
2021/2/23 Adapting Event and Callback Based Asynchronicity to the Task Framework - CodeProject

https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t?display=Print 1/5

Adapting Event and Callback Based Asynchronicity to the
Task Framework

honey the codewitch
20 Feb 2021 MIT

Use TaskCompletionSource to turn an event or callback based model into a Task based one

There are many ways to skin an asynchronous cat. We're going to adapt an event based model to a newer Task based model using
the TaskCompletionSource object and just a little bit of witchcraft.

Download TaskCompletion.zip - 6.8 KB

Introduction
.NET's TPL/Task API is a wonderful way to add asynchronicity to your application without a lot of hassle. The compiler support for it
in C# makes it even better. However, some APIs still use other means, like callbacks or events to provide asynchronous notification
of completion.

In this article we'll explore the TaskCompletionSource<T> which allows us to source a Task<T> object based on some
other form of asynchronous notification.

Conceptualizing This Mess

What a Task<T> is and Isn't

A Task is in essence a contract that provides a standard mechanism to await the completion of work, to report errors from that
work, and to signal cancelation of that work. That's all it is.

Tasks are not threads. Tasks are again, simply a contract used to signal an asynchronous unit of work. How that work is performed
asynchronously is an implementation detail, if it is asynchronous at all. It is possible to do things like signal start and completion of

https://www.codeproject.com/
https://www.codeproject.com/script/Membership/View.aspx?mid=11540398
http://www.opensource.org/licenses/mit-license.php
https://www.codeproject.com/KB/dotnet/5295013/TaskCompletion.zip

2021/2/23 Adapting Event and Callback Based Asynchronicity to the Task Framework - CodeProject

https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t?display=Print 2/5

work based on communication from some external hardware for example, which has nothing to do with tying up CPU resources,
and may not involve additional threads at all.

Understanding TaskCompletionSource<T>

TaskCompletionSource<T> is maybe the most common way to produce a Task<T> object to return to a caller of your
asynchronous method. These are lightweight objects that simply keep status information for an asynchronous operation in progress.

You use it simply by creating one, and then later when your work is complete you can call SetResult(T result), or
SetException(Exception ex) in the case of an error. There's no magic in this object. The only cleverness in how to use it
comes from you. Your job is to somehow pass the TaskCompletionSource<T> around such that you can find it later when
your work completes. We can use the hoisting feature available with anonymous methods to do the heavy lifting of passing our
TaskCompletionSource<T> object to the completion handler. All of this will become clear when we get to the code in a bit.
It's much simpler than it sounds.

Once we've created a TaskCompletionSource<T> we can use its Task property to get a Task<T> instance we can return
to the caller of our asynchronous method. Of course, if we never call SetResult(), SetException() or
SetCanceled() on the TaskCompletionSource<T> our task will never return when awaited on, so make sure you're
calling one of these in every situation inside your task handling code.

Note: There is no corresponding non-genereric TaskCompletionSource object that goes with the non-generic Task object
used for returning no result. You can simply use bool as a dummy T value. All Task<T> objects can be casted to Task. If you're
concerned that someone might upcast your Task back to Task<bool> you can create a private dummy type to use as your T
argument. In any case, when returning no result you're just going to use SetResult(default(T)) to return your result,
which will never be used.

This is one of those things that's easier to code than to describe. It's also probably easier to read the code than my hamfisted
description. There are some caveats to this technique we'll go over after I cover the code, but first, more background.

Lo, a Use Case!

Thankfully, with the introduction of the task framework and the task based TPL model, Microsoft has wrapped most of their base
class library with task based asynchronous methods already. However, this made it somewhat difficult for me to find a class to use
to demonstrate this technique with that wasn't already wrapped.

Recently, I built on the techniques I outline here in order to adapt an event based asynchronous model in a commercial library to a
TPL based one. However, as useful as that is, I don't want to saddle you with a commercial product you have to use in order to
follow along.

After a bit of stewing on it, I did think of a class we could experiment on. The System.Diagnostics.Process class allows
you to run a process and signals process exit (whether completion or error) using an event based model. We'll adapt it to a TPL
based one.

It is sometimes useful to be able to execute a command line based process and capture the output in your program. You can do
that currently with the Process class by either hooking the Exited event, or using the WaitForExit() method, each
providing its own way to signal completion. Of the two, the former is more flexible, because the latter uncoditionally suspends the
current thread until the process completes, effectively making it blocking - synchronous.

What we're going to do is provide a single asynchronous method that takes a ProcessStartInfo object and returns an
(awaitable) Task<Stream>. The task completes when the process exists, at which point you can fetch the contents the process
wrote to stdout as the result of the operation. The code returns a Stream rather than a TextReader, simply to allow for
processes that return binary content like images.

Coding This Mess
Finally, we get to some code.

First, I've made a synchronous version of this method and an asynchronous version. Each uses a different method of signalling the
process is complete. The synchronous one of course, blocks. The asynchronous one is awaitable. Other than that, they are (or at
least should be) identical in behavior.

2021/2/23 Adapting Event and Callback Based Asynchronicity to the Task Framework - CodeProject

https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t?display=Print 3/5

We'll cover the synchronous one first, because that way we can go over the basic steps of using a process before making a task
based way to use it:

static Stream RunWithCapture(ProcessStartInfo startInfo)
{
 // create a process
 var proc = new Process();
 // fill it with what we need to capture
 proc.StartInfo = startInfo;
 proc.EnableRaisingEvents = false;
 startInfo.RedirectStandardOutput = true;
 startInfo.UseShellExecute = false;
 // start doesn't block
 proc.Start();
 // so we use WaitForExit() to block
 proc.WaitForExit();
 // grab our output stream
 var result =proc.StandardOutput.BaseStream;
 // close the process
 proc.Dispose();
 return result;
}

Notice the call to WaitForExit(), which causes the method to block until the process isn't running anymore.

You call RunWithCapture() like this:

var psi = new ProcessStartInfo() {
 FileName = "targetapp.exe"
};
using (var stream = RunWithCapture(psi))
{
 // use a streamreader because we want text
 var sr = new StreamReader(stream);
 // no need to dispose it because
 // we are disposing the stream
 Console.Write(sr.ReadToEnd());
}

Now let's get to the task based asynchronous one. We need to hook the Exited event here instead of calling
WaitForExit(), since we can't block:

static Task<Stream> RunWithCaptureAsync(ProcessStartInfo startInfo)
{
 // we use this as a signal for our custom task
 // we can use SetResult, SetException, and even SetCancelled
 // to signal the completion of a task, with or without errors
 // do not throw exceptions in your async handlers.
 // Use SetException.
 var tcs = new TaskCompletionSource<Stream>();
 try
 {
 // create a process, and set it up for capturing
 // and raising events
 var proc = new Process();
 proc.StartInfo = startInfo;
 proc.EnableRaisingEvents = true;
 startInfo.RedirectStandardOutput = true;
 startInfo.UseShellExecute = false;
 // attach an event handler that signals completion
 // of our task - here Exited serves us well.
 // note we're using hoisting to pass the
 // TaskCompletionSource through to the anonymous
 // method:
 proc.Exited += (object sender, EventArgs e) => {
 // if we were doing anything non-trivial here
 // we'd wrap everything in a try/catch block

2021/2/23 Adapting Event and Callback Based Asynchronicity to the Task Framework - CodeProject

https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t?display=Print 4/5

 // and use tcs.SetException() in the catch block
 // instead of throwing. We don't need that here
 // because nothing should throw.
 tcs.SetResult(proc.StandardOutput.BaseStream);
 (sender as IDisposable)?.Dispose();
 };
 // finally, start the process
 proc.Start();
 }
 catch (Exception ex)
 {
 // signal an exception
 tcs.SetException(ex);
 }
 // here we return the task to the caller
 return tcs.Task;
}

I've commented this heavily. The big deal here, if anything is the Exited event handler which we've hooked using an anonymous
function. In that handler we simply call tcs.SetResult() to the output stream for the process and then Dispose() of the
process - here represented by sender. We got tcs through the magic of hoisting, made possible because C# provides it when
you use anonymous functions. We basically could not get it to the Exited handler otherwise, unless we used a static member
variable, which is ugly. A preferable method to pass the task completion source down would be to use a state argument but
that's something you typically have with callbacks, not events. Note that you can use this overall technique with callbacks as well,
with some slight modification.

If you follow the method you'll note that the event handler comes first, but the code therein doesn't get executed until well after the
containing method (RunWithCaptureAsync()) returns. Remember that Start() doesn't block. Instead, we're getting
completion signalled not by blocking, but by an event.

Using it is nearly the same as before:

var psi = new ProcessStartInfo() {
 FileName = "targetapp.exe"
};
using (var stream = await RunWithCaptureAsync(psi))
{
 var sr = new StreamReader(stream);
 Console.Write(sr.ReadToEnd());
}

Caveats

You might wonder why these aren't extension methods for Process. The primary reason, at least in the asynchronous method's
case is because the Exited handler complicates things. For starters, a Process object can be recycled, which means the
Exited event can be fired several times over the life of the object, but our handler expects it only to be fired once. If you use
TrySetResult() and TrySetException() it can at least fail silently on successive calls but it's still not nice at all. If you
really need to hook a handler that might be called periodically instead of once, or might be hooked by others, you need to remove
your handler's own delegate when your handler runs. This is much harder to do than it sounds, because your handler is an
anonymous function, and it needs access to its own delegate. The solution is to use a member variable on the containing class to
hold it, but this is ugly. Still, it allows us to call Exited-=_myExitedHandler with something meaningful. I did not do that
here. Also doing that can cause problems if your code is accessed from multiple threads without synchronizing.

In short, this isn't easy to use for events that are signalled more than once, or if you have to share the object and its event handlers
with others.

Hopefully, this technique can help you wrap some of that ugly old eventing or callback based asynchronous code with some more
modern awaitable methods.

History
19th February, 2021 - Initial submission

2021/2/23 Adapting Event and Callback Based Asynchronicity to the Task Framework - CodeProject

https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t?display=Print 5/5

Permalink
Advertise
Privacy
Cookies
Terms of Use

 Article Copyright 2021 by honey the
codewitch

Everything else Copyright © CodeProject,
1999-2021

Web01 2.8.20210222.1

License
This article, along with any associated source code and files, is licensed under The MIT License

About the Author

Comments and Discussions
 1 message has been posted for this article Visit https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-

Based-Asynchronicity-t to post and view comments on this article, or click here to get a print view with messages.

honey the codewitch
United States

Just a shiny lil monster. Casts spells in C++. Mostly harmless.

https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t
http://developermedia.com/
https://www.codeproject.com/info/privacy.aspx
https://www.codeproject.com/info/cookie.aspx
https://www.codeproject.com/info/TermsOfUse.aspx
mailto:webmaster@codeproject.com
http://www.opensource.org/licenses/mit-license.php
https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t
https://www.codeproject.com/Tips/5295013/Adapting-Event-and-Callback-Based-Asynchronicity-t?display=PrintAll
https://www.codeproject.com/Members/code-witch

