// Example of the Random.Sample( ) method. using System; // This derived class converts the uniformly distributed random // numbers generated by base.Sample( ) to another distribution. public class RandomProportional : Random { // Sample generates a distribution proportional to the value // of the random numbers, in the range [ 0.0, 1.0 ). protected override double Sample( ) { return Math.Sqrt( base.Sample( ) ); } } public class RandomSampleDemo { static void Main( ) { const int rows = 4, cols = 6; const int runCount = 1000000; const int distGroupCount = 10; const double intGroupSize = ( (double)int.MaxValue + 1.0 ) / (double)distGroupCount; RandomProportional randObj = new RandomProportional( ); int[ ] intCounts = new int[ distGroupCount ]; int[ ] realCounts = new int[ distGroupCount ]; Console.WriteLine( "This example of Random.Sample( ) " + "generates the following output." ); Console.WriteLine( "\nThe derived RandomProportional class overrides " + "the Sample method to \ngenerate random numbers " + "in the range [0.0, 1.0). The distribution \nof " + "the numbers is proportional to the number values. " + "For example, \nnumbers are generated in the " + "vicinity of 0.75 with three times the \n" + "probability of those generated near 0.25." ); Console.WriteLine( "\nRandom doubles generated with the NextDouble( ) " + "method:\n" ); // Generate and display [rows * cols] random doubles. for( int i = 0; i < rows; i++ ) { for( int j = 0; j < cols; j++ ) Console.Write( "{0,12:F8}", randObj.NextDouble( ) ); Console.WriteLine( ); } Console.WriteLine( "\nRandom integers generated with the Next( ) " + "method:\n" ); // Generate and display [rows * cols] random integers. for( int i = 0; i < rows; i++ ) { for( int j = 0; j < cols; j++ ) Console.Write( "{0,12}", randObj.Next( ) ); Console.WriteLine( ); } Console.WriteLine( "\nTo demonstrate the proportional distribution, " + "{0:N0} random \nintegers and doubles are grouped " + "into {1} equal value ranges. This \n" + "is the count of values in each range:\n", runCount, distGroupCount ); Console.WriteLine( "{0,21}{1,10}{2,20}{3,10}", "Integer Range", "Count", "Double Range", "Count" ); Console.WriteLine( "{0,21}{1,10}{2,20}{3,10}", "-------------", "-----", "------------", "-----" ); // Generate random integers and doubles, and then count // them by group. for( int i = 0; i < runCount; i++ ) { intCounts[ (int)( (double)randObj.Next( ) / intGroupSize ) ]++; realCounts[ (int)( randObj.NextDouble( ) * (double)distGroupCount ) ]++; } // Display the count of each group. for( int i = 0; i < distGroupCount; i++ ) Console.WriteLine( "{0,10}-{1,10}{2,10:N0}{3,12:N5}-{4,7:N5}{5,10:N0}", (int)( (double)i * intGroupSize ), (int)( (double)( i + 1 ) * intGroupSize - 1.0 ), intCounts[ i ], ( (double)i ) / (double)distGroupCount, ( (double)( i + 1 ) ) / (double)distGroupCount, realCounts[ i ] ); } } /* This example of Random.Sample( ) generates the following output. The derived RandomProportional class overrides the Sample method to generate random numbers in the range [0.0, 1.0). The distribution of the numbers is proportional to the number values. For example, numbers are generated in the vicinity of 0.75 with three times the probability of those generated near 0.25. Random doubles generated with the NextDouble( ) method: 0.70274545 0.71861388 0.68071795 0.84034066 0.93354743 0.85663774 0.81804688 0.35177836 0.59208519 0.96031602 0.80442745 0.68718948 0.98765094 0.88136820 0.40016694 0.78735843 0.30468930 0.60884722 0.99724610 0.64792400 0.87542366 0.86193142 0.88573527 0.67682807 Random integers generated with the Next( ) method: 2143307129 1985560852 1491542209 1624708626 545912171 2144440214 1605065299 1294719830 1191410879 1120886902 1915435155 1514194175 1795364867 1695595242 1754564804 1407165303 2026939619 1965958920 1531822446 1145720706 1458838319 1924643339 804498107 445927707 To demonstrate the proportional distribution, 1,000,000 random integers and doubles are grouped into 10 equal value ranges. This is the count of values in each range: Integer Range Count Double Range Count ------------- ----- ------------ ----- 0- 214748363 9,916 0.00000-0.10000 10,014 214748364- 429496728 29,978 0.10000-0.20000 29,965 429496729- 644245093 50,204 0.20000-0.30000 49,975 644245094- 858993458 69,870 0.30000-0.40000 70,150 858993459-1073741823 89,875 0.40000-0.50000 90,180 1073741824-1288490187 110,448 0.50000-0.60000 109,995 1288490188-1503238552 130,290 0.60000-0.70000 130,218 1503238553-1717986917 149,652 0.70000-0.80000 149,300 1717986918-1932735282 170,367 0.80000-0.90000 169,737 1932735283-2147483647 189,400 0.90000-1.00000 190,466 */