/weblog/default,month,2004-08.aspx
http://www.lhotka.net/weblog/default,month,2004-07.aspx
http://www.lhotka.net/weblog/default,month,2004-06.aspx
http://www.lhotka.net/weblog/default,month,2004-05.aspx
http://www.lhotka.net/weblog/default,month,2004-04.aspx
http://www.lhotka.net/weblog/default,month,2004-03.aspx
http://www.lhotka.net/weblog/default,month,2004-02.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=%20AspNetCore
http://www.lhotka.net/weblog/CategoryView,category,%2BAspNetCore.aspx


2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 4/12

  Kubernetes

 .NET Core

 .NET Standard

 Android

 Architecture

 ASP.NET MVC

 AspNetCore

 Blazor

 Books

 Bxf

 CSLA .NET

 dasBlog

 Distributed OO

 Docker

 git

 Git

 gRPC

 h5js

 Hololens

 iOS

 JavaScript

 Kubernetes

 Magenic

 Microservices

 Microsoft .NET

 mono

 MonoDroid

 MonoTouch

 MOslo

 News

 Ooui

 Programming

 RabbitMQ

 Service-Oriented

 Silverlight

 Surface

 UWP

 VSTS

 WCF

 Web

 WebAssembly

 Windows 10

 Windows 8

 Windows Azure

 Windows Forms

 Windows Phone

 WinRT

 WomenInTech

 Workflow

 WP7

 WP8

 WPF

 Xamarin

 Xbox

 Zune

About

Powered by: newtelligence
dasBlog 2.0.7226.0

Disclaimer
 The opinions expressed herein are

my own personal opinions and do

Importantly, this project is already targeting .NET Framework 4.6.1.

What we want to do is get the code from this project into a location where it can
continue to be used to build the existing .NET Framework DLL and also build a .NET
Standard DLL. And we want to do this without duplicating the code or files, as that
would make maintainability much harder.

Fortunately Visual Studio includes a feature called Shared Projects that solves this
issue. A Shared Project is not a normal project at all, it is nothing more than a
location to store code files. Those code files are then pulled into a real project at
compile time as though they were part of that real project.

To see this in action, add a new C# Shared Project to the solution.

http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=%20Kubernetes
http://www.lhotka.net/weblog/CategoryView,category,%2BKubernetes.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=.NET%20Core
http://www.lhotka.net/weblog/CategoryView,category,.NET%2BCore.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=.NET%20Standard
http://www.lhotka.net/weblog/CategoryView,category,.NET%2BStandard.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Android
http://www.lhotka.net/weblog/CategoryView,category,Android.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Architecture
http://www.lhotka.net/weblog/CategoryView,category,Architecture.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=ASP.NET%20MVC
http://www.lhotka.net/weblog/CategoryView,category,ASP.NET%2BMVC.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=AspNetCore
http://www.lhotka.net/weblog/CategoryView,category,AspNetCore.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Blazor
http://www.lhotka.net/weblog/CategoryView,category,Blazor.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Books
http://www.lhotka.net/weblog/CategoryView,category,Books.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Bxf
http://www.lhotka.net/weblog/CategoryView,category,Bxf.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=CSLA%20.NET
http://www.lhotka.net/weblog/CategoryView,category,CSLA%2B.NET.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=dasBlog
http://www.lhotka.net/weblog/CategoryView,category,dasBlog.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Distributed%20OO
http://www.lhotka.net/weblog/CategoryView,category,Distributed%2BOO.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Docker
http://www.lhotka.net/weblog/CategoryView,category,Docker.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=git
http://www.lhotka.net/weblog/CategoryView,category,git.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Git
http://www.lhotka.net/weblog/CategoryView,category,Git.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=gRPC
http://www.lhotka.net/weblog/CategoryView,category,gRPC.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=h5js
http://www.lhotka.net/weblog/CategoryView,category,h5js.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Hololens
http://www.lhotka.net/weblog/CategoryView,category,Hololens.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=iOS
http://www.lhotka.net/weblog/CategoryView,category,iOS.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=JavaScript
http://www.lhotka.net/weblog/CategoryView,category,JavaScript.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Kubernetes
http://www.lhotka.net/weblog/CategoryView,category,Kubernetes.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Magenic
http://www.lhotka.net/weblog/CategoryView,category,Magenic.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Microservices
http://www.lhotka.net/weblog/CategoryView,category,Microservices.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Microsoft%20.NET
http://www.lhotka.net/weblog/CategoryView,category,Microsoft%2B.NET.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=mono
http://www.lhotka.net/weblog/CategoryView,category,mono.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=MonoDroid
http://www.lhotka.net/weblog/CategoryView,category,MonoDroid.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=MonoTouch
http://www.lhotka.net/weblog/CategoryView,category,MonoTouch.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=MOslo
http://www.lhotka.net/weblog/CategoryView,category,MOslo.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=News
http://www.lhotka.net/weblog/CategoryView,category,News.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Ooui
http://www.lhotka.net/weblog/CategoryView,category,Ooui.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Programming
http://www.lhotka.net/weblog/CategoryView,category,Programming.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=RabbitMQ
http://www.lhotka.net/weblog/CategoryView,category,RabbitMQ.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Service-Oriented
http://www.lhotka.net/weblog/CategoryView,category,Service-Oriented.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Silverlight
http://www.lhotka.net/weblog/CategoryView,category,Silverlight.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Surface
http://www.lhotka.net/weblog/CategoryView,category,Surface.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=UWP
http://www.lhotka.net/weblog/CategoryView,category,UWP.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=VSTS
http://www.lhotka.net/weblog/CategoryView,category,VSTS.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=WCF
http://www.lhotka.net/weblog/CategoryView,category,WCF.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Web
http://www.lhotka.net/weblog/CategoryView,category,Web.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=WebAssembly
http://www.lhotka.net/weblog/CategoryView,category,WebAssembly.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Windows%2010
http://www.lhotka.net/weblog/CategoryView,category,Windows%2B10.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Windows%208
http://www.lhotka.net/weblog/CategoryView,category,Windows%2B8.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Windows%20Azure
http://www.lhotka.net/weblog/CategoryView,category,Windows%2BAzure.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Windows%20Forms
http://www.lhotka.net/weblog/CategoryView,category,Windows%2BForms.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Windows%20Phone
http://www.lhotka.net/weblog/CategoryView,category,Windows%2BPhone.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=WinRT
http://www.lhotka.net/weblog/CategoryView,category,WinRT.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=WomenInTech
http://www.lhotka.net/weblog/CategoryView,category,WomenInTech.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Workflow
http://www.lhotka.net/weblog/CategoryView,category,Workflow.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=WP7
http://www.lhotka.net/weblog/CategoryView,category,WP7.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=WP8
http://www.lhotka.net/weblog/CategoryView,category,WP8.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=WPF
http://www.lhotka.net/weblog/CategoryView,category,WPF.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Xamarin
http://www.lhotka.net/weblog/CategoryView,category,Xamarin.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Xbox
http://www.lhotka.net/weblog/CategoryView,category,Xbox.aspx
http://www.lhotka.net/weblog/SyndicationService.asmx/GetRssCategory?categoryName=Zune
http://www.lhotka.net/weblog/CategoryView,category,Zune.aspx


2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 5/12

not represent my employer's view
in any way.

© Copyright 2020, Marimer LLC

What you'll see in Solution Explorer is that this new project is missing common things
like a References or Dependencies node, or a Properties folder. Again, this is not a
normal project, it is nothing more than a placeholder to contain code files.

Next, select the source files from the .NET Framework project and drag-drop them
into the new SharedLibrary project. That'll copy the files, so there's no risk here.

Before proceeding with any real code, now is the time to make sure you've
done a commit to source control so you have an easy way to revert in case
something does go wrong!

However, this next step might make your heart race and palms sweat a little,
because I want you to highlight and delete the source files from the original .NET
Framework project. I know, this sounds scary, but trust me (and your backups).

And here's the key: go to the .NET Framework project and add a reference to the
SharedProject.

At this point you can build the original .NET Framework project and you'll get the
exact same DLL output as before. Zero changes to your existing code or build result.
And yet your code is now in a physical location that'll enable forward movement.



2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 6/12

Hopefully your heart has slowed and your palms are now dry 😃

This is the point where you'd do a commit/push/PR of your code to finalize the shift
of the files to their new shared project home. All in preparation for the next step
where you'll finally get to .NET Standard.

Step 4: Create .NET Standard Project

To recap, you've updated to .NET Framework 4.6.1+, you've moved non-UI code out
of the UI to its own class library, and now those code files are in a shared project,
while still being compiled by the .NET Framework class library so production is
unaffected.

Now you can add a new .NET Standard Class Library project to the solution, the first
real step toward the future!

With that done you can add a reference to the same SharedLibrary project so that
exact same set of code files will be compiled by this new project as well.



2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 7/12

If you try and build the solution or .NET Standard project now you'll find that it won't
build. That's because the project is missing some dependencies. However, the original
.NET Framework project should keep building fine, production remains unaffected.

Step 5: Mitigate Dependency Conflicts

The new .NET Standard project needs references to Newtonsoft.Json and the Entity
Framework, much like the original .NET Framework project. The code makes use of
these two packages and won't build without them.

I didn't pick these two dependencies by accident. Newtonsoft.Json has a NuGet
package that supports .NET Standard. Entity Framework does not. These two
dependencies exemplify likely scenarios you'll encounter with real code. The possible
scenarios are that your existing dependencies:

1. Do not have .NET Standard support, and there's no alternative
2. Already have .NET Standard support with the current version
3. Already have .NET Standard support if you upgrade to the latest version
4. Do not have .NET Standard support, but a new equivalent exists

Scenario 1

Scenario 1 is a worst-case scenario that may be a roadblock to forward movement. If
you have a dependency on a DLL or NuGet package that has no .NET Standard
support, and there's no modern equivalent to the functionality, then you'll almost
certainly have to wait until such support does exist or write it yourself.

Scenarios 2 and 3

If you are in scenario 2, where the existing version of your dependency already has
.NET Standard support, then reference the same version in your .NET Standard
project as in your exisitng projects and your code should continue to compile and
work as-is. This is the simplest scenario.

The dependency may fit into scenario 3, where a newer version of the package
supports .NET Standard, but not the version you are currently using. This is quite
common with Newtonsoft.Json, where the most commonly used version is quite old,
but the more recent versions support .NET Standard.

In this case you may be able to upgrade your production projects to the latest
version and use the same version for both .NET Framework and .NET Standard. This
incurs some risk to production, because you are upgrading a dependency, but it is
often the best solution.

In the case that you can't upgrade the version used by production, you'll need to
leave the old package version reference in your .NET Framework project and use a



2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 8/12

newer version in the .NET Standard project. In this case however, you may have to
deal with behavior or API differences between package versions and you should treat
this as scenario 4.

Scenario 4

Entity Framework is an example of scenario 4. Microsoft chose not to carry the
existing (legacy?) Entity Framework forward. Instead they implemented something
new called Entity Framework Core. This new equivalent offers the same conceptual
functionality, but with a new implementation and API, so it is absolutely not code-
compatible with the old Entity Framework in use in production.

I'll discuss two solutions to scenario 4: compiler directives and upgrading production.

Scenario 4: Compiler Directives

In the .NET Standard project, add references to the latest Newtonsoft.Json and
EntityFrameworkCore packages from NuGet.

You'll find that the project still won't build, because the existing code uses the old
Entity Framework API. It is an scenario 4 dependency.

But you shouldn't get any errors compiling the code using Newtonsoft.Json, because
it is a scenario 2 dependency.

The offending Entity Framework code is in the PersonFactory class:

using System.Data.Entity; 

 

namespace FullNetLibrary 

{ 

  public class PersonFactory 

  { 

    public void GetPerson() 

    { 

      using (var db = new DbContext("")) 

      { 

      } 



2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 9/12

    } 

  } 

} 

There are two problems in this trivial case. First, the namespaces are different, so the
using statement is invalid. Second, the API for interacting with entity contexts has
changed, so the new DbContext statement is invalid. In a more realistic scenario more
parts of the API would be invalid as well.

The goal is to minimize changes and risk to production code, while enabling the .NET
Standard code to move forward. Remember that this exact same code file is being
compiled for two different targets: once for .NET Framework, and once for .NET
Standard (where it fails).

The solution is to use compiler directives so the code file can include code that is only
compiled for one target or the other. The first step is to define a constant in the .NET
Standard project's Build tab.

You can name the constant whatever you'd like, but NETSTANDARD2_0 is a defacto
standard.

Then in your code file you can use this constant in a compiler directive. For example:

#if NETSTANDARD2_0 

using Microsoft.EntityFrameworkCore; 

#else 

using System.Data.Entity; 

#endif 

What happens here is that when the .NET Framework project builds there's no
NETSTANDARD2_0 constant defined, so the compiler only uses the using System.Data.Entity;
code. Conversely, when the .NET Standard project builds the constant is defined, so
the compiler only uses the using Microsoft.EntityFrameworkCore; code.

At this point you may ask whether this won't get extremely messy to have these #if
statements scattered throughout your code. And that is a valid concern. There are
three scenarios to consider within a code file:

1. No code differences exist between the .NET Framework and .NET Core targets
2. Very few code differences exist between the targets
3. Many code differences exist between the targets

In scenario 1 you don't need compiler directives, so there's no issue. And that'll
happen quite often with business logic, where the use of external dependencies is
often very low.



2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 10/12

Scenario 2 is a judgment call. What qualifies as "few"? My recommendation is that if
80% of the code is common and 20% is different, then you should use #if statements
on a line-by-line or focused block-by-block scenario. This will result in a code file
having numerous compiler directives, but most of the code will remain common
across both targets.

Scenario 3 is where so much code is different that if you start scattering compiler
directives through the code it would become unreadable. Again, my recommendation
is that if more than 20% of your code will be different you should consider scenario
3. In this case you should duplicate the code within the file, essentially creating a
different set of code for each platform. For example:

#if NETSTANDARD2_0 

using Microsoft.EntityFrameworkCore; 

 

namespace FullNetLibrary 

{ 

  public class PersonContext : DbContext 

  { 

    public DbSet<Person> Persons { get; set; } 

  } 

 

  public class PersonFactory 

  { 

    public void GetPerson() 

    { 

      using (var db = new PersonContext()) 

      { 

 

      } 

    } 

  } 

} 

#else 

using System.Data.Entity; 

 

namespace FullNetLibrary 

{ 

  public class PersonFactory 

  { 

    public void GetPerson() 

    { 

      using (var db = new DbContext("")) 

      { 

      } 

    } 

  } 

} 

#endif 

Notice that there's no code that's compiled for both targets. Instead the #if
statement is used to create an implementation for .NET Standard, and another
implementation for .NET Framework.

In a sense this is the lowest risk solution, because the .NET Framework production
code is entirely unchanged. However, it is also the least maintainable solution,
because the entire class has been duplicated, so future changes must be made to
both sets of code.

Option 3: Upgrading Production Code

There's another alternative to using compiler directives, and that is to upgrade your
production code to use the new dependency. This solution is only available in the
case that the new NuGet package not only supports .NET Standard, but also supports
.NET Framework. EntityFrameworkCore is an example of this, where you can use the
new EntityFrameworkCore package from .NET Framework code.



2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 11/12

Obviously this solution brings risk, because you are rewriting your existing production
code to use the new library. That'll require good unit and acceptance testing of your
production code to make sure nothing is broken by the changes.

On the upside, this solution helps keep the common codebase clean and unified. In
the Net2NetStandard example, the PersonFactory code can end up looking like this:

using Microsoft.EntityFrameworkCore; 

 

namespace FullNetLibrary 

{ 

  public class PersonContext : DbContext 

  { 

    public DbSet<Person> Persons { get; set; } 

  } 

 

  public class PersonFactory 

  { 

    public void GetPerson() 

    { 

      using (var db = new PersonContext()) 

      { 

 

      } 

    } 

  } 

} 

Same code for both the .NET Framework and .NET Standard targets. But only if the
old Entity Framework reference in the production .NET Framework project is replaced
with the new EntityFrameworkCore reference.

This often comes dangerously close to a "big bang" solution, and incurs real risk to
the existing software. But there's also a very real upside in terms of maintaining a
common codebase for development, testing, and maintenance over time.

Step 6: Mitigate Code Conflicts

The final issue you may encounter is pure code conflicts between your .NET
Framework code and what can be done in .NET Standard. This is very uncommon,
because .NET Standard describes so much of the functionality normally used by .NET
code. However, if you are using some fancy bit of reflection or other "non-
mainstream" parts of .NET you could find that your code won't compile for .NET
Standard.

Solving this is really the same as Option 3 when dealing with dependency
differences: use compiler directives. Or rewrite your "non-mainstream" production
code to use techniques that are supported by .NET Standard.

Step 7: Have a Glass of Bourbon

or your beverage of choice

Not that you are done at this point, but you are on the path. In some ways finding
the path and getting onto the path is the hardest part. The rest of the work might
take months or years, but at least your code is in a structure where it is possible to
migrate forward, while still maintaining the legacy deployment.

Yes there's some risk and additional unit testing (and acceptance testing) required as
you make changes to the legacy code, which also changes the future code. That's a
net benefit though, because at least you don't have to write those changes twice
every time thanks to having a unified codebase.

There's a bit more risk (and therefore testing) required when making changes to the
unified codebase for future code, because those changes will usually also impact the
legacy app. But you have some control over that impact via compiler directives, and
in many cases your business stakeholders will see this also as an advantage because



2020/11/24 Rockford Lhotka - Migrating from .NET to .NET Standard

www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx 12/12

they'll get some new features/capabilities in the existing legacy app even as you build
them for the future state.

The point is that you've done the heavy lifting to establish a way forward that is at
least achievable. So take a little time and have a small celebration. You deserve it!

2019年1⽉11⽇ 下午 12:06:07 (Central Standard Time, UTC-06:00)      Disclaimer 

What do you think?

8 Responses

Upvote Funny Love Surprised Angry Sad

Comments and reactions for this thread are now closed.

ALSO ON ROCKFORD LHOTKA

9 months ago 1 comment

I am pleased to announce 
the release of CSLA .NET 
version 5.1.0.

CSLA .NET VersionCSLA .NET Version
5.1.0 Release5.1.0 Release

• 8 months ago 2 comments

CTO at Magenic, creator of 
CSLA .NET, author, speaker

State of CSLA .NET 2020 EditState of CSLA .NET 2020 Edit

State of CSLA .NETState of CSLA .NET
2020 Edition2020 Edition

• 8 months ago 7 comments

My career started with green 
screen VT terminals. VT-52, 
VT-100, VT-220. I was …

New Blazor andNew Blazor and
CSLA .NET BookCSLA .NET Book

• a year ago 

WebAssem
run comp
browser.

How willHow will

HowHow wi wi
WebAssWebAss

8 0 0 0 0 0

×

2 Comments Rockford Lhotka 🔒 Disqus' Privacy Policy Honda Chen

t Tweet f Share Sort by Best

Gary Furash • 2 years ago

•

Hi. I really enjoyed the discussion on the .NET podcast.

Do you have a book or blog post you can recommend that gives practical, normal-programmer
examples about how to properly implement a modern application 4 tier style? People invariably
end up putting business logic all over the place.

△ ▽

Rockford Lhotka   • 2 years ago

•

Mod > Gary Furash

Thank you for asking, it turns out that the CSLA .NET framework is designed to help
address this issue. The latest books about the framework are at https://store.lhotka.net.

I also really like "Domain-Driven Design" and "Object Thinking" as great resources for
application architecture and effective OO design.

△ ▽

 Recommend  1

Share ›

Share ›

Important Update
When you log in with Disqus, we process personal data to facilitate your
authentication and posting of comments. We also store the comments you post and
those comments are immediately viewable and searchable by anyone around the
world.

Please access our Privacy Policy to learn what personal data Disqus collects and
your choices about how it is used. All users of our service are also subject to our
Terms of Service.

Proceed

http://www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx
http://www.lhotka.net/weblog/FormatPage.aspx?path=siteConfig/disclaimer.format.html
https://disqus.com/home/forums/rockfordlhotka/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/
https://disqus.com/by/garyfurash/
http://www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx#comment-4323372562
https://disqus.com/by/rockfordlhotka/
http://www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx#comment-4323432380
http://www.lhotka.net/weblog/MigratingFromNETToNETStandard.aspx#comment-4323372562
https://disq.us/url?url=https%3A%2F%2Fstore.lhotka.net%3AVyTUap_QVMCUTZc9mG7mWOH3B5I&cuid=4020737
https://disqus.com/by/garyfurash/
https://disqus.com/by/rockfordlhotka/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://help.disqus.com/customer/portal/articles/466260-terms-of-service

