2020/9/18 Number.cs for General Purpose Number Handling in C# - CodeProject

0 PIRU
X1 For thosa who code

Number.cs for General Purpose Number Handling in C#

GerVenson

17 Sep 2020 Ms-RL

An wrapper class for Number operations in C#

As C# does not offer a underlying base class for Numbers, you have to write one that can work with all numbers without specifying the
Type directly

Download Number_clean_v2.zip - 5 KB

Download Number_Performance_Optimised_.zip - 4.6 KB

Download Number.zip - 3.8 KB
https://github.com/JPVenson/morestachio/blob/master/Morestachio/Helper/Number.cs

As | am working on my Project Morestachio, | wanted to allow users to either supply numbers from code but also allow number
operations in my Template. That was where the trouble started and | needed to operate on two numbers that might not be the same or
have unknown types. As | already had to write a parser to get the number from the text template, | decided to allow all numbers to be
wrapped into the Number.cs class and implemented all common operations on it.

Hint: The source on github contains references to the Morestachio Project within the MorestachioFormatter region.
If you want to use only the Number.cs class, you are safe to delete this whole region. The Number.cs attached to this tip does not
contain this region!

Number.cs is of interest for everyone who got numbers but without knowing what the number represents. Number.cs can parse any
number from string according the rules of C# (Integral numeric types (C# reference) and Real literals).

Number.cs has three different ways in which to create a new instance of Number.cs:
1.bool Number.TryParse(string, CultureInfo, out Number).
This tries to parse a String into a number based on the literal and the C# rules.
2.Number.ctor(long|ulong|int|uint|byte|sbyte|short|ushort|float|double|decimal)

Use the constructor to create a new number with the internal .NET type

https://www.codeproject.com/Tips/5272304/Number-cs-for-General-Purpose-Number-Handling-in-C?display=Print 1/5

2020/9/18 Number.cs for General Purpose Number Handling in C# - CodeProject

3.implicit operator
Number (Long|ulong|int|uint|byte|sbyte|short|ushort|float|double|decimal)

Number.cs implements the implicit casting operator for all .NET Number types

You can get a list of all supported .NET types by calling Number.CsFrameworkIntegralTypes and
Number.CsFrameworkFloatingPointNumberTypes respectively. Note that those lists are only informatial.

Now that you got your instance of Number.cs, you can make operations with it. There are two general ways in operating with Number.cs:

1. Call the operation functions like:

&

Add(Number): Number
Substract(Number): Number
Multiply(Number): Number
Divide(Number): Number
Modulo(Number): Number
ShiftLeft(Number): Number
ShiftRight(Number): Number
GreaterThan(Number): bool
SmallerThan(Number): bool
Equals(Number): bool

Same (Number): bool
IsNaN(): bool
Max(Number): Number
Min(Number): Number
Pow(Number): Number
Log(Number): Number
Loglo(Number): Number
Negate(): Number

Abs(): Number
Round(Number): Number

eecaceacaeeacacaecaaeaaeaa

Note: Equals (Number) will first check if both numbers are of the same .NET type and then call Same (Number) for value
equality check

2. Use C# operators. Number.cs implements the following operators on itself:

Number < Number
Number > Number
Number <= Number
Number >= Number

o Number + Number
o Number++

o Number - Number
o Number--

o Number << Number
o Number >> Number
o Number == Number
o Number != Number
(o]

o

[o]

[o]

In addition to these operations on itself (Number + Number or Number < Number), you can also use the following operators on
all other .NET number types:

e Number + long|ulong|int|uint|byte|sbyte|short|ushort|float|double|decimal
e Number - long|ulong|int|uint|byte|sbyte|short|ushort|float|double|decimal

https://www.codeproject.com/Tips/5272304/Number-cs-for-General-Purpose-Number-Handling-in-C?display=Print 2/5

2020/9/18

e Number * long|ulong|int|uint|byte|sbyte|short|ushort|float|double|decimal
o Number / long|ulong|int|uint|byte|sbyte|short|ushort|float|double|decimal
e Number % long|ulong|int|uint|byte|sbyte|short|ushort|float|double|decimal

Number.cs for General Purpose Number Handling in C# - CodeProject

These operators just call the methods from point 1.

Number.cs takes care of the implicit conversion of values from an operation. That means like in cs if you add two numbers together
where one number is a floating point number, the result will always be a floating point number of the same type and if you add two
integers together, the result will always be of the type that has more precision. This is done by a rating of numbers that exists within the
Number.CsFrameworkFloatingPointNumberTypes and Number.CsFrameworkIntegralTypes. The function

Number.GetOperationTargetType will return the type that takes prevalence over another. The operation then always looks

the same like this:

Example Add Method:

/// <summary>
/// Adds the two numbers together
/// </summary>
/// <param name="other"></param>
/// <returns></returns>

public Number Add(Number other)

{

var targetType = GetOperationTargetType(this, other);

if
{

}
if

https://www.codeproject.com/Tips/5272304/Number-cs-for-General-Purpose-Number-Handling-in-C?display=Print

(targetType
return new
(targetType
return new
(targetType
return new
(targetType
return new
(targetType
return new
(targetType
return new
(targetType
return new
(targetType
return new
(targetType
return new
(targetType
return new

(targetType

== typeof(decimal))

Number (ToDecimal(null) + other.ToDecimal(null));

== typeof(double))

Number(ToDouble(null) + other.ToDouble(null));
== typeof(float))

Number(ToSingle(null) + other.ToSingle(null));
== typeof(ulong))

Number (ToUInt64(null) + other.ToUInt64(null));
== typeof(long))

Number (ToInt64(null) + other.ToInt64(null));
== typeof(uint))

Number(ToUInt32(null) + other.ToUInt32(null));
== typeof(int))

Number (ToInt32(null) + other.ToInt32(null));
== typeof(ushort))

Number (ToUIntl6(null) + other.ToUIntl6(null));
== typeof(short))

Number (ToIntl6(null) + other.ToIntl6(null));
== typeof(byte))

Number(ToByte(null) + other.ToByte(null));

== typeof(sbyte))

3/5

2020/9/18 Number.cs for General Purpose Number Handling in C# - CodeProject

{
}

throw new InvalidCastException($"Cannot convert {other.Value}
({other.Value.GetType()}) or {Value} ({Value.GetType()}) to a numeric type");

return new Number(ToSByte(null) + other.ToSByte(null));

The same as over other number type the object Number.cs is implemented as a readonly struct and is immutable. The code is tested
and implemented for:

e netstandard2.0

e netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0
* net46 net461 netd62

e netd7 netd71 netd72

| recently did some performance tests as | was interested in how much time was spent on casting and evaluation of the right operation
type and | was not surprised that the Number.cs class is around ~2000 times slower than the native operation. But this was mostly due
to unoptimised code. | tested 10.000.000 add operations with the C# native + operator on 2 ints and done the same with two
Number.cs classes. | (unsurprisingly) found that 2 major performance problems where the enumeration of the list of
Number.CsFrameworkIntegralTypes, Number.CsFrameworkFloatingPointNumberTypes and to some extent
surprisingly for me, the performance of the Number .Value getter. So | hard-coded the Number .GetOperationTargetType
and removed the access to the Number .Value and access the value directly via its member variable. That helped a lot and Number.cs
is now "only" ~140 times slower than a native operation.

I looked into a lot of code on github and everywhere else and was not able to find something like this general purpose so | decided to
write it myself. | will keep developing the number.cs class as | might want to support more functions like added support for Math
functions in the future, so checkout the original file.

. 2gth June, 2020: Init commit
¢ 16th Sep, 2020: Updated version to 2.0 containing performance fixes and additional math methods

This article, along with any associated source code and files, is licensed under Microsoft Reciprocal License

https://www.codeproject.com/Tips/5272304/Number-cs-for-General-Purpose-Number-Handling-in-C?display=Print 4/5

2020/9/18 Number.cs for General Purpose Number Handling in C# - CodeProject

GerVenson

Software Developer Freelancer
Germany 8

I am a Young German Developer.

| was working since 2012 as a Junior Software Developer in the area of WPF with DevExpress and WinForms. | also had some
experience with TSQL and Asp.net with AngularJS.

From January 2015 i will be working as an Software Consultant.

From June 2015 i will work as an Freelancer

Comments and Discussions

Iﬁ 10 messages have been posted for this article Visit https://www.codeproject.com/Tips/5272304/Number-cs-for-General-
Purpose-Number-Handling-in-C to post and view comments on this article, or click here to get a print view with messages.

Permalink Article Copyright 2020 by GerVenson
Advertise Everything else Copyright © CodeProject,
Privacy 1999-2020
Cookies

Terms of Use Web02 2.8.2009011.1

https://www.codeproject.com/Tips/5272304/Number-cs-for-General-Purpose-Number-Handling-in-C?display=Print 5/5

