
2021/3/2 Task.Run vs Task.Factory.StartNew | .NET Parallel Programming

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/ 1/6

.NET Parallel Programming
DevBlogs

Product Blogs

DevOps

Languages

.NET

More

Login

Task.Run vs Task.Factory.StartNew

October 24th, 2011

In .NET 4, Task.Factory.StartNew was the primary method for scheduling a new task.
Many overloads provided for a highly configurable mechanism, enabling setting
options, passing in arbitrary state, enabling cancellation, and even controlling
scheduling behaviors. The flip side of all of this power is complexity. You need to know
when to use which overload, what scheduler to provide, and the like. And
“Task.Factory.StartNew” doesn’t exactly roll off the tongue, at least not quickly enough
for something that’s used in such primary scenarios as easily offloading work to
background processing threads.

So, in the .NET Framework 4.5 Developer Preview, we’ve introduced the new Task.Run
method. This in no way obsoletes Task.Factory.StartNew, but rather should simply be
thought of as a quick way to use Task.Factory.StartNew without needing to specify a
bunch of parameters. It’s a shortcut. In fact, Task.Run is actually implemented in terms
of the same logic used for Task.Factory.StartNew, just passing in some default
parameters. When you pass an Action to Task.Run:

Task.Run(someAction);

that’s exactly equivalent to:

Task.Factory.StartNew(someAction,
 CancellationToken.None,
TaskCreationOptions.DenyChildAttach, TaskScheduler.Default);

In this way, Task.Run can and should be used for the most common cases of simply
offloading some work to be processed on the ThreadPool (what TaskScheduler.Default
targets). That doesn’t mean Task.Factory.StartNew will never again be used; far from it.
Task.Factory.StartNew still has many important (albeit more advanced) uses. You get to
control TaskCreationOptions for how the task behaves. You get to control the scheduler
for where the task should be queued to and run. You get to use overloads that accept
object state, which for performance-sensitive code paths can be used to avoid closures
and the corresponding allocations. For the simple cases, though, Task.Run is your
friend.

Task.Run provides eight overloads, to support all combinations of the following:

1. Task vs Task<TResult>
2. Cancelable vs non-cancelable
3. Synchronous vs asynchronous delegate

The first two bullets should be self-explanatory. For the first bullet, there are overloads
that return Task (for operations that don’t have a result) and there are overloads that
return Task<TResult> (for operations that have a result of type TResult). There are also
overloads that accept a CancellationToken, which enables the Task Parallel Library (TPL)
to transition the task to a Canceled state if cancellation is requested prior to the task

Stephen

https://www.microsoft.com/
https://devblogs.microsoft.com/
https://devblogs.microsoft.com/pfxteam/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Fpfxteam%2Ftask-run-vs-task-factory-startnew%2F
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/&text=Task.Run%20vs%20Task.Factory.StartNew
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/

2021/3/2 Task.Run vs Task.Factory.StartNew | .NET Parallel Programming

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/ 2/6

beginning its execution.

The third bullet is more interesting, and is directly related to the async language
support in C# and Visual Basic in Visual Studio 11. Let’s consider Task.Factory.StartNew
for a moment, as that will help to highlight what this distinction is. If I write the
following call:

var t = Task.Factory.StartNew(() =>
{
 Task inner =Task.Factory.StartNew(() => {});
 return inner;
});

the type of ‘t’ is going to be Task<Task>; the task’s delegate is of type Func<TResult>,
TResult in this case is a Task, and thus StartNew is returning a Task<Task>. Similarly, if I
were to change that to be:

var t = Task.Factory.StartNew(() =>
{
 Task<int> inner = Task.Factory.StartNew(() => 42));
 return inner;
});

the type of ‘t’ is now going to be Task<Task<int>>. The task’s delegate is
Func<TResult>, TResult is now Task<int>, and thus StartNew is returning
Task<Task<int>>. Why is this relevant? Consider now what happens if I write the
following:

var t = Task.Factory.StartNew(async delegate
{
 await Task.Delay(1000);
 return 42;
});

By using the async keyword here, the compiler is going to map this delegate to be a
Func<Task<int>>: invoking the delegate will return the Task<int> to represent the
eventual completion of this call. And since the delegate is Func<Task<int>>, TResult is
Task<int>, and thus the type of ‘t’ is going to be Task<Task<int>>, not Task<int>.

To handle these kinds of cases, in .NET 4 we introduced the Unwrap method. Unwrap
has two overloads, which are both extensions methods, one on type Task<Task> and
one on type Task<Task<TResult>>. We called this method Unwrap because it, in effect,
“unwraps” the inner task that’s returned as the result of the outer task. Calling Unwrap
on a Task<Task> gives you back a new Task (which we often refer to as a proxy) which
represents the eventual completion of the inner task. Similarly, calling Unwrap on a
Task<Task<TResult>> gives you back a new Task<TResult> which represents the
eventual completion of that inner task. (In both cases, if the outer task is Faulted or
Canceled, there is no inner task, since there’s no result from a task that doesn’t run to
completion, so the proxy task then represents the state of the outer task.) Going back to
the prior example, if I wanted ‘t’ to represent the return value of that inner task (in this
case, the value 42), I could write:

var t = Task.Factory.StartNew(async delegate
{
 await Task.Delay(1000);
 return 42;
}).Unwrap();

2021/3/2 Task.Run vs Task.Factory.StartNew | .NET Parallel Programming

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/ 3/6

The ‘t’ variable will now be of type Task<int>, representing the result of that
asynchronous invocation.

Enter Task.Run. Because we expect it to be so common for folks to want to offload work
to the ThreadPool, and for that work to use async/await, we decided to build this
unwrapping functionality into Task.Run. That’s what’s referred to by the third bullet
above. There are overloads of Task.Run that accept Action (for void-returning work),
Func<TResult> (for TResult-returning work), Func<Task> (for void-returning async
work), and Func<Task<TResult>> (for TResult-returning async work). Internally, then,
Task.Run does the same kind of unwrapping that’s shown with Task.Factory.StartNew
above. So, when I write:

var t = Task.Run(async delegate
{
 await Task.Delay(1000);
 return 42;
});

the type of ‘t’ is Task<int>, and the implementation of this overload of Task.Run is
basically equivalent to:

var t = Task.Factory.StartNew(async delegate
{
 await Task.Delay(1000);
 return 42;
}, CancellationToken.None,
TaskCreationOptions.DenyChildAttach,
TaskScheduler.Default).Unwrap();

As mentioned before, it’s a shortcut.

All of this then means that you can use Task.Run either with either regular
lambdas/anonymous methods or with async lambdas/anonymous methods, and the
right thing will just happen. If I wanted to offload this work to the ThreadPool and await
its result, e.g.

int result = await Task.Run(async () =>
{
 await Task.Delay(1000);
 return 42;
});

the type of result will be int, just as you’d expect, and approximately one second after
this work is invoked, the result variable be set to the value 42.

Interestingly, the new await keyword can almost be thought of as a language equivalent
to the Unwrap method. So, if we return back to our Task.Factory.StartNew example, I
could rewrite the last snippet above as follows using Unwrap:

int result = await Task.Factory.StartNew(async delegate
{
 await Task.Delay(1000);
 return 42;
}, CancellationToken.None,
TaskCreationOptions.DenyChildAttach,
TaskScheduler.Default).Unwrap();

2021/3/2 Task.Run vs Task.Factory.StartNew | .NET Parallel Programming

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/ 4/6

Read next

Tagged .NET 4 .NET 4.5 Parallel Extensions Task Parallel Library

or, instead of using Unwrap, I could use a second await:

int result = await await Task.Factory.StartNew(async delegate
{
 await Task.Delay(1000);
 return 42;
}, CancellationToken.None,
TaskCreationOptions.DenyChildAttach, TaskScheduler.Default);

“await await” here is not a typo. Task.Factory.StartNew is returning a Task<Task<int>>.
Await’ing that Task<Task<int>> returns a Task<int>, and awaiting that Task<int>
returns an int. Fun, right?

Stephen Toub
Partner Software Engineer, .NET

Follow

When at last you await
When you start using async methods heavily, you’ll likely
see a particular pattern of composition pop up from time
to time. Its structure is typically either ...

 Stephen Toub - MSFT October 24, 2011

0 comment

Updated Async CTP
In April, we released the Async CTP Refresh, and since
then we've seen fantastic adoption of the technology.
We've also seen the technology landscape evolve. ...

 Stephen Toub - MSFT November 1, 2011

0 comment

0 comments
Comments are closed. Login to edit/delete your existing comments

Relevant Links

corefx repository on GitHub

.NET

Microsoft Azure

https://devblogs.microsoft.com/pfxteam/tag/net-4/
https://devblogs.microsoft.com/pfxteam/tag/net-4-5/
https://devblogs.microsoft.com/pfxteam/tag/parallel-extensions/
https://devblogs.microsoft.com/pfxteam/tag/task-parallel-library/
https://devblogs.microsoft.com/pfxteam/author/toub/
https://github.com/stephentoub
https://devblogs.microsoft.com/pfxteam/author/toub/feed/
https://devblogs.microsoft.com/pfxteam/when-at-last-you-await/
https://devblogs.microsoft.com/pfxteam/author/toub/
https://devblogs.microsoft.com/pfxteam/when-at-last-you-await/#comments
https://devblogs.microsoft.com/pfxteam/updated-async-ctp/
https://devblogs.microsoft.com/pfxteam/author/toub/
https://devblogs.microsoft.com/pfxteam/updated-async-ctp/#comments
https://devblogs.microsoft.com/pfxteam/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Fpfxteam%2Ftask-run-vs-task-factory-startnew%2F%23comments
https://github.com/dotnet/corefx
https://dot.net/
https://azure.microsoft.com/

2021/3/2 Task.Run vs Task.Factory.StartNew | .NET Parallel Programming

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/ 5/6

What's new

Surface Duo

Surface Laptop Go

Surface Pro X

Surface Go 2

Surface Book 3

Microsoft 365

Windows 10 apps

Microsoft Store

Account profile

Download Center

Microsoft Store support

Returns

Order tracking

Virtual workshops and
training

Microsoft Store Promise

Education

Microsoft in education

Office for students

Office 365 for schools

Deals for students &
parents

Microsoft Azure in
education

Enterprise

Azure

AppSource

Automotive

Government

Healthcare

Manufacturing

Financial services

Developer

Microsoft Visual Studio

Windows Dev Center

Developer Center

Microsoft developer
program

Channel 9

Microsoft 365 Dev
Center

Company

Careers

About Microsoft

Company news

Privacy at Microsoft

Investors

Diversity and inclusion

Accessibility

Top Bloggers

Archive

February 2015

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

October 2012

September 2012

August 2012

June 2012

Stay informed

https://www.microsoft.com/en-us/surface/devices/surface-duo
https://www.microsoft.com/en-us/p/surface-laptop-go/94FC0BDGQ7WV
https://www.microsoft.com/en-us/p/surface-pro-x/8QG3BMRHNWHK
https://www.microsoft.com/en-us/p/surface-go-2/8PT3S2VJMDR6
https://www.microsoft.com/en-us/p/surface-book-3/8XBW9G3Z71F1
https://www.microsoft.com/microsoft-365
https://www.microsoft.com/en-us/windows/windows-10-apps
https://account.microsoft.com/
https://www.microsoft.com/en-us/download
https://go.microsoft.com/fwlink/?linkid=2139749
https://go.microsoft.com/fwlink/p/?LinkID=824764&clcid=0x409
https://account.microsoft.com/orders
https://www.microsoft.com/en-us/store/workshops-training-and-events?icid=vl_uf_932020
https://www.microsoft.com/en-us/store/b/why-microsoft-store?icid=footer_why-msft-store_7102020
https://www.microsoft.com/en-us/education
https://www.microsoft.com/en-us/education/products/office/default.aspx
https://products.office.com/en-us/academic/compare-office-365-education-plans
https://www.microsoft.com/en-us/store/b/education?icid=CNavfooter_Studentsandeducation
https://azure.microsoft.com/en-us/community/education/
https://azure.microsoft.com/
https://go.microsoft.com/fwlink/?LinkID=808093
https://www.microsoft.com/en-us/enterprise/automotive
https://www.microsoft.com/en-us/enterprise/government
https://www.microsoft.com/en-us/enterprise/health
https://www.microsoft.com/en-us/enterprise/manufacturing
https://www.microsoft.com/en-us/enterprise/financial-services/banking-and-capital-markets
https://visualstudio.microsoft.com/
https://developer.microsoft.com/en-us/windows
https://developer.microsoft.com/
https://developer.microsoft.com/en-us/store/register
https://channel9.msdn.com/
https://developer.microsoft.com/microsoft-365
https://careers.microsoft.com/
https://www.microsoft.com/en-us/about
https://news.microsoft.com/
https://privacy.microsoft.com/en-us
https://www.microsoft.com/investor/default.aspx
https://www.microsoft.com/en-us/diversity/
https://www.microsoft.com/en-us/accessibility
https://devblogs.microsoft.com/pfxteam/2015/02/
https://devblogs.microsoft.com/pfxteam/2013/04/
https://devblogs.microsoft.com/pfxteam/2013/03/
https://devblogs.microsoft.com/pfxteam/2013/02/
https://devblogs.microsoft.com/pfxteam/2013/01/
https://devblogs.microsoft.com/pfxteam/2012/12/
https://devblogs.microsoft.com/pfxteam/2012/11/
https://devblogs.microsoft.com/pfxteam/2012/10/
https://devblogs.microsoft.com/pfxteam/2012/09/
https://devblogs.microsoft.com/pfxteam/2012/08/
https://devblogs.microsoft.com/pfxteam/2012/06/
https://devblogs.microsoft.com/pfxteam/feed/

2021/3/2 Task.Run vs Task.Factory.StartNew | .NET Parallel Programming

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/ 6/6

HoloLens 2 Financing Retail Microsoft 365 Developer
Program

Microsoft Garage

Security

 English (United States) Sitemap Contact Microsoft Privacy Terms of use Trademarks Safety & eco About our ads © Microsoft 2021

https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/store/b/financing?icid=footer_financing_10142020
https://www.microsoft.com/en-us/enterprise/retail-consumer-goods
https://developer.microsoft.com/microsoft-365/dev-program
https://www.microsoft.com/en-us/garage/
https://www.microsoft.com/en-us/security/default.aspx
https://www.microsoft.com/en-us/locale.aspx
https://www.microsoft.com/en-us/sitemap1.aspx
https://support.microsoft.com/en-us/contactus
https://go.microsoft.com/fwlink/?LinkId=521839
https://go.microsoft.com/fwlink/?LinkID=206977
https://www.microsoft.com/trademarks
https://www.microsoft.com/en-us/devices/safety-and-eco
https://choice.microsoft.com/

