
Contents

 Enhancing Windows Forms Applications
 Graphics and Drawing in Windows Forms

 Graphics Overview
 Overview of Graphics
 Three Categories of Graphics Services
 Structure of the Graphics Interface

 About GDI+ Managed Code
 Lines, Curves, and Shapes

 Vector Graphics Overview
 Pens, Lines, and Rectangles in GDI+
 Ellipses and Arcs in GDI+
 Polygons in GDI+
 Cardinal Splines in GDI+
 Bézier Splines in GDI+
 Graphics Paths in GDI+
 Brushes and Filled Shapes in GDI+
 Open and Closed Curves in GDI+
 Regions in GDI+
 Restricting the Drawing Surface in GDI+
 Antialiasing with Lines and Curves

 Images, Bitmaps, and Metafiles
 Types of Bitmaps
 Metafiles in GDI+
 Drawing, Positioning, and Cloning Images in GDI+
 Cropping and Scaling Images in GDI+

 Coordinate Systems and Transformations
 Types of Coordinate Systems
 Matrix Representation of Transformations
 Global and Local Transformations

 Using Managed Graphics Classes
 Getting Started with Graphics Programming

 How to: Create Graphics Objects for Drawing
 How to: Create a Pen
 How to: Set the Color of a Pen
 How to: Create a Solid Brush
 How to: Draw a Line on a Windows Form
 How to: Draw an Outlined Shape
 How to: Draw a Filled Rectangle on a Windows Form
 How to: Draw a Filled Ellipse on a Windows Form
 How to: Draw Text on a Windows Form
 How to: Draw Vertical Text on a Windows Form
 How to: Render Images with GDI+
 How to: Create a Shaped Windows Form
 How to: Copy Pixels for Reducing Flicker in Windows Forms

 Using a Pen to Draw Lines and Shapes
 How to: Use a Pen to Draw Lines
 How to: Use a Pen to Draw Rectangles
 How to: Set Pen Width and Alignment
 How to: Draw a Line with Line Caps
 How to: Join Lines
 How to: Draw a Custom Dashed Line
 How to: Draw a Line Filled with a Texture

 Using a Brush to Fill Shapes
 How to: Fill a Shape with a Solid Color
 How to: Fill a Shape with a Hatch Pattern
 How to: Fill a Shape with an Image Texture
 How to: Tile a Shape with an Image

 Using a Gradient Brush to Fill Shapes
 How to: Create a Linear Gradient
 How to: Create a Path Gradient
 How to: Apply Gamma Correction to a Gradient

 Working with Images, Bitmaps, Icons, and Metafiles
 How to: Draw an Existing Bitmap to the Screen
 How to: Load and Display Metafiles
 How to: Crop and Scale Images
 How to: Rotate, Reflect, and Skew Images
 How to: Use Interpolation Mode to Control Image Quality During Scaling
 How to: Create Thumbnail Images
 How to: Improve Performance by Avoiding Automatic Scaling
 How to: Read Image Metadata
 How to: Create a Bitmap at Run Time
 How to: Extract the Icon Associated with a File in Windows Forms

 Alpha Blending Lines and Fills
 How to: Draw Opaque and Semitransparent Lines
 How to: Draw with Opaque and Semitransparent Brushes
 How to: Use Compositing Mode to Control Alpha Blending
 How to: Use a Color Matrix to Set Alpha Values in Images

 Using Fonts and Text
 How to: Construct Font Families and Fonts
 How to: Draw Text at a Specified Location
 How to: Draw Wrapped Text in a Rectangle
 How to: Draw Text with GDI
 How to: Align Drawn Text
 How to: Create Vertical Text
 How to: Set Tab Stops in Drawn Text
 How to: Enumerate Installed Fonts
 How to: Create a Private Font Collection
 How to: Obtain Font Metrics
 How to: Use Antialiasing with Text

 Constructing and Drawing Curves
 How to: Draw Cardinal Splines
 How to: Draw a Single Bézier Spline
 How to: Draw a Sequence of Bézier Splines

 Constructing and Drawing Paths
 How to: Create Figures from Lines, Curves, and Shapes
 How to: Fill Open Figures
 How to: Flatten a Curved Path into a Line

 Using Transformations in Managed GDI+
 Using the World Transformation
 Why Transformation Order Is Significant

 Using Graphics Containers
 Managing the State of a Graphics Object
 Using Nested Graphics Containers

 Using Regions
 How to: Use Hit Testing with a Region
 How to: Use Clipping with a Region

 Recoloring Images
 How to: Use a Color Matrix to Transform a Single Color
 How to: Translate Image Colors
 Using Transformations to Scale Colors
 How to: Rotate Colors
 How to: Shear Colors
 How to: Use a Color Remap Table

 Using Image Encoders and Decoders in Managed GDI+
 How to: List Installed Encoders
 How to: List Installed Decoders
 How to: Determine the Parameters Supported by an Encoder
 How to: Convert a BMP image to a PNG image
 How to: Set JPEG Compression Level

 Using Double Buffering
 Double Buffered Graphics
 How to: Reduce Graphics Flicker with Double Buffering for Forms and Controls
 How to: Manually Manage Buffered Graphics
 How to: Manually Render Buffered Graphics

 Application Settings for Windows Forms
 Application Settings Overview

 Application Settings Overview
 Application Settings Architecture
 Application Settings Attributes
 Application Settings for Custom Controls
 Using Application Settings and User Settings

 How To: Create a New Setting at Design Time
 How To: Change the Value of an Existing Setting at Design Time
 How To: Change the Value of a Setting Between Application Sessions
 How To: Read Settings at Run Time With C#
 How To: Write User Settings at Run Time with C#
 How To: Add Multiple Sets of Settings To Your Application in C#

 How to: Create Application Settings
 How to: Validate Application Settings

 Windows Forms Print Support
 How to: Create Standard Windows Forms Print Jobs
 How to: Capture User Input from a PrintDialog at Run Time
 How to: Choose the Printers Attached to a User's Computer in Windows Forms
 How to: Print Graphics in Windows Forms
 How to: Print a Multi-Page Text File in Windows Forms
 How to: Complete Windows Forms Print Jobs
 How to: Print a Windows Form
 How to: Print in Windows Forms Using Print Preview

 Drag-and-Drop Operations and Clipboard Support
 Walkthrough: Performing a Drag-and-Drop Operation in Windows Forms
 How to: Perform Drag-and-Drop Operations Between Applications
 How to: Add Data to the Clipboard
 How to: Retrieve Data from the Clipboard

 Networking in Windows Forms Applications
 Globalizing Windows Forms

 International Fonts in Windows Forms and Controls
 Bi-Directional Support for Windows Forms Applications
 Display of Asian Characters with the ImeMode Property

 Windows Forms and Unmanaged Applications

 Windows Forms and Unmanaged Applications Overview
 How to: Support COM Interop by Displaying Each Windows Form on Its Own

Thread
 How to: Support COM Interop by Displaying a Windows Form with the ShowDialog

Method
 System Information and Windows Forms
 Power Management in Windows Forms
 Help Systems in Windows Forms Applications
 Windows Forms Visual Inheritance

 How to: Inherit Windows Forms
 How to: Inherit Forms Using the Inheritance Picker Dialog Box
 Effects of Modifying a Base Form's Appearance
 Walkthrough: Demonstrating Visual Inheritance
 How to: Use the Modifiers and GenerateMember Properties

 Multiple-Document Interface (MDI) Applications
 How to: Create MDI Parent Forms
 How to: Create MDI Child Forms
 How to: Determine the Active MDI Child
 How to: Send Data to the Active MDI Child
 How to: Arrange MDI Child Forms

 Integrating User Help in Windows Forms
 How to: Provide Help in a Windows Application
 How to: Display Pop-up Help
 Control Help Using ToolTips

 Windows Forms Accessibility
 Walkthrough: Creating an Accessible Windows-based Application

 Properties on Windows Forms Controls That Support Accessibility Guidelines
 Using WPF Controls

 How to: Copy and Paste an ElementHost Control at Design Time
 Walkthrough: Arranging WPF Content on Windows Forms at Design Time
 Walkthrough: Creating New WPF Content on Windows Forms at Design Time
 Walkthrough: Assigning WPF Content on Windows Forms at Design Time
 Walkthrough: Styling WPF Content

Enhancing Windows Forms Applications
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Related Sections

Windows Forms contains many features that you can use to enhance your Windows-based applications to meet

the specific needs of your users. The following topics describe these features and how to use them.

Graphics and Drawing in Windows Forms

Contains links to topics that describe and show how to use the graphics interface in Windows Forms.

Application Settings for Windows Forms.

Contains links to topics that describe and show how to use the Application Settings feature.

Windows Forms Print Support

Contains links to topics that describe and show how to print files from Windows Forms applications.

Drag-and-Drop Operations and Clipboard Support

Contains links to topics that describe and show how to use the drag-and-drop feature and the Clipboard in

Windows Forms.

Networking in Windows Forms Applications

Contains links to topics that describe and show how to use networking in Windows Forms.

Globalizing Windows Forms applications

Contains links to topics that show how to globalize Windows Forms applications.

Windows Forms and Unmanaged Applications

Contains links to topics that describe and show how to access COM components from Windows Form

applications.

System Information and Windows Forms

Describes how to use system information in Windows Forms.

Power Management in Windows Forms

Describes how to manage power use in Windows Forms applications.

Windows Forms Visual Inheritance

Describes how to inherit from a base form.

Multiple-Document Interface (MDI) Applications

Describes how to create multiple-document interface (MDI) applications.

Integrating User Help in Windows Forms

Describes how to integrate user help in your applications.

Windows Forms Accessibility

Describes how to make your applications available to a wide variety of users.

Using WPF Controls

Describes how to use WPF controls in your Windows Forms-based applications.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/index.md

Help Systems in Windows Forms Applications

Contains links to topics that describe and show how to provide user help in Windows Forms applications.

Getting Started with Windows Forms

Contains links to topics that describe how to use the basic features of Windows Forms.

https://docs.microsoft.com/en-us/dotnet/desktop/winforms/getting-started-with-windows-forms

Graphics and Drawing in Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

The common language runtime uses an advanced implementation of the Windows Graphics Device Interface

(GDI) called GDI+. With GDI+ you can create graphics, draw text, and manipulate graphical images as objects.

GDI+ is designed to offer performance and ease of use. You can use GDI+ to render graphical images on

Windows Forms and controls. Although you cannot use GDI+ directly on Web Forms, you can display graphical

images through the Image Web Server control.

In this section, you will find topics that introduce the fundamentals of GDI+ programming. Although not

intended to be a comprehensive reference, this section includes information about the Graphics, Pen, Brush, and

Color objects, and explains how to perform such tasks as drawing shapes, drawing text, or displaying images.

For more information, see GDI+ Reference.

If you'd like to jump in and get started right away, see Getting Started with Graphics Programming. It has topics

on how to use code to draw lines, shapes, text, and more on Windows forms.

Graphics Overview

Provides an introduction to the graphics-related managed classes.

About GDI+ Managed Code

Provides information about the managed GDI+ classes.

Using Managed Graphics Classes

Demonstrates how to complete a variety of tasks using the GDI+ managed classes.

System.Drawing

Provides access to GDI+ basic graphics functionality.

System.Drawing.Drawing2D

Provides advanced two-dimensional and vector graphics functionality.

System.Drawing.Imaging

Provides advanced GDI+ imaging functionality.

System.Drawing.Text

Provides advanced GDI+ typography functionality. The classes in this namespace can be used to create and use

collections of fonts.

System.Drawing.Printing

Provides printing functionality.

Custom Control Painting and Rendering

Details how to provide code for painting controls.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/graphics-and-drawing-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/windows/desktop/gdiplus/-gdiplus-class-gdi-reference
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/custom-control-painting-and-rendering

Graphics Overview (Windows Forms)
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

GDI+ is a Graphics Device Interface that enables programmers to write device-independent applications. The

services of GDI+ are exposed through a set of managed classes.

Overview of Graphics

Provides a general introduction to GDI+.

Three Categories of Graphics Services

Describes the three categories that make up programming with GDI+.

Structure of the Graphics Interface

Describes the managed class interface of GDI+.

System.Drawing

Provides access to GDI+ basic graphics functionality.

System.Drawing.Drawing2D

Provides advanced two-dimensional and vector graphics functionality.

System.Drawing.Imaging

Provides advanced GDI+ imaging functionality.

System.Drawing.Text

Provides advanced GDI+ typography functionality.

System.Drawing.Printing

Provides print-related services.

TextRenderer

Provides GDI text drawing and measuring functionality.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/graphics-overview-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer

Overview of Graphics
3/9/2021 • 2 minutes to read • Edit Online

Managed Class Interface

See also

GDI+ is an application programming interface (API) that forms the subsystem of the Microsoft Windows

operating system. GDI+ is responsible for displaying information on screens and printers. As its name suggests,

GDI+ is the successor to GDI, the Graphics Device Interface included with earlier versions of Windows.

The GDI+ API is exposed through a set of classes deployed as managed code. This set of classes is called the

managed class interface to GDI+. The following namespaces make up the managed class interface:

System.Drawing

System.Drawing.Drawing2D

System.Drawing.Imaging

System.Drawing.Text

System.Drawing.Printing

With a Graphics Device Interface, such as GDI+, you can display information on a screen or printer without

having to be concerned about the details of a particular display device. The programmer makes calls to methods

provided by GDI+ classes. Those methods, in turn, make the appropriate calls to specific device drivers. GDI+

insulates the application from the graphics hardware. It is this insulation that enables a programmer to create

device-independent applications.

Graphics Overview

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/overview-of-graphics.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing

Three Categories of Graphics Services
11/3/2020 • 2 minutes to read • Edit Online

2D Vector Graphics

Imaging

Typography

See also

The graphics offerings in Windows Forms fall into the following three broad categories:

Two-dimensional (2-D) vector graphics

Imaging

Typography

Two-dimensional vector graphics, such as lines, curves, and figures, are primitives that are specified by sets of

points on a coordinate system. For example, a straight line is specified by its two endpoints, and a rectangle is

specified by a point giving the location of its upper-left corner and a pair of numbers giving its width and height.

A simple path is specified by an array of points that are connected by straight lines. A Bézier spline is a

sophisticated curve specified by four control points.

GDI+ provides classes and structures that store information about the primitives themselves, classes that store

information about how the primitives will be drawn, and classes that actually do the drawing. For example, the

Rectangle structure stores the location and size of a rectangle; the Pen class stores information about line color,

line width, and line style; and the Graphics class has methods for drawing lines, rectangles, paths, and other

figures. There are also several Brush classes that store information about how closed figures and paths will be

filled with colors or patterns.

You can record a vector image, which is a sequence of graphics commands, in a metafile. GDI+ provides the

Metafile class for recording, displaying, and saving metafiles. With the MetafileHeader and MetaHeader classes,

you can inspect the data stored in a metafile header.

Certain kinds of pictures are difficult or impossible to display with the techniques of vector graphics. For

example, the pictures on toolbar buttons and the pictures that appear as icons are difficult to specify as

collections of lines and curves. A high-resolution digital photograph of a crowded baseball stadium is even

more difficult to create with vector techniques. Images of this type are stored as bitmaps, which are arrays of

numbers that represent the colors of individual dots on the screen. GDI+ provides the Bitmap class for

displaying, manipulating, and saving bitmaps.

Typography is the display of text in a variety of fonts, sizes, and styles. GDI+ provides extensive support for this

complex task. One of the new features in GDI+ is subpixel antialiasing, which gives text rendered on an LCD

screen a smoother appearance.

In addition, Windows Forms offers the option to draw text with GDI capabilities in its TextRenderer class.

Graphics Overview

About GDI+ Managed Code

Using Managed Graphics Classes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/three-categories-of-graphics-services.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafileheader
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metaheader
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer

Structure of the Graphics Interface
11/3/2020 • 2 minutes to read • Edit Online

Important Classes

See also

The managed class interface to GDI+ contains about 60 classes, 50 enumerations, and 8 structures. The Graphics

class is at the core of GDI+ functionality; it is the class that actually draws lines, curves, figures, images, and text.

Many classes work together with the Graphics class. For example, the DrawLine method receives a Pen object,

which holds attributes (color, width, dash style, and the like) of the line to be drawn. The FillRectangle method

can receive a pointer to a LinearGradientBrush object, which works with the Graphics object to fill a rectangle

with a gradually changing color. Font and StringFormat objects influence the way a Graphics object draws text. A

Matrix object stores and manipulates the world transformation of a Graphics object, which is used to rotate,

scale, and flip images.

GDI+ provides several structures (for example, Rectangle, Point, and Size) for organizing graphics data. Also,

certain classes serve primarily as structured data types. For example, the BitmapData class is a helper for the

Bitmap class, and the PathData class is a helper for the GraphicsPath class.

GDI+ defines several enumerations, which are collections of related constants. For example, the LineJoin

enumeration contains the elements Bevel, Miter, and Round, which specify styles that can be used to join two

lines.

Graphics Overview

About GDI+ Managed Code

Using Managed Graphics Classes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/structure-of-the-graphics-interface.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.size
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.bitmapdata
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathdata
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin#system_drawing_drawing2d_linejoin_bevel
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin#system_drawing_drawing2d_linejoin_miter
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin#system_drawing_drawing2d_linejoin_round

About GDI+ Managed Code
11/3/2020 • 2 minutes to read • Edit Online

In this section

Reference

Related sections

GDI+ is the portion of the Windows operating system that provides two-dimensional vector graphics, imaging,

and typography. GDI+ improves on GDI (the Graphics Device Interface included with earlier versions of

Windows) by adding new features and by optimizing existing features.

The GDI+ managed class interface (a set of wrappers) is part of the .NET Framework, an environment for

building, deploying, and running XML Web services and other applications.

This section provides information about the GDI+ API for programmers using managed code.

Lines, Curves, and Shapes

Discusses vector graphics.

Images, Bitmaps, and Metafiles

Discusses the type of images available and how to work with them.

Coordinate Systems and Transformations

Discusses how to transform graphics with GDI+.

System.Drawing.Graphics

Describes this class and has links to all its members.

System.Drawing.Image

Describes this class and has links to all its members.

System.Drawing.Bitmap

Describes this class and has links to all its members.

System.Drawing.Imaging.Metafile

Describes this class and has links to all its members.

System.Drawing.Font

Describes this class and has links to all its members.

System.Drawing.Brush

Describes this class and has links to all its members.

System.Drawing.Color

Describes this class and has links to all its members.

System.Drawing.Drawing2D.Matrix

Describes this class and has links to all its members.

System.Windows.Forms.TextRenderer

Describes this class and has links to all its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/about-gdi-managed-code.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer

Using Managed Graphics Classes

Contains links to topics that demonstrate how to use the Graphics programming interface.

Lines, Curves, and Shapes
11/3/2020 • 2 minutes to read • Edit Online

In This Section

The vector graphics portion of GDI+ is used to draw lines, draw curves, and to draw and fill shapes.

Vector Graphics Overview

Discusses vector graphics.

Pens, Lines, and Rectangles in GDI+

Discusses drawing lines and rectangles.

Ellipses and Arcs in GDI+

Defines arcs and ellipses and identifies the classes needed to draw them.

Polygons in GDI+

Defines polygons and identifies the classes needed to draw them.

Cardinal Splines in GDI+

Defines cardinal splines and identifies the classes needed to draw them.

Bézier Splines in GDI+

Defines Bezier splines and identifies the classes needed to draw them.

Graphics Paths in GDI+

Describes paths and how to create and draw them.

Brushes and Filled Shapes in GDI+

Describes brush types and how to use them.

Open and Closed Curves in GDI+

Defines open and closed curves and how to draw and fill them.

Regions in GDI+

Describes the methods associated with regions.

Restricting the Drawing Surface in GDI+

Describes clipping and how to use it.

Antialiasing with Lines and Curves

Defines antialiasing and how use antialiasing when drawing lines and curves.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/lines-curves-and-shapes.md

Vector Graphics Overview
3/9/2021 • 2 minutes to read • Edit Online

The Building Blocks of GDI+

GDI+ draws lines, rectangles, and other shapes on a coordinate system. You can choose from a variety of

coordinate systems, but the default coordinate system has the origin in the upper-left corner with the x-axis

pointing to the right and the y-axis pointing down. The unit of measure in the default coordinate system is the

pixel.

A computer monitor creates its display on a rectangular array of dots called picture elements or pixels. The

number of pixels that appear on the screen varies from one monitor to the next, and the number of pixels that

appear on an individual monitor can usually be configured to some extent by the user.

When you use GDI+ to draw a line, rectangle, or curve, you provide certain key information about the item to be

drawn. For example, you can specify a line by providing two points, and you can specify a rectangle by providing

a point, a height, and a width. GDI+ works in conjunction with the display driver software to determine which

pixels must be turned on to show the line, rectangle, or curve. The following illustration shows the pixels that are

turned on to display a line from the point (4, 2) to the point (12, 8).

Over time, certain basic building blocks have proven to be the most useful for creating two-dimensional

pictures. These building blocks, which are all supported by GDI+, are given in the following list:

Lines

Rectangles

Ellipses

Arcs

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/vector-graphics-overview.md

Methods For Drawing with a Graphics Object

myGraphics.DrawRectangle(myPen, 20, 10, 100, 50);

myGraphics.DrawRectangle(myPen, 20, 10, 100, 50)

See also

Polygons

Cardinal splines

Bezier splines

The Graphics class in GDI+ provides the following methods for drawing the items in the previous list: DrawLine,

DrawRectangle, DrawEllipse, DrawPolygon, DrawArc, DrawCurve (for cardinal splines), and DrawBezier. Each of

these methods is overloaded; that is, each method supports several different parameter lists. For example, one

variation of the DrawLine method receives a Pen object and four integers, while another variation of the

DrawLine method receives a Pen object and two Point objects.

The methods for drawing lines, rectangles, and Bézier splines have plural companion methods that draw several

items in a single call: DrawLines, DrawRectangles, and DrawBeziers. Also, the DrawCurve method has a

companion method, DrawClosedCurve, that closes a curve by connecting the ending point of the curve to the

starting point.

All of the drawing methods of the Graphics class work in conjunction with a Pen object. To draw anything, you

must create at least two objects: a Graphics object and a Pen object. The Pen object stores attributes, such as line

width and color, of the item to be drawn. The Pen object is passed as one of the arguments to the drawing

method. For example, one variation of the DrawLine method receives a Pen object and four integers as shown in

the following example, which draws a rectangle with a width of 100, a height of 50 and an upper-left corner of

(20, 10):

System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpolygon
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawbezier
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawlines
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangles
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawbeziers
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawclosedcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

Pens, Lines, and Rectangles in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Drawing a Line

myGraphics.DrawLine(myPen, 4, 2, 12, 6);

myGraphics.DrawLine(myPen, 4, 2, 12, 6)

Point myStartPoint = new Point(4, 2);
Point myEndPoint = new Point(12, 6);
myGraphics.DrawLine(myPen, myStartPoint, myEndPoint);

Dim myStartPoint As New Point(4, 2)
Dim myEndPoint As New Point(12, 6)
myGraphics.DrawLine(myPen, myStartPoint, myEndPoint)

Constructing a Pen

Pen myPen = new Pen(Color.Blue, 2);
myGraphics.DrawLine(myPen, 0, 0, 60, 30);

Dim myPen As New Pen(Color.Blue, 2)
myGraphics.DrawLine(myPen, 0, 0, 60, 30)

Dashed Lines and Line Caps

To draw lines with GDI+ you need to create a Graphics object and a Pen object. The Graphics object provides the

methods that actually do the drawing, and the Pen object stores attributes, such as line color, width, and style.

To draw a line, call the DrawLine method of the Graphics object. The Pen object is passed as one of the

arguments to the DrawLine method. The following example draws a line from the point (4, 2) to the point (12, 6):

DrawLine is an overloaded method of the Graphics class, so there are several ways you can supply it with

arguments. For example, you can construct two Point objects and pass the Point objects as arguments to the

DrawLine method:

You can specify certain attributes when you construct a Pen object. For example, one Pen constructor allows

you to specify color and width. The following example draws a blue line of width 2 from (0, 0) to (60, 30):

The Pen object also exposes properties, such as DashStyle, that you can use to specify features of the line. The

following example draws a dashed line from (100, 50) to (300, 80):

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/pens-lines-and-rectangles-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.dashstyle

myPen.DashStyle = DashStyle.Dash;
myGraphics.DrawLine(myPen, 100, 50, 300, 80);

myPen.DashStyle = DashStyle.Dash
myGraphics.DrawLine(myPen, 100, 50, 300, 80)

Drawing a Rectangle

myGraphics.DrawRectangle(myPen, 100, 50, 80, 40);

myGraphics.DrawRectangle(myPen, 100, 50, 80, 40)

Rectangle myRectangle = new Rectangle(100, 50, 80, 40);
myGraphics.DrawRectangle(myPen, myRectangle);

Dim myRectangle As New Rectangle(100, 50, 80, 40)
myGraphics.DrawRectangle(myPen, myRectangle)

See also

You can use the properties of the Pen object to set many more attributes of the line. The StartCap and EndCap

properties specify the appearance of the ends of the line; the ends can be flat, square, rounded, triangular, or a

custom shape. The LineJoin property lets you specify whether connected lines are mitered (joined with sharp

corners), beveled, rounded, or clipped. The following illustration shows lines with various cap and join styles.

Drawing rectangles with GDI+ is similar to drawing lines. To draw a rectangle, you need a Graphics object and a

Pen object. The Graphics object provides a DrawRectangle method, and the Pen object stores attributes, such as

line width and color. The Pen object is passed as one of the arguments to the DrawRectangle method. The

following example draws a rectangle with its upper-left corner at (100, 50), a width of 80, and a height of 40:

DrawRectangle is an overloaded method of the Graphics class, so there are several ways you can supply it with

arguments. For example, you can construct a Rectangle object and pass the Rectangle object to the

DrawRectangle method as an argument:

A Rectangle object has methods and properties for manipulating and gathering information about the rectangle.

For example, the Inflate and Offset methods change the size and position of the rectangle. The IntersectsWith

method tells you whether the rectangle intersects another given rectangle, and the Contains method tells you

whether a given point is inside the rectangle.

System.Drawing.Graphics

System.Drawing.Pen

System.Drawing.Rectangle

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.startcap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.endcap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.linejoin
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle.inflate
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle.offset
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle.intersectswith
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle.contains
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle

How to: Create a Pen

How to: Draw a Line on a Windows Form

How to: Draw an Outlined Shape

Ellipses and Arcs in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Drawing an Ellipse

myGraphics.DrawEllipse(myPen, 100, 50, 80, 40);

myGraphics.DrawEllipse(myPen, 100, 50, 80, 40)

Rectangle myRectangle = new Rectangle(100, 50, 80, 40);
myGraphics.DrawEllipse(myPen, myRectangle);

Dim myRectangle As New Rectangle(100, 50, 80, 40)
myGraphics.DrawEllipse(myPen, myRectangle)

Drawing an Arc

myGraphics.DrawArc(myPen, 100, 50, 140, 70, 30, 180);

You can easily draw ellipses and arcs using the DrawEllipse and DrawArc methods of the Graphics class.

To draw an ellipse, you need a Graphics object and a Pen object. The Graphics object provides the DrawEllipse

method, and the Pen object stores attributes, such as width and color, of the line used to render the ellipse. The

Pen object is passed as one of the arguments to the DrawEllipse method. The remaining arguments passed to

the DrawEllipse method specify the bounding rectangle for the ellipse. The following illustration shows an

ellipse along with its bounding rectangle.

The following example draws an ellipse; the bounding rectangle has a width of 80, a height of 40, and an upper-

left corner of (100, 50):

DrawEllipse is an overloaded method of the Graphics class, so there are several ways you can supply it with

arguments. For example, you can construct a Rectangle and pass the Rectangle to the DrawEllipse method as an

argument:

An arc is a portion of an ellipse. To draw an arc, you call the DrawArc method of the Graphics class. The

parameters of the DrawArc method are the same as the parameters of the DrawEllipse method, except that

DrawArc requires a starting angle and sweep angle. The following example draws an arc with a starting angle of

30 degrees and a sweep angle of 180 degrees:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/ellipses-and-arcs-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawarc

myGraphics.DrawArc(myPen, 100, 50, 140, 70, 30, 180)

See also

The following illustration shows the arc, the ellipse, and the bounding rectangle.

System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

How to: Create a Pen

How to: Draw an Outlined Shape

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

Polygons in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Drawing a Polygon

Point[] myPointArray =
{
 new Point(0, 0),
 new Point(50, 30),
 new Point(30, 60)
};
myGraphics.DrawPolygon(myPen, myPointArray);

Dim myPointArray As Point() = _
 {New Point(0, 0), New Point(50, 30), New Point(30, 60)}
myGraphics.DrawPolygon(myPen, myPointArray)

See also

A polygon is a closed shape with three or more straight sides. For example, a triangle is a polygon with three

sides, a rectangle is a polygon with four sides, and a pentagon is a polygon with five sides. The following

illustration shows several polygons.

To draw a polygon, you need a Graphics object, a Pen object, and an array of Point (or PointF) objects. The

Graphics object provides the DrawPolygon method. The Pen object stores attributes, such as width and color, of

the line used to render the polygon, and the array of Point objects stores the points to be connected by straight

lines. The Pen object and the array of Point objects are passed as arguments to the DrawPolygon method. The

following example draws a three-sided polygon. Note that there are only three points in myPointArray : (0, 0),

(50, 30), and (30, 60). The DrawPolygon method automatically closes the polygon by drawing a line from (30,

60) back to the starting point (0, 0).

The following illustration shows the polygon.

System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

How to: Create a Pen

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/polygons-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pointf
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpolygon
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpolygon
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpolygon
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

Cardinal Splines in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Physical and Mathematical Splines

A cardinal spline is a sequence of individual curves joined to form a larger curve. The spline is specified by an

array of points and a tension parameter. A cardinal spline passes smoothly through each point in the array; there

are no sharp corners and no abrupt changes in the tightness of the curve. The following illustration shows a set

of points and a cardinal spline that passes through each point in the set.

A physical spline is a thin piece of wood or other flexible material. Before the advent of mathematical splines,

designers used physical splines to draw curves. A designer would place the spline on a piece of paper and

anchor it to a given set of points. The designer could then create a curve by drawing along the spline with a pen

or pencil. A given set of points could yield a variety of curves, depending on the properties of the physical spline.

For example, a spline with a high resistance to bending would produce a different curve than an extremely

flexible spline.

The formulas for mathematical splines are based on the properties of flexible rods, so the curves produced by

mathematical splines are similar to the curves that were once produced by physical splines. Just as physical

splines of different tension will produce different curves through a given set of points, mathematical splines

with different values for the tension parameter will produce different curves through a given set of points. The

following illustration shows four cardinal splines passing through the same set of points. The tension is shown

for each spline. A tension of 0 corresponds to infinite physical tension, forcing the curve to take the shortest way

(straight lines) between points. A tension of 1 corresponds to no physical tension, allowing the spline to take the

path of least total bend. With tension values greater than 1, the curve behaves like a compressed spring, pushed

to take a longer path.

The four splines in the preceding illustration share the same tangent line at the starting point. The tangent is the

line drawn from the starting point to the next point along the curve. Likewise, the shared tangent at the ending

point is the line drawn from the ending point to the previous point on the curve.

To draw a cardinal spline, you need an instance of the Graphics class, a Pen, and an array of Point objects The

instance of the Graphics class provides the DrawCurve method, which draws the spline, and the Pen stores

attributes of the spline, such as line width and color. The array of Point objects stores the points that the curve

will pass through. The following code example shows how to draw a cardinal spline that passes through the

points in myPointArray . The third parameter is the tension.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/cardinal-splines-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point

myGraphics.DrawCurve(myPen, myPointArray, 1.5f);

myGraphics.DrawCurve(myPen, myPointArray, 1.5F)

See also
Lines, Curves, and Shapes

Constructing and Drawing Curves

Bézier Splines in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Drawing Bézier Splines

myGraphics.DrawBezier(myPen, 0, 0, 40, 20, 80, 150, 100, 10);

myGraphics.DrawBezier(myPen, 0, 0, 40, 20, 80, 150, 100, 10)

A Bézier spline is a curve specified by four points: two end points (p1 and p2) and two control points (c1 and c2).

The curve begins at p1 and ends at p2. The curve does not pass through the control points, but the control

points act as magnets, pulling the curve in certain directions and influencing the way the curve bends. The

following illustration shows a Bézier curve along with its endpoints and control points.

The curve starts at p1 and moves toward the control point c1. The tangent line to the curve at p1 is the line

drawn from p1 to c1. The tangent line at the endpoint p2 is the line drawn from c2 to p2.

To draw a Bézier spline, you need an instance of the Graphics class and a Pen. The instance of the Graphics class

provides the DrawBezier method, and the Pen stores attributes, such as width and color, of the line used to

render the curve. The Pen is passed as one of the arguments to the DrawBezier method. The remaining

arguments passed to the DrawBezier method are the endpoints and the control points. The following example

draws a Bézier spline with starting point (0, 0), control points (40, 20) and (80, 150), and ending point (100, 10):

The following illustration shows the curve, the control points, and two tangent lines.

Bézier splines were originally developed by Pierre Bézier for design in the automotive industry. They have since

proven to be useful in many types of computer-aided design and are also used to define the outlines of fonts.

Bézier splines can yield a wide variety of shapes, some of which are shown in the following illustration.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/bezier-splines-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawbezier
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawbezier
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawbezier

See also
System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

Constructing and Drawing Curves

How to: Create Graphics Objects for Drawing

How to: Create a Pen

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

Graphics Paths in GDI+
11/3/2020 • 3 minutes to read • Edit Online

Using a Path

myGraphicsPath.AddLine(0, 0, 30, 20);
myGraphicsPath.AddEllipse(20, 20, 20, 40);
myGraphicsPath.AddBezier(30, 60, 70, 60, 50, 30, 100, 10);
myGraphics.DrawPath(myPen, myGraphicsPath);

Paths are formed by combining lines, rectangles, and simple curves. Recall from the Vector Graphics Overview

that the following basic building blocks have proven to be the most useful for drawing pictures:

Lines

Rectangles

Ellipses

Arcs

Polygons

Cardinal splines

Bézier splines

In GDI+, the GraphicsPath object allows you to collect a sequence of these building blocks into a single unit. The

entire sequence of lines, rectangles, polygons, and curves can then be drawn with one call to the DrawPath

method of the Graphics class. The following illustration shows a path created by combining a line, an arc, a

Bézier spline, and a cardinal spline.

The GraphicsPath class provides the following methods for creating a sequence of items to be drawn: AddLine,

AddRectangle, AddEllipse, AddArc, AddPolygon, AddCurve (for cardinal splines), and AddBezier. Each of these

methods is overloaded; that is, each method supports several different parameter lists. For example, one

variation of the AddLine method receives four integers, and another variation of the AddLine method receives

two Point objects.

The methods for adding lines, rectangles, and Bézier splines to a path have plural companion methods that add

several items to the path in a single call: AddLines, AddRectangles, and AddBeziers. Also, the AddCurve and

AddArc methods have companion methods, AddClosedCurve and AddPie, that add a closed curve or pie to the

path.

To draw a path, you need a Graphics object, a Pen object, and a GraphicsPath object. The Graphics object

provides the DrawPath method, and the Pen object stores attributes, such as width and color, of the line used to

render the path. The GraphicsPath object stores the sequence of lines and curves that make up the path. The Pen

object and the GraphicsPath object are passed as arguments to the DrawPath method. The following example

draws a path that consists of a line, an ellipse, and a Bézier spline:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/graphics-paths-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addpolygon
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addbezier
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addlines
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addrectangles
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addbeziers
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addclosedcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addpie
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpath

myGraphicsPath.AddLine(0, 0, 30, 20)
myGraphicsPath.AddEllipse(20, 20, 20, 40)
myGraphicsPath.AddBezier(30, 60, 70, 60, 50, 30, 100, 10)
myGraphics.DrawPath(myPen, myGraphicsPath)

myGraphicsPath.AddPath(graphicsPath1, false);
myGraphicsPath.AddPath(graphicsPath2, false);

myGraphicsPath.AddPath(graphicsPath1, False)
myGraphicsPath.AddPath(graphicsPath2, False)

GraphicsPath myGraphicsPath = new GraphicsPath();

Point[] myPointArray =
{
 new Point(5, 30),
 new Point(20, 40),
 new Point(50, 30)
};

FontFamily myFontFamily = new FontFamily("Times New Roman");
PointF myPointF = new PointF(50, 20);
StringFormat myStringFormat = new StringFormat();

myGraphicsPath.AddArc(0, 0, 30, 20, -90, 180);
myGraphicsPath.StartFigure();
myGraphicsPath.AddCurve(myPointArray);
myGraphicsPath.AddString("a string in a path", myFontFamily,
 0, 24, myPointF, myStringFormat);
myGraphicsPath.AddPie(230, 10, 40, 40, 40, 110);
myGraphics.DrawPath(myPen, myGraphicsPath);

The following illustration shows the path.

In addition to adding lines, rectangles, and curves to a path, you can add paths to a path. This allows you to

combine existing paths to form large, complex paths.

There are two other items you can add to a path: strings and pies. A pie is a portion of the interior of an ellipse.

The following example creates a path from an arc, a cardinal spline, a string, and a pie:

Dim myGraphicsPath As New GraphicsPath()

Dim myPointArray As Point() = { _
 New Point(5, 30), _
 New Point(20, 40), _
 New Point(50, 30)}

Dim myFontFamily As New FontFamily("Times New Roman")
Dim myPointF As New PointF(50, 20)
Dim myStringFormat As New StringFormat()

myGraphicsPath.AddArc(0, 0, 30, 20, -90, 180)
myGraphicsPath.StartFigure()
myGraphicsPath.AddCurve(myPointArray)
myGraphicsPath.AddString("a string in a path", myFontFamily, _
 0, 24, myPointF, myStringFormat)
myGraphicsPath.AddPie(230, 10, 40, 40, 40, 110)
myGraphics.DrawPath(myPen, myGraphicsPath)

See also

The following illustration shows the path. Note that a path does not have to be connected; the arc, cardinal

spline, string, and pie are separated.

System.Drawing.Drawing2D.GraphicsPath

System.Drawing.Point

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

Constructing and Drawing Paths

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point

Brushes and Filled Shapes in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Solid Brushes

SolidBrush mySolidBrush = new SolidBrush(Color.Red);
myGraphics.FillEllipse(mySolidBrush, 0, 0, 60, 40);

Dim mySolidBrush As New SolidBrush(Color.Red)
myGraphics.FillEllipse(mySolidBrush, 0, 0, 60, 40)

NOTE

Hatch Brushes

HatchBrush myHatchBrush =
 new HatchBrush(HatchStyle.Vertical, Color.Blue, Color.Green);

Dim myHatchBrush As _
 New HatchBrush(HatchStyle.Vertical, Color.Blue, Color.Green)

A closed shape, such as a rectangle or an ellipse, consists of an outline and an interior. The outline is drawn with

a pen and the interior is filled with a brush. GDI+ provides several brush classes for filling the interiors of closed

shapes: SolidBrush, HatchBrush, TextureBrush, LinearGradientBrush, and PathGradientBrush. All of these classes

inherit from the Brush class. The following illustration shows a rectangle filled with a solid brush and an ellipse

filled with a hatch brush.

To fill a closed shape, you need an instance of the Graphics class and a Brush. The instance of the Graphics class

provides methods, such as FillRectangle and FillEllipse, and the Brush stores attributes of the fill, such as color

and pattern. The Brush is passed as one of the arguments to the fill method. The following code example shows

how to fill an ellipse with a solid red color.

In the preceding example, the brush is of type SolidBrush, which inherits from Brush.

When you fill a shape with a hatch brush, you specify a foreground color, a background color, and a hatch style.

The foreground color is the color of the hatching.

GDI+ provides more than 50 hatch styles; the three styles shown in the following illustration are Horizontal,

ForwardDiagonal, and Cross.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/brushes-and-filled-shapes-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_horizontal
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_forwarddiagonal
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_cross

Texture Brushes

Image myImage = Image.FromFile("MyTexture.bmp");
TextureBrush myTextureBrush = new TextureBrush(myImage);
myGraphics.FillEllipse(myTextureBrush, 0, 0, 100, 50);

Dim myImage As Image = Image.FromFile("MyTexture.bmp")
Dim myTextureBrush As New TextureBrush(myImage)
myGraphics.FillEllipse(myTextureBrush, 0, 0, 100, 50)

Gradient Brushes

LinearGradientBrush myLinearGradientBrush = new LinearGradientBrush(
 myRectangle,
 Color.Blue,
 Color.Green,
 LinearGradientMode.Horizontal);
myGraphics.FillEllipse(myLinearGradientBrush, myRectangle);

Dim myLinearGradientBrush As New LinearGradientBrush(_
 myRectangle, _
 Color.Blue, _
 Color.Green, _
 LinearGradientMode.Horizontal)
myGraphics.FillEllipse(myLinearGradientBrush, myRectangle)

With a texture brush, you can fill a shape with a pattern stored in a bitmap. For example, suppose the following

picture is stored in a disk file named MyTexture.bmp .

The following code example shows how to fill an ellipse by repeating the picture stored in MyTexture.bmp .

The following illustration shows the filled ellipse.

GDI+ provides two kinds of gradient brushes: linear and path. You can use a linear gradient brush to fill a shape

with color that changes gradually as you move across the shape horizontally, vertically, or diagonally. The

following code example shows how to fill an ellipse with a horizontal gradient brush that changes from blue to

green as you move from the left edge of the ellipse to the right edge.

The following illustration shows the filled ellipse.

See also

A path gradient brush can be configured to change color as you move from the center of a shape toward the

edge.

Path gradient brushes are quite flexible. The gradient brush used to fill the triangle in the following illustration

changes gradually from red at the center to each of three different colors at the vertices.

System.Drawing.SolidBrush

System.Drawing.Drawing2D.HatchBrush

System.Drawing.TextureBrush

System.Drawing.Drawing2D.LinearGradientBrush

Lines, Curves, and Shapes

How to: Draw a Filled Rectangle on a Windows Form

How to: Draw a Filled Ellipse on a Windows Form

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush

Open and Closed Curves in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Managed Interface for Curves

myGraphics.FillPie(mySolidBrush, 0, 0, 140, 70, 0, 120);
myGraphics.DrawArc(myPen, 0, 0, 140, 70, 0, 120);

myGraphics.FillPie(mySolidBrush, 0, 0, 140, 70, 0, 120)
myGraphics.DrawArc(myPen, 0, 0, 140, 70, 0, 120)

Point[] myPointArray =
{
 new Point(0, 0),
 new Point(60, 20),
 new Point(40, 50)
};
myGraphics.DrawClosedCurve(myPen, myPointArray);
myGraphics.FillClosedCurve(mySolidBrush, myPointArray);

The following illustration shows two curves: one open and one closed.

Closed curves have an interior and therefore can be filled with a brush. The Graphics class in GDI+ provides the

following methods for filling closed shapes and curves: FillRectangle, FillEllipse, FillPie, FillPolygon,

FillClosedCurve, FillPath, and FillRegion. Whenever you call one of these methods, you must pass one of the

specific brush types (SolidBrush, HatchBrush, TextureBrush, LinearGradientBrush, or PathGradientBrush) as an

argument.

The FillPie method is a companion to the DrawArc method. Just as the DrawArc method draws a portion of the

outline of an ellipse, the FillPie method fills a portion of the interior of an ellipse. The following example draws

an arc and fills the corresponding portion of the interior of the ellipse:

The following illustration shows the arc and the filled pie.

The FillClosedCurve method is a companion to the DrawClosedCurve method. Both methods automatically

close the curve by connecting the ending point to the starting point. The following example draws a curve that

passes through (0, 0), (60, 20), and (40, 50). Then, the curve is automatically closed by connecting (40, 50) to the

starting point (0, 0), and the interior is filled with a solid color.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/open-and-closed-curves-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpie
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpolygon
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillclosedcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillregion
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpie
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawarc
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpie
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillclosedcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawclosedcurve

Dim myPointArray As Point() = _
 {New Point(0, 0), New Point(60, 20), New Point(40, 50)}
myGraphics.DrawClosedCurve(myPen, myPointArray)
myGraphics.FillClosedCurve(mySolidBrush, myPointArray)

SolidBrush mySolidBrush = new SolidBrush(Color.Aqua);
GraphicsPath myGraphicsPath = new GraphicsPath();

Point[] myPointArray =
{
 new Point(15, 20),
 new Point(20, 40),
 new Point(50, 30)
};

FontFamily myFontFamily = new FontFamily("Times New Roman");
PointF myPointF = new PointF(50, 20);
StringFormat myStringFormat = new StringFormat();

myGraphicsPath.AddArc(0, 0, 30, 20, -90, 180);
myGraphicsPath.AddCurve(myPointArray);
myGraphicsPath.AddString("a string in a path", myFontFamily,
 0, 24, myPointF, myStringFormat);
myGraphicsPath.AddPie(230, 10, 40, 40, 40, 110);

myGraphics.FillPath(mySolidBrush, myGraphicsPath);
myGraphics.DrawPath(myPen, myGraphicsPath);

Dim mySolidBrush As New SolidBrush(Color.Aqua)
Dim myGraphicsPath As New GraphicsPath()

Dim myPointArray As Point() = { _
 New Point(15, 20), _
 New Point(20, 40), _
 New Point(50, 30)}

Dim myFontFamily As New FontFamily("Times New Roman")
Dim myPointF As New PointF(50, 20)
Dim myStringFormat As New StringFormat()

myGraphicsPath.AddArc(0, 0, 30, 20, -90, 180)
myGraphicsPath.AddCurve(myPointArray)
myGraphicsPath.AddString("a string in a path", myFontFamily, _
 0, 24, myPointF, myStringFormat)
myGraphicsPath.AddPie(230, 10, 40, 40, 40, 110)

myGraphics.FillPath(mySolidBrush, myGraphicsPath)
myGraphics.DrawPath(myPen, myGraphicsPath)

The FillPath method fills the interiors of the separate pieces of a path. If a piece of a path doesn't form a closed

curve or shape, the FillPath method automatically closes that piece of the path before filling it. The following

example draws and fills a path that consists of an arc, a cardinal spline, a string, and a pie:

The following illustration shows the path with and without the solid fill. Note that the text in the string is

outlined, but not filled, by the DrawPath method. It is the FillPath method that paints the interiors of the

characters in the string.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath

See also
System.Drawing.Drawing2D.GraphicsPath

System.Drawing.Pen

System.Drawing.Point

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

Constructing and Drawing Paths

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point

Regions in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Using Regions

myGraphics.FillRegion(mySolidBrush, myRegion);

myGraphics.FillRegion(mySolidBrush, myRegion)

A region is a portion of the display area of an output device. Regions can be simple (a single rectangle) or

complex (a combination of polygons and closed curves). The following illustration shows two regions: one

constructed from a rectangle, and the other constructed from a path.

Regions are often used for clipping and hit testing. Clipping involves restricting drawing to a certain region of

the display area, usually the portion that needs to be updated. Hit testing involves checking to determine

whether the cursor is in a certain region of the screen when a mouse button is pressed.

You can construct a region from a rectangle or a path. You can also create complex regions by combining

existing regions. The Region class provides the following methods for combining regions: Intersect, Union, Xor,

Exclude, and Complement.

The intersection of two regions is the set of all points belonging to both regions. The union is the set of all points

belonging to one or the other or both regions. The complement of a region is the set of all points that are not in

the region. The following illustration shows the intersection and union of the two regions shown in the

preceding illustration.

The Xor method, applied to a pair of regions, produces a region that contains all points that belong to one

region or the other, but not both. The Exclude method, applied to a pair of regions, produces a region that

contains all points in the first region that are not in the second region. The following illustration shows the

regions that result from applying the Xor and Exclude methods to the two regions shown at the beginning of

this topic.

To fill a region, you need a Graphics object, a Brush object, and a Region object. The Graphics object provides the

FillRegion method, and the Brush object stores attributes of the fill, such as color or pattern. The following

example fills a region with a solid color.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/regions-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.intersect
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.union
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.xor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.exclude
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.complement
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.xor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.exclude
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.xor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region.exclude
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillregion
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush

See also
System.Drawing.Region

Lines, Curves, and Shapes

Using Regions

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region

Restricting the Drawing Surface in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Clipping with Regions

myGraphics.Clip = myRegion;
myGraphics.DrawLine(myPen, 0, 0, 200, 200);

myGraphics.Clip = myRegion
myGraphics.DrawLine(myPen, 0, 0, 200, 200)

See also

Clipping involves restricting drawing to a certain rectangle or region. The following illustration shows the string

"Hello" clipped to a heart-shaped region.

Regions can be constructed from paths, and paths can contain the outlines of strings, so you can use outlined

text for clipping. The following illustration shows a set of concentric ellipses clipped to the interior of a string of

text.

To draw with clipping, create a Graphics object, set its Clip property, and then call the drawing methods of that

same Graphics object:

System.Drawing.Graphics

System.Drawing.Region

Lines, Curves, and Shapes

Using Regions

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/restricting-the-drawing-surface-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.clip
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region

Antialiasing with Lines and Curves
11/3/2020 • 2 minutes to read • Edit Online

Aliasing

Antialiasing

When you use GDI+ to draw a line, you provide the starting point and ending point of the line, but you do not

have to provide any information about the individual pixels on the line. GDI+ works in conjunction with the

display driver software to determine which pixels will be turned on to show the line on a particular display

device.

Consider the straight red line that goes from the point (4, 2) to the point (16, 10). Assume the coordinate system

has its origin in the upper-left corner and that the unit of measure is the pixel. Also assume that the x-axis points

to the right and the y-axis points down. The following illustration shows an enlarged view of the red line drawn

on a multicolored background.

The red pixels used to render the line are opaque. There are no partially transparent pixels in the line. This type

of line rendering gives the line a jagged appearance, and the line looks somewhat like a staircase. This technique

of representing a line with a staircase is called aliasing; the staircase is an alias for the theoretical line.

A more sophisticated technique for rendering a line involves using partially transparent pixels along with

opaque pixels. Pixels are set to pure red, or to some blend of red and the background color, depending on how

close they are to the line. This type of rendering is called antialiasing and results in a line that the human eye

perceives as more smooth. The following illustration shows how certain pixels are blended with the background

to produce an antialiased line.

Antialiasing, also called smoothing, can also be applied to curves. The following illustration shows an enlarged

view of a smoothed ellipse.

The following illustration shows the same ellipse in its actual size, once without antialiasing and once with

antialiasing.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/antialiasing-with-lines-and-curves.md

myGraphics.SmoothingMode = SmoothingMode.AntiAlias;
myGraphics.DrawLine(myPen, 0, 0, 12, 8);

myGraphics.SmoothingMode = SmoothingMode.AntiAlias
myGraphics.DrawLine(myPen, 0, 0, 12, 8)

See also

To draw lines and curves that use antialiasing, create an instance of the Graphics class and set its

SmoothingMode property to AntiAlias or HighQuality. Then call one of the drawing methods of that same

Graphics class.

System.Drawing.Drawing2D.SmoothingMode

Lines, Curves, and Shapes

How to: Use Antialiasing with Text

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.smoothingmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_antialias
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_highquality
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode

Images, Bitmaps, and Metafiles
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

The Image class is an abstract base class that provides methods for working with raster images (bitmaps) and

vector images (metafiles). The Bitmap class and the Metafile class both inherit from the Image class. The

Bitmap class expands on the capabilities of the Image class by providing additional methods for loading,

saving, and manipulating raster images. The Metafile class expands on the capabilities of the Image class by

providing additional methods for recording and examining vector images.

Types of Bitmaps

Discusses the various image formats.

Metafiles in GDI+

Discusses GDI+ support for metafiles.

Drawing, Positioning, and Cloning Images in GDI+

Discusses methods for drawing vector and raster images with managed code.

Cropping and Scaling Images in GDI+

Discusses methods for cropping and scaling vector and raster images with managed code

Image

Describes this class and has links to all of its members.

Bitmap

Describes this class and has links to all of its members

Working with Images, Bitmaps, Icons, and Metafiles

Contains links to topics that demonstrate how to use images in your application.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/images-bitmaps-and-metafiles.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

Types of Bitmaps
3/9/2021 • 6 minutes to read • Edit Online

B IT S P ER P IXEL N UM B ER O F C O LO RS T H AT C A N B E A SSIGN ED TO A P IXEL

1 2^1 = 2

2 2^2 = 4

4 2^4 = 16

8 2^8 = 256

16 2^16 = 65,536

24 2^24 = 16,777,216

A bitmap is an array of bits that specify the color of each pixel in a rectangular array of pixels. The number of bits

devoted to an individual pixel determines the number of colors that can be assigned to that pixel. For example, if

each pixel is represented by 4 bits, then a given pixel can be assigned one of 16 different colors (2^4 = 16). The

following table shows a few examples of the number of colors that can be assigned to a pixel represented by a

given number of bits.

Disk files that store bitmaps usually contain one or more information blocks that store information such as the

number of bits per pixel, number of pixels in each row, and number of rows in the array. Such a file might also

contain a color table (sometimes called a color palette). A color table maps numbers in the bitmap to specific

colors. The following illustration shows an enlarged image along with its bitmap and color table. Each pixel is

represented by a 4-bit number, so there are 2^4 = 16 colors in the color table. Each color in the table is

represented by a 24-bit number: 8 bits for red, 8 bits for green, and 8 bits for blue. The numbers are shown in

hexadecimal (base 16) form: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.

Look at the pixel in row 3, column 5 of the image. The corresponding number in the bitmap is 1. The color table

tells us that 1 represents the color red so the pixel is red. All the entries in the top row of the bitmap are 3. The

color table tells us that 3 represents blue, so all the pixels in the top row of the image are blue.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/types-of-bitmaps.md

NOTE

Graphics File Formats

BMP

Graphics Interchange Format (GIF)

Joint Photographic Experts Group (JPEG)

Some bitmaps are stored in bottom-up format; the numbers in the first row of the bitmap correspond to the pixels in the

bottom row of the image.

A bitmap that stores indexes into a color table is called a palette-indexed bitmap. Some bitmaps have no need

for a color table. For example, if a bitmap uses 24 bits per pixel, that bitmap can store the colors themselves

rather than indexes into a color table. The following illustration shows a bitmap that stores colors directly (24

bits per pixel) rather than using a color table. The illustration also shows an enlarged view of the corresponding

image. In the bitmap, FFFFFF represents white, FF0000 represents red, 00FF00 represents green, and 0000FF

represents blue.

There are many standard formats for saving bitmaps in disk files. GDI+ supports the graphics file formats

described in the following paragraphs.

BMP is a standard format used by Windows to store device-independent and application-independent images.

The number of bits per pixel (1, 4, 8, 15, 24, 32, or 64) for a given BMP file is specified in a file header. BMP files

with 24 bits per pixel are common. BMP files are usually not compressed and, therefore, are not well suited for

transfer across the Internet.

GIF is a common format for images that appear on Web pages. GIFs work well for line drawings, pictures with

blocks of solid color, and pictures with sharp boundaries between colors. GIFs are compressed, but no

information is lost in the compression process; a decompressed image is exactly the same as the original. One

color in a GIF can be designated as transparent, so that the image will have the background color of any Web

page that displays it. A sequence of GIF images can be stored in a single file to form an animated GIF. GIFs store

at most 8 bits per pixel, so they are limited to 256 colors.

JPEG is a compression scheme that works well for natural scenes such as scanned photographs. Some

information is lost in the compression process, but often the loss is imperceptible to the human eye. JPEGs store

24 bits per pixel, so they are capable of displaying more than 16 million colors. JPEGs do not support

transparency or animation.

The level of compression in JPEG images is configurable, but higher compression levels (smaller files) result in

more loss of information. A 20:1 compression ratio often produces an image that the human eye finds difficult

to distinguish from the original. The following illustration shows a BMP image and two JPEG images that were

compressed from that BMP image. The first JPEG has a compression ratio of 4:1 and the second JPEG has a

compression ratio of about 8:1.

Exchangeable Image File (EXIF)

Portable Network Graphics (PNG)

Tag Image File Format (TIFF)

See also

JPEG compression does not work well for line drawings, blocks of solid color, and sharp boundaries. The

following illustration shows a BMP along with two JPEGs and a GIF. The JPEGs and the GIF were compressed

from the BMP. The compression ratio is 4:1 for the GIF, 4:1 for the smaller JPEG, and 8:3 for the larger JPEG. Note

that the GIF maintains the sharp boundaries along the lines, but the JPEGs tend to blur the boundaries.

JPEG is a compression scheme, not a file format. JPEG File Interchange Format (JFIF) is a file format commonly

used for storing and transferring images that have been compressed according to the JPEG scheme. JFIF files

displayed by Web browsers use the .jpg extension.

EXIF is a file format used for photographs captured by digital cameras. An EXIF file contains an image that is

compressed according to the JPEG specification. An EXIF file also contains information about the photograph

(date taken, shutter speed, exposure time, and so on) and information about the camera (manufacturer, model,

and so on).

The PNG format retains many of the advantages of the GIF format but also provides capabilities beyond those of

GIF. Like GIF files, PNG files are compressed with no loss of information. PNG files can store colors with 8, 24, or

48 bits per pixel and grayscales with 1, 2, 4, 8, or 16 bits per pixel. In contrast, GIF files can use only 1, 2, 4, or 8

bits per pixel. A PNG file can also store an alpha value for each pixel, which specifies the degree to which the

color of that pixel is blended with the background color.

PNG improves on GIF in its ability to progressively display an image (that is, to display better and better

approximations of the image as it arrives over a network connection). PNG files can contain gamma correction

and color correction information so that the images can be accurately rendered on a variety of display devices.

TIFF is a flexible and extendable format that is supported by a wide variety of platforms and image-processing

applications. TIFF files can store images with an arbitrary number of bits per pixel and can employ a variety of

compression algorithms. Several images can be stored in a single, multiple-page TIFF file. Information related to

the image (scanner make, host computer, type of compression, orientation, samples per pixel, and so on) can be

stored in the file and arranged through the use of tags. The TIFF format can be extended as needed by the

approval and addition of new tags.

System.Drawing.Image

System.Drawing.Bitmap

System.Drawing.Imaging.PixelFormat

Images, Bitmaps, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.pixelformat

Working with Images, Bitmaps, Icons, and Metafiles

Metafiles in GDI+
11/3/2020 • 2 minutes to read • Edit Online

Metafile Formats

public void Example_DisplayMetafile(PaintEventArgs e)
{
 Graphics myGraphics = e.Graphics;
 Metafile myMetafile = new Metafile("SampleMetafile.emf");
 myGraphics.DrawImage(myMetafile, 100, 100);
}

Public Sub Example_DisplayMetafile(ByVal e As PaintEventArgs)
 Dim myGraphics As Graphics = e.Graphics
 Dim myMetafile As New Metafile("SampleMetafile.emf")
 myGraphics.DrawImage(myMetafile, 100, 100)
End Sub

See also

GDI+ provides the Metafile class so that you can record and display metafiles. A metafile, also called a vector

image, is an image that is stored as a sequence of drawing commands and settings. The commands and settings

recorded in a Metafile object can be stored in memory or saved to a file or stream.

GDI+ can display metafiles that have been stored in the following formats:

Windows Metafile (WMF)

Enhanced Metafile (EMF)

EMF+

GDI+ can record metafiles in the EMF and EMF+ formats, but not in the WMF format.

EMF+ is an extension to EMF that allows GDI+ records to be stored. There are two variations on the EMF+

format: EMF+ Only and EMF+ Dual. EMF+ Only metafiles contain only GDI+ records. Such metafiles can be

displayed by GDI+ but not by GDI. EMF+ Dual metafiles contain GDI+ and GDI records. Each GDI+ record in an

EMF+ Dual metafile is paired with an alternate GDI record. Such metafiles can be displayed by GDI+ or by GDI.

The following example displays a metafile that was previously saved as a file. The metafile is displayed with its

upper-left corner at (100, 100).

Images, Bitmaps, and Metafiles

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/metafiles-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile

Drawing, Positioning, and Cloning Images in GDI+
11/3/2020 • 2 minutes to read • Edit Online

File Types and Cloning

Bitmap myBitmap = new Bitmap("Climber.jpg");
myGraphics.DrawImage(myBitmap, 10, 10);

Dim myBitmap As New Bitmap("Climber.jpg")
myGraphics.DrawImage(myBitmap, 10, 10)

Bitmap myBMP = new Bitmap("SpaceCadet.bmp");
Bitmap myGIF = new Bitmap("Soda.gif");
Bitmap myJPEG = new Bitmap("Mango.jpg");
Bitmap myPNG = new Bitmap("Flowers.png");
Bitmap myTIFF = new Bitmap("MS.tif");

myGraphics.DrawImage(myBMP, 10, 10);
myGraphics.DrawImage(myGIF, 220, 10);
myGraphics.DrawImage(myJPEG, 280, 10);
myGraphics.DrawImage(myPNG, 150, 200);
myGraphics.DrawImage(myTIFF, 300, 200);

You can use the Bitmap class to load and display raster images, and you can use the Metafile class to load and

display vector images. The Bitmap and Metafile classes inherit from the Image class. To display a vector image,

you need an instance of the Graphics class and a Metafile. To display a raster image, you need an instance of the

Graphics class and a Bitmap. The instance of the Graphics class provides the DrawImage method, which receives

the Metafile or Bitmap as an argument.

The following code example shows how to construct a Bitmap from the file Climber.jpg and displays the bitmap.

The destination point for the upper-left corner of the image, (10, 10), is specified in the second and third

parameters.

The following illustration shows the image.

You can construct Bitmap objects from a variety of graphics file formats: BMP, GIF, JPEG, EXIF, PNG, TIFF, and

ICON.

The following code example shows how to construct Bitmap objects from a variety of file types and then

displays the bitmaps.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/drawing-positioning-and-cloning-images-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

Dim myBMP As New Bitmap("SpaceCadet.bmp")
Dim myGIF As New Bitmap("Soda.gif")
Dim myJPEG As New Bitmap("Mango.jpg")
Dim myPNG As New Bitmap("Flowers.png")
Dim myTIFF As New Bitmap("MS.tif")

myGraphics.DrawImage(myBMP, 10, 10)
myGraphics.DrawImage(myGIF, 220, 10)
myGraphics.DrawImage(myJPEG, 280, 10)
myGraphics.DrawImage(myPNG, 150, 200)
myGraphics.DrawImage(myTIFF, 300, 200)

Bitmap originalBitmap = new Bitmap("Spiral.png");
Rectangle sourceRectangle = new Rectangle(0, 0, originalBitmap.Width,
 originalBitmap.Height / 2);

Bitmap secondBitmap = originalBitmap.Clone(sourceRectangle,
 PixelFormat.DontCare);

myGraphics.DrawImage(originalBitmap, 10, 10);
myGraphics.DrawImage(secondBitmap, 150, 10);

Dim originalBitmap As New Bitmap("Spiral.png")
Dim sourceRectangle As New Rectangle(0, 0, originalBitmap.Width, _
 CType(originalBitmap.Height / 2, Integer))

Dim secondBitmap As Bitmap = originalBitmap.Clone(sourceRectangle, _
 PixelFormat.DontCare)

myGraphics.DrawImage(originalBitmap, 10, 10)
myGraphics.DrawImage(secondBitmap, 150, 10)

See also

The Bitmap class provides a Clone method that you can use to make a copy of an existing Bitmap. The Clone

method has a source rectangle parameter that you can use to specify the portion of the original bitmap that you

want to copy. The following code example shows how to create a Bitmap by cloning the top half of an existing

Bitmap. Then both images are drawn.

The following illustration shows the two images.

Images, Bitmaps, and Metafiles

How to: Create Graphics Objects for Drawing

Working with Images, Bitmaps, Icons, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap.clone
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap.clone
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

Cropping and Scaling Images in GDI+
11/3/2020 • 2 minutes to read • Edit Online

DrawImage Variations

Bitmap myBitmap = new Bitmap("Spiral.png");

Rectangle expansionRectangle = new Rectangle(135, 10,
 myBitmap.Width, myBitmap.Height);

Rectangle compressionRectangle = new Rectangle(300, 10,
 myBitmap.Width / 2, myBitmap.Height / 2);

myGraphics.DrawImage(myBitmap, 10, 10);
myGraphics.DrawImage(myBitmap, expansionRectangle);
myGraphics.DrawImage(myBitmap, compressionRectangle);

Dim myBitmap As New Bitmap("Spiral.png")

Dim expansionRectangle As New Rectangle(135, 10, _
 myBitmap.Width, myBitmap.Height)

Dim compressionRectangle As New Rectangle(300, 10, _
 CType(myBitmap.Width / 2, Integer), CType(myBitmap.Height / 2, Integer))

myGraphics.DrawImage(myBitmap, 10, 10)
myGraphics.DrawImage(myBitmap, expansionRectangle)
myGraphics.DrawImage(myBitmap, compressionRectangle)

You can use the DrawImage method of the Graphics class to draw and position vector images and raster images.

DrawImage is an overloaded method, so there are several ways you can supply it with arguments.

One variation of the DrawImage method receives a Bitmap and a Rectangle. The rectangle specifies the

destination for the drawing operation; that is, it specifies the rectangle in which to draw the image. If the size of

the destination rectangle is different from the size of the original image, the image is scaled to fit the destination

rectangle. The following code example shows how to draw the same image three times: once with no scaling,

once with an expansion, and once with a compression:

The following illustration shows the three pictures.

Some variations of the DrawImage method have a source-rectangle parameter as well as a destination-

rectangle parameter. The source-rectangle parameter specifies the portion of the original image to draw. The

destination rectangle specifies the rectangle in which to draw that portion of the image. If the size of the

destination rectangle is different from the size of the source rectangle, the picture is scaled to fit the destination

rectangle.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/cropping-and-scaling-images-in-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage

Bitmap myBitmap = new Bitmap("Runner.jpg");

// One hand of the runner
Rectangle sourceRectangle = new Rectangle(80, 70, 80, 45);

// Compressed hand
Rectangle destRectangle1 = new Rectangle(200, 10, 20, 16);

// Expanded hand
Rectangle destRectangle2 = new Rectangle(200, 40, 200, 160);

// Draw the original image at (0, 0).
myGraphics.DrawImage(myBitmap, 0, 0);

// Draw the compressed hand.
myGraphics.DrawImage(
 myBitmap, destRectangle1, sourceRectangle, GraphicsUnit.Pixel);

// Draw the expanded hand.
myGraphics.DrawImage(
 myBitmap, destRectangle2, sourceRectangle, GraphicsUnit.Pixel);

Dim myBitmap As New Bitmap("Runner.jpg")

' One hand of the runner
Dim sourceRectangle As New Rectangle(80, 70, 80, 45)

' Compressed hand
Dim destRectangle1 As New Rectangle(200, 10, 20, 16)

' Expanded hand
Dim destRectangle2 As New Rectangle(200, 40, 200, 160)

' Draw the original image at (0, 0).
myGraphics.DrawImage(myBitmap, 0, 0)

' Draw the compressed hand.
myGraphics.DrawImage(_
 myBitmap, destRectangle1, sourceRectangle, GraphicsUnit.Pixel)

' Draw the expanded hand.
myGraphics.DrawImage(_
 myBitmap, destRectangle2, sourceRectangle, GraphicsUnit.Pixel)

The following code example shows how to construct a Bitmap from the file Runner.jpg. The entire image is

drawn with no scaling at (0, 0). Then a small portion of the image is drawn twice: once with a compression and

once with an expansion.

The following illustration shows the unscaled image, and the compressed and expanded image portions.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

See also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

Coordinate Systems and Transformations
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

GDI+ provides a world transformation and a page transformation so that you can transform (rotate, scale,

translate, and so on) the items you draw. The two transformations also allow you to work in a variety of

coordinate systems.

Types of Coordinate Systems

Introduces coordinates systems and transformations.

Matrix Representation of Transformations

Discusses using matrices for coordinate transformations.

Global and Local Transformations

Discusses global and local transformations.

Matrix

Encapsulates a 3-by-3 affine matrix that represents a geometric transform.

Using Transformations in Managed GDI+

Provides a list of topics that provide more information about how to use matrix transformations.

About GDI+ Managed Code

Contains a list of topics describing the graphics constructs you can use in the .NET Framework.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/coordinate-systems-and-transformations.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix

Types of Coordinate Systems
3/9/2021 • 4 minutes to read • Edit Online

Transforms and Coordinate Systems

World (0, 0) to (160, 80)

Page (100, 50) to (260, 130)

Device (100, 50) to (260, 130)

GDI+ uses three coordinate spaces: world, page, and device. World coordinates are the coordinates used to

model a particular graphic world and are the coordinates you pass to methods in the .NET Framework. Page

coordinates refer to the coordinate system used by a drawing surface, such as a form or control. Device

coordinates are the coordinates used by the physical device being drawn on, such as a screen or sheet of paper.

When you make the call myGraphics.DrawLine(myPen, 0, 0, 160, 80) , the points that you pass to the DrawLine

method— (0, 0) and (160, 80) —are in the world coordinate space. Before GDI+ can draw the line on the

screen, the coordinates pass through a sequence of transformations. One transformation, called the world

transformation, converts world coordinates to page coordinates, and another transformation, called the page

transformation, converts page coordinates to device coordinates.

Suppose you want to work with a coordinate system that has its origin in the body of the client area rather than

the upper-left corner. Say, for example, that you want the origin to be 100 pixels from the left edge of the client

area and 50 pixels from the top of the client area. The following illustration shows such a coordinate system.

When you make the call myGraphics.DrawLine(myPen, 0, 0, 160, 80) , you get the line shown in the following

illustration.

The coordinates of the endpoints of your line in the three coordinate spaces are as follows:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/types-of-coordinate-systems.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline

myGraphics.TranslateTransform(100, 50);
myGraphics.DrawLine(myPen, 0, 0, 160, 80);

myGraphics.TranslateTransform(100, 50)
myGraphics.DrawLine(myPen, 0, 0, 160, 80)

NOTE

myGraphics.PageUnit = GraphicsUnit.Inch;
myGraphics.DrawLine(myPen, 0, 0, 2, 1);

myGraphics.PageUnit = GraphicsUnit.Inch
myGraphics.DrawLine(myPen, 0, 0, 2, 1)

NOTE

Pen myPen = new Pen(Color.Black, 1 / myGraphics.DpiX);

Dim myPen As New Pen(Color.Black, 1 / myGraphics.DpiX)

Note that the page coordinate space has its origin at the upper-left corner of the client area; this will always be

the case. Also note that because the unit of measure is the pixel, the device coordinates are the same as the page

coordinates. If you set the unit of measure to something other than pixels (for example, inches), then the device

coordinates will be different from the page coordinates.

The world transformation, which maps world coordinates to page coordinates, is held in the Transform property

of the Graphics class. In the preceding example, the world transformation is a translation 100 units in the x

direction and 50 units in the y direction. The following example sets the world transformation of a Graphics

object and then uses that Graphics object to draw the line shown in the preceding figure:

The page transformation maps page coordinates to device coordinates. The Graphics class provides the

PageUnit and PageScale properties for manipulating the page transformation. The Graphics class also provides

two read-only properties, DpiX and DpiY, for examining the horizontal and vertical dots per inch of the display

device.

You can use the PageUnit property of the Graphics class to specify a unit of measure other than the pixel.

You cannot set the PageUnit property to World, as this is not a physical unit and will cause an exception.

The following example draws a line from (0, 0) to (2, 1), where the point (2, 1) is 2 inches to the right and 1 inch

down from the point (0, 0):

If you don't specify a pen width when you construct your pen, the preceding example will draw a line that is one inch

wide. You can specify the pen width in the second argument to the Pen constructor:

If we assume that the display device has 96 dots per inch in the horizontal direction and 96 dots per inch in the

vertical direction, the endpoints of the line in the preceding example have the following coordinates in the three

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.transform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.pageunit
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.pagescale
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.dpix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.dpiy
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.pageunit
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.pageunit
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphicsunit#system_drawing_graphicsunit_world
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

World (0, 0) to (2, 1)

Page (0, 0) to (2, 1)

Device (0, 0) to (192, 96)

myGraphics.TranslateTransform(2, 0.5f);
myGraphics.PageUnit = GraphicsUnit.Inch;
myGraphics.DrawLine(myPen, 0, 0, 2, 1);

myGraphics.TranslateTransform(2, 0.5F)
myGraphics.PageUnit = GraphicsUnit.Inch
myGraphics.DrawLine(myPen, 0, 0, 2, 1)

World (0, 0) to (2, 1)

Page (2, 0.5) to (4, 1.5)

Device (192, 48) to (384, 144)

See also

coordinate spaces:

Note that because the origin of the world coordinate space is at the upper-left corner of the client area, the page

coordinates are the same as the world coordinates.

You can combine the world and page transformations to achieve a variety of effects. For example, suppose you

want to use inches as the unit of measure and you want the origin of your coordinate system to be 2 inches

from the left edge of the client area and 1/2 inch from the top of the client area. The following example sets the

world and page transformations of a Graphics object and then draws a line from (0, 0) to (2, 1):

The following illustration shows the line and coordinate system.

If we assume that the display device has 96 dots per inch in the horizontal direction and 96 dots per inch in the

vertical direction, the endpoints of the line in the preceding example have the following coordinates in the three

coordinate spaces:

Coordinate Systems and Transformations

Matrix Representation of Transformations

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Matrix Representation of Transformations
11/3/2020 • 5 minutes to read • Edit Online

An m×n matrix is a set of numbers arranged in m rows and n columns. The following illustration shows several

matrices.

You can add two matrices of the same size by adding individual elements. The following illustration shows two

examples of matrix addition.

An m×n matrix can be multiplied by an n×p matrix, and the result is an m×p matrix. The number of columns in

the first matrix must be the same as the number of rows in the second matrix. For example, a 4×2 matrix can be

multiplied by a 2×3 matrix to produce a 4×3 matrix.

Points in the plane and rows and columns of a matrix can be thought of as vectors. For example, (2, 5) is a vector

with two components, and (3, 7, 1) is a vector with three components. The dot product of two vectors is defined

as follows:

(a, b) • (c, d) = ac + bd

(a, b, c) • (d, e, f) = ad + be + cf

For example, the dot product of (2, 3) and (5, 4) is (2)(5) + (3)(4) = 22. The dot product of (2, 5, 1) and (4, 3, 1) is

(2)(4) + (5)(3) + (1)(1) = 24. Note that the dot product of two vectors is a number, not another vector. Also note

that you can calculate the dot product only if the two vectors have the same number of components.

Let A(i, j) be the entry in matrix A in the ith row and the jth column. For example A(3, 2) is the entry in matrix A

in the 3rd row and the 2nd column. Suppose A, B, and C are matrices, and AB = C. The entries of C are calculated

as follows:

C(i, j) = (row i of A) • (column j of B)

The following illustration shows several examples of matrix multiplication.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/matrix-representation-of-transformations.md

If you think of a point in a plane as a 1×2 matrix, you can transform that point by multiplying it by a 2×2 matrix.

The following illustration shows several transformations applied to the point (2, 1).

All of the transformations shown in the preceding figure are linear transformations. Certain other

transformations, such as translation, are not linear, and cannot be expressed as multiplication by a 2×2 matrix.

Suppose you want to start with the point (2, 1), rotate it 90 degrees, translate it 3 units in the x direction, and

translate it 4 units in the y direction. You can accomplish this by using a matrix multiplication followed by a

matrix addition.

A linear transformation (multiplication by a 2×2 matrix) followed by a translation (addition of a 1×2 matrix) is

called an affine transformation. An alternative to storing an affine transformation in a pair of matrices (one for

the linear part and one for the translation) is to store the entire transformation in a 3×3 matrix. To make this

work, a point in the plane must be stored in a 1×3 matrix with a dummy 3rd coordinate. The usual technique is

to make all 3rd coordinates equal to 1. For example, the point (2, 1) is represented by the matrix [2 1 1]. The

following illustration shows an affine transformation (rotate 90 degrees; translate 3 units in the x direction, 4

Composite Transformations

Matrix A Rotate 90 degrees

Matrix B Scale by a factor of 2 in the x direction

Matrix C Translate 3 units in the y direction

units in the y direction) expressed as multiplication by a single 3×3 matrix.

In the preceding example, the point (2, 1) is mapped to the point (2, 6). Note that the third column of the 3×3

matrix contains the numbers 0, 0, 1. This will always be the case for the 3×3 matrix of an affine transformation.

The important numbers are the six numbers in columns 1 and 2. The upper-left 2×2 portion of the matrix

represents the linear part of the transformation, and the first two entries in the 3rd row represent the

translation.

In GDI+ you can store an affine transformation in a Matrix object. Because the third column of a matrix that

represents an affine transformation is always (0, 0, 1), you specify only the six numbers in the first two columns

when you construct a Matrix object. The statement Matrix myMatrix = new Matrix(0, 1, -1, 0, 3, 4) constructs

the matrix shown in the preceding figure.

A composite transformation is a sequence of transformations, one followed by the other. Consider the matrices

and transformations in the following list:

If we start with the point (2, 1) — represented by the matrix [2 1 1] — and multiply by A, then B, then C, the

point (2, 1) will undergo the three transformations in the order listed.

[2 1 1]ABC = [-2 5 1]

Rather than store the three parts of the composite transformation in three separate matrices, you can multiply

A, B, and C together to get a single 3×3 matrix that stores the entire composite transformation. Suppose ABC =

D. Then a point multiplied by D gives the same result as a point multiplied by A, then B, then C.

[2 1 1]D = [-2 5 1]

The following illustration shows the matrices A, B, C, and D.

The fact that the matrix of a composite transformation can be formed by multiplying the individual

transformation matrices means that any sequence of affine transformations can be stored in a single Matrix

object.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix

C a u t i o n

Matrix myMatrix = new Matrix();
myMatrix.Rotate(30);
myMatrix.Scale(1, 2, MatrixOrder.Append);
myMatrix.Translate(5, 0, MatrixOrder.Append);

Dim myMatrix As New Matrix()
myMatrix.Rotate(30)
myMatrix.Scale(1, 2, MatrixOrder.Append)
myMatrix.Translate(5, 0, MatrixOrder.Append)

See also

The order of a composite transformation is important. In general, rotate, then scale, then translate is not the

same as scale, then rotate, then translate. Similarly, the order of matrix multiplication is important. In general,

ABC is not the same as BAC.

The Matrix class provides several methods for building a composite transformation: Multiply, Rotate, RotateAt,

Scale, Shear, and Translate. The following example creates the matrix of a composite transformation that first

rotates 30 degrees, then scales by a factor of 2 in the y direction, and then translates 5 units in the x direction:

The following illustration shows the matrix.

Coordinate Systems and Transformations

Using Transformations in Managed GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix.multiply
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix.rotate
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix.rotateat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix.scale
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix.shear
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix.translate

Global and Local Transformations
11/3/2020 • 3 minutes to read • Edit Online

Global Transformations

myGraphics.DrawEllipse(myPen, 0, 0, 100, 50);
myGraphics.ScaleTransform(1, 0.5f);
myGraphics.TranslateTransform(50, 0, MatrixOrder.Append);
myGraphics.RotateTransform(30, MatrixOrder.Append);
myGraphics.DrawEllipse(myPen, 0, 0, 100, 50);

myGraphics.DrawEllipse(myPen, 0, 0, 100, 50)
myGraphics.ScaleTransform(1, 0.5F)
myGraphics.TranslateTransform(50, 0, MatrixOrder.Append)
myGraphics.RotateTransform(30, MatrixOrder.Append)
myGraphics.DrawEllipse(myPen, 0, 0, 100, 50)

NOTE

Local Transformations

A global transformation is a transformation that applies to every item drawn by a given Graphics object. In

contrast, a local transformation is a transformation that applies to a specific item to be drawn.

To create a global transformation, construct a Graphics object, and then manipulate its Transform property. The

Transform property is a Matrix object, so it can hold any sequence of affine transformations. The transformation

stored in the Transform property is called the world transformation. The Graphics class provides several

methods for building up a composite world transformation: MultiplyTransform, RotateTransform,

ScaleTransform, and TranslateTransform. The following example draws an ellipse twice: once before creating a

world transformation and once after. The transformation first scales by a factor of 0.5 in the y direction, then

translates 50 units in the x direction, and then rotates 30 degrees.

The following illustration shows the matrices involved in the transformation.

In the preceding example, the ellipse is rotated about the origin of the coordinate system, which is at the upper-left corner

of the client area. This produces a different result than rotating the ellipse about its own center.

A local transformation applies to a specific item to be drawn. For example, a GraphicsPath object has a

Transform method that allows you to transform the data points of that path. The following example draws a

rectangle with no transformation and a path with a rotation transformation. (Assume that there is no world

transformation.)

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/global-and-local-transformations.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.transform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.transform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.transform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.multiplytransform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.rotatetransform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.scaletransform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.translatetransform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.transform

Matrix myMatrix = new Matrix();
myMatrix.Rotate(45);
myGraphicsPath.Transform(myMatrix);
myGraphics.DrawRectangle(myPen, 10, 10, 100, 50);
myGraphics.DrawPath(myPen, myGraphicsPath);

Dim myMatrix As New Matrix()
myMatrix.Rotate(45)
myGraphicsPath.Transform(myMatrix)
myGraphics.DrawRectangle(myPen, 10, 10, 100, 50)
myGraphics.DrawPath(myPen, myGraphicsPath)

Matrix myMatrix = new Matrix(1, 0, 0, -1, 0, 0);
myGraphics.Transform = myMatrix;
myGraphics.TranslateTransform(200, 150, MatrixOrder.Append);

Dim myMatrix As New Matrix(1, 0, 0, -1, 0, 0)
myGraphics.Transform = myMatrix
myGraphics.TranslateTransform(200, 150, MatrixOrder.Append)

You can combine the world transformation with local transformations to achieve a variety of results. For

example, you can use the world transformation to revise the coordinate system and use local transformations to

rotate and scale objects drawn on the new coordinate system.

Suppose you want a coordinate system that has its origin 200 pixels from the left edge of the client area and

150 pixels from the top of the client area. Furthermore, assume that you want the unit of measure to be the

pixel, with the x-axis pointing to the right and the y-axis pointing up. The default coordinate system has the y-

axis pointing down, so you need to perform a reflection across the horizontal axis. The following illustration

shows the matrix of such a reflection.

Next, assume you need to perform a translation 200 units to the right and 150 units down.

The following example establishes the coordinate system just described by setting the world transformation of a

Graphics object.

The following code (placed at the end of the preceding example) creates a path that consists of a single rectangle

with its lower-left corner at the origin of the new coordinate system. The rectangle is filled once with no local

transformation and once with a local transformation. The local transformation consists of a horizontal scaling by

a factor of 2 followed by a 30-degree rotation.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

// Create the path.
GraphicsPath myGraphicsPath = new GraphicsPath();
Rectangle myRectangle = new Rectangle(0, 0, 60, 60);
myGraphicsPath.AddRectangle(myRectangle);

// Fill the path on the new coordinate system.
// No local transformation
myGraphics.FillPath(mySolidBrush1, myGraphicsPath);

// Set the local transformation of the GraphicsPath object.
Matrix myPathMatrix = new Matrix();
myPathMatrix.Scale(2, 1);
myPathMatrix.Rotate(30, MatrixOrder.Append);
myGraphicsPath.Transform(myPathMatrix);

// Fill the transformed path on the new coordinate system.
myGraphics.FillPath(mySolidBrush2, myGraphicsPath);

' Create the path.
Dim myGraphicsPath As New GraphicsPath()
Dim myRectangle As New Rectangle(0, 0, 60, 60)
myGraphicsPath.AddRectangle(myRectangle)

' Fill the path on the new coordinate system.
' No local transformation
myGraphics.FillPath(mySolidBrush1, myGraphicsPath)

' Set the local transformation of the GraphicsPath object.
Dim myPathMatrix As New Matrix()
myPathMatrix.Scale(2, 1)
myPathMatrix.Rotate(30, MatrixOrder.Append)
myGraphicsPath.Transform(myPathMatrix)

' Fill the transformed path on the new coordinate system.
myGraphics.FillPath(mySolidBrush2, myGraphicsPath)

See also

The following illustration shows the new coordinate system and the two rectangles.

Coordinate Systems and Transformations

Using Transformations in Managed GDI+

Using Managed Graphics Classes
11/3/2020 • 2 minutes to read • Edit Online

In This Section

The following topics describe how to use the GDI+ API in the managed class framework.

Getting Started with Graphics Programming

Describes how to accomplish basic tasks with GDI+.

Using a Pen to Draw Lines and Shapes

Demonstrates how to construct a pen and use it to draw a variety of lines and shapes.

Using a Brush to Fill Shapes

Demonstrates how to construct a brush and fill shapes with a variety of effects.

Using a Gradient Brush to Fill Shapes

Shows how to create and use different types of gradient brushes.

Working with Images, Bitmaps, Icons, and Metafiles

Demonstrates how to construct and manipulate images.

Alpha Blending Lines and Fills

Demonstrates how to achieve transparency for shapes and lines.

Using Fonts and Text

Shows how to draw text and use fonts and font families.

Constructing and Drawing Curves

Shows how to draw Cardinal and Bezier splines.

Constructing and Drawing Paths

Shows how to create figures using paths.

Using Transformations in Managed GDI+

Demonstrates matrix transformations.

Using Graphics Containers

Shows how to manage graphics object state and nested graphics containers.

Using Regions

Demonstrates hit testing and clipping with regions.

Recoloring Images

Demonstrates various aspects of manipulating colors.

Using Image Encoders and Decoders in Managed GDI+

Show how to use image encoders and decoders to manipulate images.

Double Buffered Graphics

Demonstrates how to reduce flicker with double buffering.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-managed-graphics-classes.md

Getting Started with Graphics Programming
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

This section shows how to get started using GDI+ in a Windows Forms application. The following topics show

how to complete several GDI+ tasks such as drawing and filling shapes and text.

How to: Create Graphics Objects for Drawing

Shows how to create a Graphics object for drawing.

How to: Create a Pen

Shows how to create a pen.

How to: Set the Color of a Pen

Demonstrates how to set the color of a pen.

How to: Create a Solid Brush

Describes how to create a solid brush.

How to: Draw a Line on a Windows Form

Demonstrates how to draw a line.

How to: Draw an Outlined Shape

Describes how to draw a shape.

How to: Draw a Filled Rectangle on a Windows Form

Explains how to draw a rectangle.

How to: Draw a Filled Ellipse on a Windows Form

Shows how to draw a filled ellipse.

How to: Draw Text on a Windows Form

Describes how to draw text.

How to: Draw Vertical Text on a Windows Form

Shows how to draw vertical text.

How to: Render Images with GDI+

Demonstrates how to draw images.

How to: Create a Shaped Windows Form

Explains how to change the shape of a form.

How to: Copy Pixels for Reducing Flicker in Windows Forms

Explains how to copy pixels from one area to another.

System.Drawing

Describes this namespace and has links to all its members.

System.Windows.Forms

Describes this namespace and has links to all of its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/getting-started-with-graphics-programming.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms

How to: Create Graphics Objects for Drawing
11/3/2020 • 4 minutes to read • Edit Online

Creating a Graphics Object

To create a graphics object

PaintEventArgs in the Paint Event Handler

To obtain a reference to a Graphics object from the PaintEventArgs in the Paint event

Before you can draw lines and shapes, render text, or display and manipulate images with GDI+, you need to

create a Graphics object. The Graphics object represents a GDI+ drawing surface, and is the object that is used to

create graphical images.

There are two steps in working with graphics:

1. Creating a Graphics object.

2. Using the Graphics object to draw lines and shapes, render text, or display and manipulate images.

A graphics object can be created in a variety of ways.

Receive a reference to a graphics object as part of the PaintEventArgs in the Paint event of a form or

control. This is usually how you obtain a reference to a graphics object when creating painting code for a

control. Similarly, you can also obtain a graphics object as a property of the PrintPageEventArgs when

handling the PrintPage event for a PrintDocument.

-or-

Call the CreateGraphics method of a control or form to obtain a reference to a Graphics object that

represents the drawing surface of that control or form. Use this method if you want to draw on a form or

control that already exists.

-or-

Create a Graphics object from any object that inherits from Image. This approach is useful when you want

to alter an already existing image.

The following sections give details about each of these processes.

When programming the PaintEventHandler for controls or the PrintPage for a PrintDocument, a graphics object

is provided as one of the properties of PaintEventArgs or PrintPageEventArgs.

1. Declare the Graphics object.

2. Assign the variable to refer to the Graphics object passed as part of the PaintEventArgs.

3. Insert code to paint the form or control.

The following example shows how to reference a Graphics object from the PaintEventArgs in the Paint

event:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-graphics-objects-for-drawing.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.creategraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

CreateGraphics Method

To create a Graphics object with the CreateGraphics method

Create from an Image Object

To create a Graphics object from an Image

Private Sub Form1_Paint(sender As Object, pe As PaintEventArgs) Handles _
 MyBase.Paint
 ' Declares the Graphics object and sets it to the Graphics object
 ' supplied in the PaintEventArgs.
 Dim g As Graphics = pe.Graphics
 ' Insert code to paint the form here.
End Sub

private void Form1_Paint(object sender,
 System.Windows.Forms.PaintEventArgs pe)
{
 // Declares the Graphics object and sets it to the Graphics object
 // supplied in the PaintEventArgs.
 Graphics g = pe.Graphics;
 // Insert code to paint the form here.
}

private:
 void Form1_Paint(System::Object ^ sender,
 System::Windows::Forms::PaintEventArgs ^ pe)
 {
 // Declares the Graphics object and sets it to the Graphics object
 // supplied in the PaintEventArgs.
 Graphics ^ g = pe->Graphics;
 // Insert code to paint the form here.
 }

You can also use the CreateGraphics method of a control or form to obtain a reference to a Graphics object that

represents the drawing surface of that control or form.

Dim g as Graphics
' Sets g to a Graphics object representing the drawing surface of the
' control or form g is a member of.
g = Me.CreateGraphics

Graphics g;
// Sets g to a graphics object representing the drawing surface of the
// control or form g is a member of.
g = this.CreateGraphics();

Graphics ^ g;
// Sets g to a graphics object representing the drawing surface of the
// control or form g is a member of.
g = this->CreateGraphics();

Call the CreateGraphics method of the form or control upon which you want to render graphics.

Additionally, you can create a graphics object from any object that derives from the Image class.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.creategraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.creategraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image

NOTE

Drawing and Manipulating Shapes and Images

To use the Graphics object you have created

See also

Dim myBitmap as New Bitmap("C:\Documents and Settings\Joe\Pics\myPic.bmp")
Dim g as Graphics = Graphics.FromImage(myBitmap)

Bitmap myBitmap = new Bitmap(@"C:\Documents and
 Settings\Joe\Pics\myPic.bmp");
Graphics g = Graphics.FromImage(myBitmap);

Bitmap ^ myBitmap = gcnew
 Bitmap("D:\\Documents and Settings\\Joe\\Pics\\myPic.bmp");
Graphics ^ g = Graphics::FromImage(myBitmap);

Call the Graphics.FromImage method, supplying the name of the Image variable from which you want to

create a Graphics object.

The following example shows how to use a Bitmap object:

You can only create Graphics objects from nonindexed .bmp files, such as 16-bit, 24-bit, and 32-bit .bmp files. Each pixel

of nonindexed .bmp files holds a color, in contrast to pixels of indexed .bmp files, which hold an index to a color table.

After it is created, a Graphics object may be used to draw lines and shapes, render text, or display and

manipulate images. The principal objects that are used with the Graphics object are:

The Pen class—Used for drawing lines, outlining shapes, or rendering other geometric representations.

The Brush class—Used for filling areas of graphics, such as filled shapes, images, or text.

The Font class—Provides a description of what shapes to use when rendering text.

The Color structure—Represents the different colors to display.

TO REN DER SEE

Lines How to: Draw a Line on a Windows Form

Shapes How to: Draw an Outlined Shape

Text How to: Draw Text on a Windows Form

Images How to: Render Images with GDI+

Work with the appropriate object listed above to draw what you need.

For more information, see the following topics:

Getting Started with Graphics Programming

Graphics and Drawing in Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fromimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color

Lines, Curves, and Shapes

How to: Render Images with GDI+

How to: Create a Pen
11/3/2020 • 2 minutes to read • Edit Online

Example

System::Drawing::Pen^ myPen;
myPen = gcnew System::Drawing::Pen(System::Drawing::Color::Tomato);

System.Drawing.Pen myPen;
myPen = new System.Drawing.Pen(System.Drawing.Color.Tomato);

Dim myPen As System.Drawing.Pen
myPen = New System.Drawing.Pen(System.Drawing.Color.Tomato)

Robust Programming

See also

This example creates a Pen object.

After you have finished using objects that consume system resources, such as Pen objects, you should call

Dispose on them.

Pen

Getting Started with Graphics Programming

Pens, Lines, and Rectangles in GDI+

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-pen.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

How to: Set the Color of a Pen
11/3/2020 • 2 minutes to read • Edit Online

Example

myPen->Color = System::Drawing::Color::PeachPuff;

myPen.Color = System.Drawing.Color.PeachPuff;

myPen.Color = System.Drawing.Color.PeachPuff

Compiling the Code

Robust Programming

See also

This example changes the color of a pre-existing Pen object

This example requires:

A Pen object named myPen .

You should call Dispose on objects that consume system resources (such as Pen objects) after you are finished

using them.

Pen

Getting Started with Graphics Programming

How to: Create a Pen

Using a Pen to Draw Lines and Shapes

Pens, Lines, and Rectangles in GDI+

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-set-the-color-of-a-pen.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

How to: Create a Solid Brush
11/3/2020 • 2 minutes to read • Edit Online

Example

System::Drawing::SolidBrush^ myBrush =
 gcnew System::Drawing::SolidBrush(System::Drawing::Color::Red);
System::Drawing::Graphics^ formGraphics;
formGraphics = this->CreateGraphics();
formGraphics->FillEllipse(myBrush, Rectangle(0, 0, 200, 300));
delete myBrush;
delete formGraphics;

System.Drawing.SolidBrush myBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Red);
System.Drawing.Graphics formGraphics;
formGraphics = this.CreateGraphics();
formGraphics.FillEllipse(myBrush, new Rectangle(0, 0, 200, 300));
myBrush.Dispose();
formGraphics.Dispose();

Dim myBrush As New System.Drawing.SolidBrush(System.Drawing.Color.Red)
Dim formGraphics As System.Drawing.Graphics
formGraphics = Me.CreateGraphics()
formGraphics.FillEllipse(myBrush, New Rectangle(0, 0, 200, 300))
myBrush.Dispose()
formGraphics.Dispose()

Robust Programming

See also

This example creates a SolidBrush object that can be used by a Graphics object for filling shapes.

After you have finished using them, you should call Dispose on objects that consume system resources, such as

brush objects.

SolidBrush

Brush

Getting Started with Graphics Programming

Brushes and Filled Shapes in GDI+

Using a Brush to Fill Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-solid-brush.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush

How to: Draw a Line on a Windows Form
11/3/2020 • 2 minutes to read • Edit Online

Example

Pen pen = new Pen(Color.FromArgb(255, 0, 0, 0));
e.Graphics.DrawLine(pen, 20, 10, 300, 100);

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 0))
e.Graphics.DrawLine(pen, 20, 10, 300, 100)

Compiling the Code

Robust Programming

See also

This example draws a line on a form. Typically, when you draw on a form, you handle the form’s Paint event and

perform the drawing using the Graphics property of the PaintEventArgs, as shown in this example

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

You should always call Dispose on any objects that consume system resources, such as Pen objects.

DrawLine

OnPaint

Getting Started with Graphics Programming

Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-line-on-a-windows-form.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint

How to: Draw an Outlined Shape
11/3/2020 • 2 minutes to read • Edit Online

Example

private:
 void DrawEllipse()
 {
 System::Drawing::Pen^ myPen =
 gcnew System::Drawing::Pen(System::Drawing::Color::Red);
 System::Drawing::Graphics^ formGraphics;
 formGraphics = this->CreateGraphics();
 formGraphics->DrawEllipse(myPen, Rectangle(0, 0, 200, 300));
 delete myPen;
 delete formGraphics;
 }

private:
 void DrawRectangle()
 {
 System::Drawing::Pen^ myPen =
 gcnew System::Drawing::Pen(System::Drawing::Color::Red);
 System::Drawing::Graphics^ formGraphics;
 formGraphics = this->CreateGraphics();
 formGraphics->DrawRectangle(myPen, Rectangle(0, 0, 200, 300));
 delete myPen;
 delete formGraphics;
 }

private void DrawEllipse()
{
 System.Drawing.Pen myPen = new System.Drawing.Pen(System.Drawing.Color.Red);
 System.Drawing.Graphics formGraphics;
 formGraphics = this.CreateGraphics();
 formGraphics.DrawEllipse(myPen, new Rectangle(0, 0, 200, 300));
 myPen.Dispose();
 formGraphics.Dispose();
}

private void DrawRectangle()
{
 System.Drawing.Pen myPen = new System.Drawing.Pen(System.Drawing.Color.Red);
 System.Drawing.Graphics formGraphics;
 formGraphics = this.CreateGraphics();
 formGraphics.DrawRectangle(myPen, new Rectangle(0, 0, 200, 300));
 myPen.Dispose();
 formGraphics.Dispose();
}

This example draws outlined ellipses and rectangles on a form.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-an-outlined-shape.md

Private Sub DrawEllipse()
 Dim myPen As New System.Drawing.Pen(System.Drawing.Color.Red)
 Dim formGraphics As System.Drawing.Graphics
 formGraphics = Me.CreateGraphics()
 formGraphics.DrawEllipse(myPen, New Rectangle(0, 0, 200, 300))
 myPen.Dispose()
 formGraphics.Dispose()
End Sub

Private Sub DrawRectangle()
 Dim myPen As New System.Drawing.Pen(System.Drawing.Color.Red)
 Dim formGraphics As System.Drawing.Graphics
 formGraphics = Me.CreateGraphics()
 formGraphics.DrawRectangle(myPen, New Rectangle(0, 0, 200, 300))
 myPen.Dispose()
 formGraphics.Dispose()
End Sub

Compiling the Code

Robust Programming

See also

You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is

resized or obscured by another form. To make your content automatically repaint, you should override the

OnPaint method.

You should always call Dispose on any objects that consume system resources, such as Pen and Graphics

objects.

DrawEllipse

OnPaint

DrawRectangle

Getting Started with Graphics Programming

Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle

How to: Draw a Filled Rectangle on a Windows
Form
11/3/2020 • 2 minutes to read • Edit Online

Example

System::Drawing::SolidBrush^ myBrush =
 gcnew System::Drawing::SolidBrush(System::Drawing::Color::Red);
System::Drawing::Graphics^ formGraphics;
formGraphics = this->CreateGraphics();
formGraphics->FillRectangle(myBrush, Rectangle(0, 0, 200, 300));
delete myBrush;
delete formGraphics;

System.Drawing.SolidBrush myBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Red);
System.Drawing.Graphics formGraphics;
formGraphics = this.CreateGraphics();
formGraphics.FillRectangle(myBrush, new Rectangle(0, 0, 200, 300));
myBrush.Dispose();
formGraphics.Dispose();

Dim myBrush As New System.Drawing.SolidBrush(System.Drawing.Color.Red)
Dim formGraphics As System.Drawing.Graphics
formGraphics = Me.CreateGraphics()
formGraphics.FillRectangle(myBrush, New Rectangle(0, 0, 200, 300))
myBrush.Dispose()
formGraphics.Dispose()

Compiling the Code

Robust Programming

See also

This example draws a filled rectangle on a form.

You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is

resized or obscured by another form. To make your content automatically repaint, you should override the

OnPaint method.

You should always call Dispose on any objects that consume system resources, such as Brush and Graphics

objects.

FillRectangle

OnPaint

Getting Started with Graphics Programming

Graphics and Drawing in Windows Forms

Using a Pen to Draw Lines and Shapes

Brushes and Filled Shapes in GDI+

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-filled-rectangle-on-a-windows-form.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint

How to: Draw a Filled Ellipse on a Windows Form
11/3/2020 • 2 minutes to read • Edit Online

Example

System::Drawing::SolidBrush^ myBrush =
 gcnew System::Drawing::SolidBrush(System::Drawing::Color::Red);
System::Drawing::Graphics^ formGraphics;
formGraphics = this->CreateGraphics();
formGraphics->FillEllipse(myBrush, Rectangle(0, 0, 200, 300));
delete myBrush;
delete formGraphics;

System.Drawing.SolidBrush myBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Red);
System.Drawing.Graphics formGraphics;
formGraphics = this.CreateGraphics();
formGraphics.FillEllipse(myBrush, new Rectangle(0, 0, 200, 300));
myBrush.Dispose();
formGraphics.Dispose();

Dim myBrush As New System.Drawing.SolidBrush(System.Drawing.Color.Red)
Dim formGraphics As System.Drawing.Graphics
formGraphics = Me.CreateGraphics()
formGraphics.FillEllipse(myBrush, New Rectangle(0, 0, 200, 300))
myBrush.Dispose()
formGraphics.Dispose()

Compiling the Code

Robust Programming

See also

This example draws a filled ellipse on a form.

You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is

resized or obscured by another form. To make your content automatically repaint, you should override the

OnPaint method.

You should always call Dispose on any objects that consume system resources, such as Brush and Graphics

objects.

Graphics and Drawing in Windows Forms

Getting Started with Graphics Programming

Alpha Blending Lines and Fills

Using a Brush to Fill Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-filled-ellipse-on-a-windows-form.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

How to: Draw Text on a Windows Form
11/3/2020 • 2 minutes to read • Edit Online

Example

public:
 void DrawString()
 {
 System::Drawing::Graphics^ formGraphics = this->CreateGraphics();
 String^ drawString = "Sample Text";
 System::Drawing::Font^ drawFont =
 gcnew System::Drawing::Font("Arial", 16);
 System::Drawing::SolidBrush^ drawBrush = gcnew
 System::Drawing::SolidBrush(System::Drawing::Color::Black);
 float x = 150.0F;
 float y = 50.0F;
 System::Drawing::StringFormat^ drawFormat =
 gcnew System::Drawing::StringFormat();
 formGraphics->DrawString(drawString, drawFont, drawBrush, x,
 y, drawFormat);
 delete drawFont;
 delete drawBrush;
 delete formGraphics;
 }

public void DrawString()
{
 System.Drawing.Graphics formGraphics = this.CreateGraphics();
 string drawString = "Sample Text";
 System.Drawing.Font drawFont = new System.Drawing.Font("Arial", 16);
 System.Drawing.SolidBrush drawBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Black);
 float x = 150.0F;
 float y = 50.0F;
 System.Drawing.StringFormat drawFormat = new System.Drawing.StringFormat();
 formGraphics.DrawString(drawString, drawFont, drawBrush, x, y, drawFormat);
 drawFont.Dispose();
 drawBrush.Dispose();
 formGraphics.Dispose();
}

The following code example shows how to use the DrawString method of the Graphics to draw text on a form.

Alternatively, you can use TextRenderer for drawing text on a form. For more information, see How to: Draw Text

with GDI.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-text-on-a-windows-form.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer

Public Sub DrawString()
 Dim formGraphics As System.Drawing.Graphics = Me.CreateGraphics()
 Dim drawString As String = "Sample Text"
 Dim drawFont As New System.Drawing.Font("Arial", 16)
 Dim drawBrush As New _
 System.Drawing.SolidBrush(System.Drawing.Color.Black)
 Dim x As Single = 150.0
 Dim y As Single = 50.0
 Dim drawFormat As New System.Drawing.StringFormat
 formGraphics.DrawString(drawString, drawFont, drawBrush, _
 x, y, drawFormat)
 drawFont.Dispose()
 drawBrush.Dispose()
 formGraphics.Dispose()
End Sub

Compiling the Code

Robust Programming

See also

You cannot call the DrawString method in the Load event handler. The drawn content will not be redrawn if the

form is resized or obscured by another form. To make your content automatically repaint, you should override

the OnPaint method.

The following conditions may cause an exception:

The Arial font is not installed.

DrawString

DrawText

FormatFlags

StringFormatFlags

TextFormatFlags

OnPaint

Getting Started with Graphics Programming

How to: Draw Text with GDI

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat.formatflags
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint

How to: Draw Vertical Text on a Windows Form
11/3/2020 • 2 minutes to read • Edit Online

Example

public:
 void DrawVerticalString()
 {
 System::Drawing::Graphics^ formGraphics = this->CreateGraphics();
 String^ drawString = "Sample Text";
 System::Drawing::Font^ drawFont =
 gcnew System::Drawing::Font("Arial", 16);
 System::Drawing::SolidBrush^ drawBrush = gcnew
 System::Drawing::SolidBrush(System::Drawing::Color::Black);
 float x = 150.0F;
 float y = 50.0F;
 System::Drawing::StringFormat^ drawFormat =
 gcnew System::Drawing::StringFormat();
 drawFormat->FormatFlags = StringFormatFlags::DirectionVertical;
 formGraphics->DrawString(drawString, drawFont, drawBrush, x,
 y, drawFormat);
 delete drawFont;
 delete drawBrush;
 delete formGraphics;
 }

public void DrawVerticalString()
{
 System.Drawing.Graphics formGraphics = this.CreateGraphics();
 string drawString = "Sample Text";
 System.Drawing.Font drawFont = new System.Drawing.Font("Arial", 16);
 System.Drawing.SolidBrush drawBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Black);
 float x = 150.0F;
 float y = 50.0F;
 System.Drawing.StringFormat drawFormat = new System.Drawing.StringFormat();
 drawFormat.FormatFlags = StringFormatFlags.DirectionVertical;
 formGraphics.DrawString(drawString, drawFont, drawBrush, x, y, drawFormat);
 drawFont.Dispose();
 drawBrush.Dispose();
 formGraphics.Dispose();
}

The following code example shows how to draw vertical text on a form by using the DrawString method of

Graphics.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-vertical-text-on-a-windows-form.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Public Sub DrawVerticalString()
 Dim formGraphics As System.Drawing.Graphics = Me.CreateGraphics()
 Dim drawString As String = "Sample Text"
 Dim drawFont As New System.Drawing.Font("Arial", 16)
 Dim drawBrush As New _
 System.Drawing.SolidBrush(System.Drawing.Color.Black)
 Dim x As Single = 150.0
 Dim y As Single = 50.0
 Dim drawFormat As New System.Drawing.StringFormat
 drawFormat.FormatFlags = StringFormatFlags.DirectionVertical
 formGraphics.DrawString(drawString, drawFont, drawBrush, _
 x, y, drawFormat)
 drawFont.Dispose()
 drawBrush.Dispose()
 formGraphics.Dispose()
End Sub

Compiling the Code

Robust Programming

See also

You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is

resized or obscured by another form. To make your content automatically repaint, you should override the

OnPaint method.

The following conditions may cause an exception:

The Arial font is not installed.

DrawString

FormatFlags

StringFormatFlags

OnPaint

Getting Started with Graphics Programming

Using Fonts and Text

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat.formatflags
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint

How to: Render Images with GDI+
11/3/2020 • 2 minutes to read • Edit Online

To render an image with GDI+

You can use GDI+ to render images that exist as files in your applications. You do this by creating a new object of

an Image class (such as Bitmap), creating a Graphics object that refers to the drawing surface you want to use,

and calling the DrawImage method of the Graphics object. The image will be painted onto the drawing surface

represented by the graphics class. You can use the Image Editor to create and edit image files at design time, and

render them with GDI+ at run time. For more information, see Image Editor for Icons.

' Uses the System.Environment.GetFolderPath to get the path to the
' current user's MyPictures folder.
Dim myBitmap as New Bitmap _
 (System.Environment.GetFolderPath _
 (System.Environment.SpecialFolder.MyPictures))

// Uses the System.Environment.GetFolderPath to get the path to the
// current user's MyPictures folder.
Bitmap myBitmap = new Bitmap
 (System.Environment.GetFolderPath
 (System.Environment.SpecialFolder.MyPictures));

// Uses the System.Environment.GetFolderPath to get the path to the
// current user's MyPictures folder.
Bitmap^ myBitmap = gcnew Bitmap
 (System::Environment::GetFolderPath
 (System::Environment::SpecialFolder::MyPictures));

' Creates a Graphics object that represents the drawing surface of
' Button1.
Dim g as Graphics = Button1.CreateGraphics

// Creates a Graphics object that represents the drawing surface of
// Button1.
Graphics g = Button1.CreateGraphics();

// Creates a Graphics object that represents the drawing surface of
// Button1.
Graphics^ g = button1->CreateGraphics();

1. Create an object representing the image you want to display. This object must be a member of a class

that inherits from Image, such as Bitmap or Metafile. An example is shown:

2. Create a Graphics object that represents the drawing surface you want to use. For more information, see

How to: Create Graphics Objects for Drawing.

3. Call the DrawImage of your graphics object to render the image. You must specify both the image to be

drawn, and the coordinates where it is to be drawn.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-render-images-with-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/cpp/windows/image-editor-for-icons
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage

See also

g.DrawImage(myBitmap, 1, 1)

g.DrawImage(myBitmap, 1, 1);

g->DrawImage(myBitmap, 1, 1);

Getting Started with Graphics Programming

How to: Create Graphics Objects for Drawing

Pens, Lines, and Rectangles in GDI+

How to: Draw Text on a Windows Form

Graphics and Drawing in Windows Forms

Drawing Lines or Closed Figures

Image Editor for Icons

https://docs.microsoft.com/en-us/cpp/windows/drawing-lines-or-closed-figures-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/windows/image-editor-for-icons

How to: Create a Shaped Windows Form
11/3/2020 • 2 minutes to read • Edit Online

Example

protected:
 virtual void OnPaint(
 System::Windows::Forms::PaintEventArgs^ e) override
 {
 System::Drawing::Drawing2D::GraphicsPath^ shape =
 gcnew System::Drawing::Drawing2D::GraphicsPath();
 shape->AddEllipse(0, 0, this->Width, this->Height);
 this->Region = gcnew System::Drawing::Region(shape);
 }

protected override void OnPaint(System.Windows.Forms.PaintEventArgs e)
{
 System.Drawing.Drawing2D.GraphicsPath shape = new System.Drawing.Drawing2D.GraphicsPath();
 shape.AddEllipse(0, 0, this.Width, this.Height);
 this.Region = new System.Drawing.Region(shape);
}

 Protected Overrides Sub OnPaint(_
ByVal e As System.Windows.Forms.PaintEventArgs)
 Dim shape As New System.Drawing.Drawing2D.GraphicsPath
 shape.AddEllipse(0, 0, Me.Width, Me.Height)
 Me.Region = New System.Drawing.Region(shape)
 End Sub

Compiling the Code

See also

This example gives a form an elliptical shape that resizes with the form.

This example requires:

References to the System.Windows.Forms and System.Drawing namespaces.

This example overrides the OnPaint method to change the shape of the form. To use this code, copy the method

declaration as well as the drawing code inside the method.

OnPaint

Region

System.Drawing

AddEllipse

Region

Getting Started with Graphics Programming

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-shaped-windows-form.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addellipse
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.region

How to: Copy Pixels for Reducing Flicker in
Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

NOTE

Example

Private Sub Form1_Paint(ByVal sender As Object, ByVal e As _
 System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 ' Draw a circle with a bar on top.
 e.Graphics.FillEllipse(Brushes.DarkBlue, New Rectangle _
 (10, 10, 60, 60))
 e.Graphics.FillRectangle(Brushes.Khaki, New Rectangle _
 (20, 30, 60, 10))
 ' Copy the graphic to a new location.
 e.Graphics.CopyFromScreen(New Point(10, 10), New Point _
 (100, 100), New Size(70, 70))
End Sub

private void Form1_Paint(System.Object sender,
 System.Windows.Forms.PaintEventArgs e)
 {
 e.Graphics.FillEllipse(Brushes.DarkBlue, new
 Rectangle(10,10,60,60));
 e.Graphics.FillRectangle(Brushes.Khaki, new
 Rectangle(20,30,60,10));
 e.Graphics.CopyFromScreen(new Point(10, 10), new Point(100, 100),
 new Size(70, 70));
}

Compiling the Code

When you animate a simple graphic, users can sometimes encounter flicker or other undesirable visual effects.

One way to limit this problem is to use a "bitblt" process on the graphic. Bitblt is the "bit-block transfer" of the

color data from an origin rectangle of pixels to a destination rectangle of pixels.

With Windows Forms, bitblt is accomplished using the CopyFromScreen method of the Graphics class. In the

parameters of the method, you specify the source and destination (as points), the size of the area to be copied,

and the graphics object used to draw the new shape.

In the example below, a shape is drawn on the form in its Paint event handler. Then, the CopyFromScreen

method is used to duplicate the shape.

Setting the form's DoubleBuffered property to true will make graphics-based code in the Paint event be double-

buffered. While this will not have any discernible performance gains when using the code below, it is something to keep in

mind when working with more complex graphics-manipulation code.

The code above is run in the form's Paint event handler so that the graphics persist when the form is redrawn.

As such, do not call graphics-related methods in the Load event handler, because the drawn content will not be

redrawn if the form is resized or obscured by another form.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-copy-pixels-for-reducing-flicker-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.copyfromscreen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.copyfromscreen
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doublebuffered
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load

See also
CopyPixelOperation

Graphics.FillRectangle

Control.OnPaint

Graphics and Drawing in Windows Forms

Using a Pen to Draw Lines and Shapes

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.copypixeloperation
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint

Using a Pen to Draw Lines and Shapes
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Use GDI+ Pen objects to draw line segments, curves, and the outlines of shapes. In this section, line refers to

any of these, unless specified to mean only a line segment. Set the properties of a pen to control the color, width,

alignment, and style of lines drawn with that pen.

How to: Use a Pen to Draw Lines

Explains how to draw lines.

How to: Use a Pen to Draw Rectangles

Describes how to draw rectangles.

How to: Set Pen Width and Alignment

Explains how to change the width and alignment of a Pen object.

How to: Draw a Line with Line Caps

Describes how to add end caps when drawing a line.

How to: Join Lines

Shows how to join two lines.

How to: Draw a Custom Dashed Line

Describes how to draw a dashed line.

How to: Draw a Line Filled with a Texture

Explains how to draw a texture-filled line.

Pen

Describes this class and has links to all its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-a-pen-to-draw-lines-and-shapes.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

How to: Use a Pen to Draw Lines
11/3/2020 • 2 minutes to read • Edit Online

Example

Pen pen = new Pen(Color.FromArgb(255, 0, 0, 0));
e.Graphics.DrawLine(pen, 20, 10, 300, 100);

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 0))
e.Graphics.DrawLine(pen, 20, 10, 300, 100)

Compiling the Code

See also

To draw lines, you need a Graphics object and a Pen object. The Graphics object provides the DrawLine method,

and the Pen object stores features of the line, such as color and width.

The following example draws a line from (20, 10) to (300, 100). The first statement uses the Pen class

constructor to create a black pen. The one argument passed to the Pen constructor is a Color object created with

the FromArgb method. The values used to create the Color object — (255, 0, 0, 0) — correspond to the alpha,

red, green, and blue components of the color. These values define an opaque black pen.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Pen

Using a Pen to Draw Lines and Shapes

Pens, Lines, and Rectangles in GDI+

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-a-pen-to-draw-lines.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color.fromargb
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

How to: Use a Pen to Draw Rectangles
11/3/2020 • 2 minutes to read • Edit Online

Example

Pen blackPen = new Pen(Color.FromArgb(255, 0, 0, 0), 5);
e.Graphics.DrawRectangle(blackPen, 10, 10, 100, 50);

Dim blackPen As New Pen(Color.FromArgb(255, 0, 0, 0), 5)
e.Graphics.DrawRectangle(blackPen, 10, 10, 100, 50)

Compiling the Code

See also

To draw rectangles, you need a Graphics object and a Pen object. The Graphics object provides the

DrawRectangle method, and the Pen object stores features of the line, such as color and width.

The following example draws a rectangle with its upper-left corner at (10, 10). The rectangle has a width of 100

and a height of 50. The second argument passed to the Pen constructor indicates that the pen width is 5 pixels.

When the rectangle is drawn, the pen is centered on the rectangle's boundary. Because the pen width is 5, the

sides of the rectangle are drawn 5 pixels wide, such that 1 pixel is drawn on the boundary itself, 2 pixels are

drawn on the inside, and 2 pixels are drawn on the outside. For more details on pen alignment, see How to: Set

Pen Width and Alignment.

The following illustration shows the resulting rectangle. The dotted lines show where the rectangle would have

been drawn if the pen width had been one pixel. The enlarged view of the upper-left corner of the rectangle

shows that the thick black lines are centered on those dotted lines.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Using a Pen to Draw Lines and Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-a-pen-to-draw-rectangles.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Set Pen Width and Alignment
11/3/2020 • 2 minutes to read • Edit Online

To vary the width of a pen

To change the alignment of a pen

When you create a Pen, you can supply the pen width as one of the arguments to the constructor. You can also

change the pen width with the Width property of the Pen class.

A theoretical line has a width of 0. When you draw a line that is 1 pixel wide, the pixels are centered on the

theoretical line. If you draw a line that is more than one pixel wide, the pixels are either centered on the

theoretical line or appear to one side of the theoretical line. You can set the pen alignment property of a Pen to

determine how the pixels drawn with that pen will be positioned relative to theoretical lines.

The values Center, Outset, and Inset that appear in the following code examples are members of the

PenAlignment enumeration.

The following code example draws a line twice: once with a black pen of width 1 and once with a green pen of

width 10.

Pen blackPen = new Pen(Color.FromArgb(255, 0, 0, 0), 1);
Pen greenPen = new Pen(Color.FromArgb(255, 0, 255, 0), 10);
greenPen.Alignment = PenAlignment.Center;

// Draw the line with the wide green pen.
e.Graphics.DrawLine(greenPen, 10, 100, 100, 50);

// Draw the line with the thin black pen.
e.Graphics.DrawLine(blackPen, 10, 100, 100, 50);

Dim blackPen As New Pen(Color.FromArgb(255, 0, 0, 0), 1)
Dim greenPen As New Pen(Color.FromArgb(255, 0, 255, 0), 10)
greenPen.Alignment = PenAlignment.Center

' Draw the line with the wide green pen.
e.Graphics.DrawLine(greenPen, 10, 100, 100, 50)

' Draw the line with the thin black pen.
e.Graphics.DrawLine(blackPen, 10, 100, 100, 50)

Set the value of the Alignment property to Center (the default) to specify that pixels drawn with the green

pen will be centered on the theoretical line. The following illustration shows the resulting line.

The following code example draws a rectangle twice: once with a black pen of width 1 and once with a

green pen of width 10.

Set the value of the Alignment property to Center to specify that the pixels drawn with the green pen will

be centered on the boundary of the rectangle.

The following illustration shows the resulting rectangle:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-set-pen-width-and-alignment.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.width
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.penalignment#system_drawing_drawing2d_penalignment_center
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.penalignment#system_drawing_drawing2d_penalignment_outset
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.penalignment#system_drawing_drawing2d_penalignment_inset
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.penalignment
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.alignment
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.penalignment#system_drawing_drawing2d_penalignment_center
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.alignment
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.penalignment#system_drawing_drawing2d_penalignment_center

To create an inset pen

See also

Pen blackPen = new Pen(Color.FromArgb(255, 0, 0, 0), 1);
Pen greenPen = new Pen(Color.FromArgb(255, 0, 255, 0), 10);
greenPen.Alignment = PenAlignment.Center;

// Draw the rectangle with the wide green pen.
e.Graphics.DrawRectangle(greenPen, 10, 100, 50, 50);

// Draw the rectangle with the thin black pen.
e.Graphics.DrawRectangle(blackPen, 10, 100, 50, 50);

Dim blackPen As New Pen(Color.FromArgb(255, 0, 0, 0), 1)
Dim greenPen As New Pen(Color.FromArgb(255, 0, 255, 0), 10)
greenPen.Alignment = PenAlignment.Center

' Draw the rectangle with the wide green pen.
e.Graphics.DrawRectangle(greenPen, 10, 100, 50, 50)

' Draw the rectangle with the thin black pen.
e.Graphics.DrawRectangle(blackPen, 10, 100, 50, 50)

greenPen.Alignment = PenAlignment.Inset;

greenPen.Alignment = PenAlignment.Inset

Change the green pen's alignment by modifying the third statement in the preceding code example as

follows:

Now the pixels in the wide green line appear on the inside of the rectangle as shown in the following

illustration:

Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

How to: Draw a Line with Line Caps
11/3/2020 • 2 minutes to read • Edit Online

Example

Pen pen = new Pen(Color.FromArgb(255, 0, 0, 255), 8);
pen.StartCap = LineCap.ArrowAnchor;
pen.EndCap = LineCap.RoundAnchor;
e.Graphics.DrawLine(pen, 20, 175, 300, 175);

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255), 8)
pen.StartCap = LineCap.ArrowAnchor
pen.EndCap = LineCap.RoundAnchor
e.Graphics.DrawLine(pen, 20, 175, 300, 175)

Compiling the Code

See also

You can draw the start or end of a line in one of several shapes called line caps. GDI+ supports several line caps,

such as round, square, diamond, and arrowhead.

You can specify line caps for the start of a line (start cap), the end of a line (end cap), or the dashes of a dashed

line (dash cap).

The following example draws a line with an arrowhead at one end and a round cap at the other end. The

illustration shows the resulting line:

Create a Windows Form and handle the form's Paint event. Paste the example code into the Paint event

handler passing e as PaintEventArgs.

System.Drawing.Pen

System.Drawing.Drawing2D.LineCap

Graphics and Drawing in Windows Forms

Using a Pen to Draw Lines and Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-line-with-line-caps.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linecap

How to: Join Lines
11/3/2020 • 2 minutes to read • Edit Online

Example

GraphicsPath path = new GraphicsPath();
Pen penJoin = new Pen(Color.FromArgb(255, 0, 0, 255), 8);

path.StartFigure();
path.AddLine(new Point(50, 200), new Point(100, 200));
path.AddLine(new Point(100, 200), new Point(100, 250));

penJoin.LineJoin = LineJoin.Bevel;
e.Graphics.DrawPath(penJoin, path);

Dim path As New GraphicsPath()
Dim penJoin As New Pen(Color.FromArgb(255, 0, 0, 255), 8)

path.StartFigure()
path.AddLine(New Point(50, 200), New Point(100, 200))
path.AddLine(New Point(100, 200), New Point(100, 250))

penJoin.LineJoin = LineJoin.Bevel
e.Graphics.DrawPath(penJoin, path)

Compiling the Code

See also

A line join is the common area that is formed by two lines whose ends meet or overlap. GDI+ provides three line

join styles: miter, bevel, and round. Line join style is a property of the Pen class. When you specify a line join style

for a Pen object, that join style will be applied to all the connected lines in any GraphicsPath object drawn using

that pen.

The following illustration shows the results of the beveled line join example.

You can specify the line join style by using the LineJoin property of the Pen class. The example demonstrates a

beveled line join between a horizontal line and a vertical line. In the following code, the value Bevel assigned to

the LineJoin property is a member of the LineJoin enumeration. The other members of the LineJoin

enumeration are Miter and Round.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Using a Pen to Draw Lines and Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-join-lines.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.linejoin
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin#system_drawing_drawing2d_linejoin_bevel
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.linejoin
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin#system_drawing_drawing2d_linejoin_miter
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.linejoin#system_drawing_drawing2d_linejoin_round
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Draw a Custom Dashed Line
11/3/2020 • 2 minutes to read • Edit Online

Example

float[] dashValues = { 5, 2, 15, 4 };
Pen blackPen = new Pen(Color.Black, 5);
blackPen.DashPattern = dashValues;
e.Graphics.DrawLine(blackPen, new Point(5, 5), new Point(405, 5));

Dim dashValues As Single() = {5, 2, 15, 4}
Dim blackPen As New Pen(Color.Black, 5)
blackPen.DashPattern = dashValues
e.Graphics.DrawLine(blackPen, New Point(5, 5), New Point(405, 5))

Compiling the Code

See also

GDI+ provides several dash styles that are listed in the DashStyle enumeration. If those standard dash styles do

not suit your needs, you can create a custom dash pattern.

To draw a custom dashed line, put the lengths of the dashes and spaces in an array and assign the array as the

value of the DashPattern property of a Pen object. The following example draws a custom dashed line based on

the array {5, 2, 15, 4} . If you multiply the elements of the array by the pen width of 5, you get

{25, 10, 75, 20} . The displayed dashes alternate in length between 25 and 75, and the spaces alternate in

length between 10 and 20.

The following illustration shows the resulting dashed line. Note that the final dash has to be shorter than 25

units so that the line can end at (405, 5).

Create a Windows Form and handle the form's Paint event. Paste the preceding code into the Paint event

handler.

Using a Pen to Draw Lines and Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-custom-dashed-line.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.dashstyle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.dashpattern
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Draw a Line Filled with a Texture
11/3/2020 • 2 minutes to read • Edit Online

Example

Bitmap bitmap = new Bitmap("Texture1.jpg");
TextureBrush tBrush = new TextureBrush(bitmap);
Pen texturedPen = new Pen(tBrush, 30);

e.Graphics.DrawImage(bitmap, 0, 0, bitmap.Width, bitmap.Height);
e.Graphics.DrawEllipse(texturedPen, 100, 20, 200, 100);

Dim bitmap As New Bitmap("Texture1.jpg")
Dim tBrush As New TextureBrush(bitmap)
Dim texturedPen As New Pen(tBrush, 30)

e.Graphics.DrawImage(bitmap, 0, 0, bitmap.Width, bitmap.Height)
e.Graphics.DrawEllipse(texturedPen, 100, 20, 200, 100)

Compiling the Code

See also

Instead of drawing a line with a solid color, you can draw a line with a texture. To draw lines and curves with a

texture, create a TextureBrush object, and pass that TextureBrush object to a Pen constructor. The bitmap

associated with the texture brush is used to tile the plane (invisibly), and when the pen draws a line or curve, the

stroke of the pen uncovers certain pixels of the tiled texture.

The following example creates a Bitmap object from the file Texture1.jpg . That bitmap is used to construct a

TextureBrush object, and the TextureBrush object is used to construct a Pen object. The call to DrawImage draws

the bitmap with its upper-left corner at (0, 0). The call to DrawEllipse uses the Pen object to draw a textured

ellipse.

The following illustration shows the bitmap and the textured ellipse:

Create a Windows Form and handle the form's Paint event. Paste the preceding code into the Paint event

handler. Replace Texture.jpg with an image valid on your system.

Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-line-filled-with-a-texture.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

Using a Brush to Fill Shapes
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

A GDI+ Brush object is used to fill the interior of a closed shape. GDI+ defines several fill styles: solid color, hatch

pattern, image texture, and color gradient.

How to: Fill a Shape with a Solid Color

Describes how to use a solid-color brush to fill shapes.

How to: Fill a Shape with a Hatch Pattern

Shows how to use a hatch brush to fill shapes.

How to: Fill a Shape with an Image Texture

Explains how to use a texture brush to fill shapes.

How to: Tile a Shape with an Image

Describes how to tile an image in a shape.

System.Drawing.Brush

Describes this class and contains links to all of its members

System.Drawing.SolidBrush

Describes this class and contains links to all of its members

System.Drawing.TextureBrush

Describes this class and contains links to all of its members.

System.Drawing.Drawing2D.HatchBrush

Describes this class and contains links to all of its members.

System.Drawing.Drawing2D.PathGradientBrush

Describes this class and contains links to all of its members.

Using a Gradient Brush to Fill Shapes

Contains a list of topics that show how to use a gradient brush.

Using a Pen to Draw Lines and Shapes

Provides a list of topics that demonstrate how to draw outlined shapes.

Using Managed Graphics Classes

Contains a list of topics describing how to use managed graphics classes.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-a-brush-to-fill-shapes.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush

How to: Fill a Shape with a Solid Color
11/3/2020 • 2 minutes to read • Edit Online

Example

SolidBrush solidBrush = new SolidBrush(
 Color.FromArgb(255, 255, 0, 0));
e.Graphics.FillEllipse(solidBrush, 0, 0, 100, 60);

Dim solidBrush As New SolidBrush(_
 Color.FromArgb(255, 255, 0, 0))
e.Graphics.FillEllipse(solidBrush, 0, 0, 100, 60)

Compiling the Code

See also

To fill a shape with a solid color, create a SolidBrush object, and then pass that SolidBrush object as an argument

to one of the fill methods of the Graphics class. The following example shows how to fill an ellipse with the color

red.

In the following code, the SolidBrush constructor takes a Color object as its only argument. The values used by

the FromArgb method represent the alpha, red, green, and blue components of the color. Each of these values

must be in the range 0 through 255. The first 255 indicates that the color is fully opaque, and the second 255

indicates that the red component is at full intensity. The two zeros indicate that the green and blue components

both have an intensity of 0.

The four numbers (0, 0, 100, 60) passed to the FillEllipse method specify the location and size of the bounding

rectangle for the ellipse. The rectangle has an upper-left corner of (0, 0), a width of 100, and a height of 60.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Using a Brush to Fill Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-fill-a-shape-with-a-solid-color.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color.fromargb
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillellipse
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Fill a Shape with a Hatch Pattern
11/3/2020 • 2 minutes to read • Edit Online

Example

HatchBrush hBrush = new HatchBrush(
 HatchStyle.Horizontal,
 Color.Red,
 Color.FromArgb(255, 128, 255, 255));
e.Graphics.FillEllipse(hBrush, 0, 0, 100, 60);

Dim hBrush As New HatchBrush(_
 HatchStyle.Horizontal, _
 Color.Red, _
 Color.FromArgb(255, 128, 255, 255))
e.Graphics.FillEllipse(hBrush, 0, 0, 100, 60)

Compiling the Code

See also

A hatch pattern is made from two colors: one for the background and one for the lines that form the pattern

over the background. To fill a closed shape with a hatch pattern, use a HatchBrush object. The following example

demonstrates how to fill an ellipse with a hatch pattern:

The HatchBrush constructor takes three arguments: the hatch style, the color of the hatch line, and the color of

the background. The hatch style argument can be any value from the HatchStyle enumeration. There are more

than fifty elements in the HatchStyle enumeration; a few of those elements are shown in the following list:

Horizontal

Vertical

ForwardDiagonal

BackwardDiagonal

Cross

DiagonalCross

The following illustration shows the filled ellipse.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Using a Brush to Fill Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-fill-a-shape-with-a-hatch-pattern.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchbrush.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_horizontal
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_vertical
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_forwarddiagonal
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_backwarddiagonal
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_cross
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.hatchstyle#system_drawing_drawing2d_hatchstyle_diagonalcross
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Fill a Shape with an Image Texture
11/3/2020 • 2 minutes to read • Edit Online

Example

NOTE

Image image = new Bitmap("ImageFile.jpg");
TextureBrush tBrush = new TextureBrush(image);
tBrush.Transform = new Matrix(
 75.0f / 640.0f,
 0.0f,
 0.0f,
 75.0f / 480.0f,
 0.0f,
 0.0f);
e.Graphics.FillEllipse(tBrush, new Rectangle(0, 150, 150, 250));

Dim image As New Bitmap("ImageFile.jpg")
Dim tBrush As New TextureBrush(image)
tBrush.Transform = New Matrix(_
 75.0F / 640.0F, _
 0.0F, _
 0.0F, _
 75.0F / 480.0F, _
 0.0F, _
 0.0F)
e.Graphics.FillEllipse(tBrush, New Rectangle(0, 150, 150, 250))

Compiling the Code

See also

You can fill a closed shape with a texture by using the Image class and the TextureBrush class.

The following example fills an ellipse with an image. The code constructs an Image object, and then passes the

address of that Image object as an argument to a TextureBrush constructor. The third statement scales the image,

and the fourth statement fills the ellipse with repeated copies of the scaled image.

In the following code, the Transform property contains the transformation that is applied to the image before it

is drawn. Assume that the original image has a width of 640 pixels and a height of 480 pixels. The transform

shrinks the image to 75×75 by setting the horizontal and vertical scaling values.

In the following example, the image size is 75×75, and the ellipse size is 150×250. Because the image is smaller than the

ellipse it is filling, the ellipse is tiled with the image. Tiling means that the image is repeated horizontally and vertically until

the boundary of the shape is reached. For more information about tiling, see How to: Tile a Shape with an Image.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Using a Brush to Fill Shapes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-fill-a-shape-with-an-image-texture.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush.transform
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Tile a Shape with an Image
11/3/2020 • 3 minutes to read • Edit Online

To tile an image

Image image = new Bitmap("HouseAndTree.gif");
TextureBrush tBrush = new TextureBrush(image);
Pen blackPen = new Pen(Color.Black);
e.Graphics.FillRectangle(tBrush, new Rectangle(0, 0, 200, 200));
e.Graphics.DrawRectangle(blackPen, new Rectangle(0, 0, 200, 200));

Dim image As New Bitmap("HouseAndTree.gif")
Dim tBrush As New TextureBrush(image)
Dim blackPen As New Pen(Color.Black)
e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))
e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

To flip an image horizontally while tiling

Just as tiles can be placed next to each other to cover a floor, rectangular images can be placed next to each

other to fill (tile) a shape. To tile the interior of a shape, use a texture brush. When you construct a TextureBrush

object, one of the arguments you pass to the constructor is an Image object. When you use the texture brush to

paint the interior of a shape, the shape is filled with repeated copies of this image.

The wrap mode property of the TextureBrush object determines how the image is oriented as it is repeated in a

rectangular grid. You can make all the tiles in the grid have the same orientation, or you can make the image flip

from one grid position to the next. The flipping can be horizontal, vertical, or both. The following examples

demonstrate tiling with different types of flipping.

This example uses the following 75×75 image to tile a 200×200 rectangle.

The following illustration shows how the rectangle is tiled with the image. Note that all tiles have the same

orientation; there is no flipping.

This example uses the same 75×75 image to fill a 200×200 rectangle. The wrap mode is set to flip the image

horizontally. The following illustration shows how the rectangle is tiled with the image. Note that as you

move from one tile to the next in a given row, the image is flipped horizontally.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-tile-a-shape-with-an-image.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.texturebrush

Image image = new Bitmap("HouseAndTree.gif");
TextureBrush tBrush = new TextureBrush(image);
Pen blackPen = new Pen(Color.Black);
tBrush.WrapMode = WrapMode.TileFlipX;
e.Graphics.FillRectangle(tBrush, new Rectangle(0, 0, 200, 200));
e.Graphics.DrawRectangle(blackPen, new Rectangle(0, 0, 200, 200));

Dim image As New Bitmap("HouseAndTree.gif")
Dim tBrush As New TextureBrush(image)
Dim blackPen As New Pen(Color.Black)
tBrush.WrapMode = WrapMode.TileFlipX
e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))
e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

To flip an image vertically while tiling

To flip an image horizontally and vertically while tiling

Image image = new Bitmap("HouseAndTree.gif");
TextureBrush tBrush = new TextureBrush(image);
Pen blackPen = new Pen(Color.Black);
tBrush.WrapMode = WrapMode.TileFlipY;
e.Graphics.FillRectangle(tBrush, new Rectangle(0, 0, 200, 200));
e.Graphics.DrawRectangle(blackPen, new Rectangle(0, 0, 200, 200));

Dim image As New Bitmap("HouseAndTree.gif")
Dim tBrush As New TextureBrush(image)
Dim blackPen As New Pen(Color.Black)
tBrush.WrapMode = WrapMode.TileFlipY
e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))
e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

This example uses the same 75×75 image to fill a 200×200 rectangle. The wrap mode is set to flip the

image vertically.

This example uses the same 75×75 image to tile a 200×200 rectangle. The wrap mode is set to flip the image

both horizontally and vertically. The following illustration shows how the rectangle is tiled by the image. Note

that as you move from one tile to the next in a given row, the image is flipped horizontally, and as you move

from one tile to the next in a given column, the image is flipped vertically.

Image image = new Bitmap("HouseAndTree.gif");
TextureBrush tBrush = new TextureBrush(image);
Pen blackPen = new Pen(Color.Black);
tBrush.WrapMode = WrapMode.TileFlipXY;
e.Graphics.FillRectangle(tBrush, new Rectangle(0, 0, 200, 200));
e.Graphics.DrawRectangle(blackPen, new Rectangle(0, 0, 200, 200));

Dim image As New Bitmap("HouseAndTree.gif")
Dim tBrush As New TextureBrush(image)
Dim blackPen As New Pen(Color.Black)
tBrush.WrapMode = WrapMode.TileFlipXY
e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))
e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

See also
Using a Brush to Fill Shapes

Using a Gradient Brush to Fill Shapes
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

You can use a gradient brush to fill a shape with a gradually changing color. For example, you can use a

horizontal gradient to fill a shape with color that changes gradually as you move from the left edge of the shape

to the right edge. Imagine a rectangle with a left edge that is black (represented by red, green, and blue

components 0, 0, 0) and a right edge that is red (represented by 255, 0, 0). If the rectangle is 256 pixels wide, the

red component of a given pixel will be one greater than the red component of the pixel to its left. The leftmost

pixel in a row has color components (0, 0, 0), the second pixel has (1, 0, 0), the third pixel has (2, 0, 0), and so on,

until you get to the rightmost pixel, which has color components (255, 0, 0). These interpolated color values

make up the color gradient.

A linear gradient changes color as you move horizontally, vertically, or parallel to a specified slanted line. A path

gradient changes color as you move about the interior and boundary of a path. You can customize path

gradients to achieve a wide variety of effects.

The following illustration shows a rectangle filled with a linear gradient brush and an ellipse filled with a path

gradient brush:

How to: Create a Linear Gradient

Shows how to create a linear gradient using the LinearGradientBrush class.

How to: Create a Path Gradient

Describes how to create a path gradient using the PathGradientBrush class.

How to: Apply Gamma Correction to a Gradient

Explains how to use gamma correction with a gradient brush.

System.Drawing.Drawing2D.LinearGradientBrush

Contains a description of this class and has links to all of its members.

System.Drawing.Drawing2D.PathGradientBrush

Contains a description of this class and has links to all of its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-a-gradient-brush-to-fill-shapes.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush

How to: Create a Linear Gradient
11/3/2020 • 4 minutes to read • Edit Online

NOTE

To use horizontal linear gradients

GDI+ provides horizontal, vertical, and diagonal linear gradients. By default, the color in a linear gradient

changes uniformly. However, you can customize a linear gradient so that the color changes in a non-uniform

fashion.

The examples in this article are methods that are called from a control's Paint event handler.

The following example fills a line, an ellipse, and a rectangle with a horizontal linear gradient brush.

The LinearGradientBrush constructor receives four arguments: two points and two colors. The first point (0, 10)

is associated with the first color (red), and the second point (200, 10) is associated with the second color (blue).

As you would expect, the line drawn from (0, 10) to (200, 10) changes gradually from red to blue.

The 10s in the points (0, 10) and (200, 10) are not important. What is important is that the two points have the

same second coordinate — the line connecting them is horizontal. The ellipse and the rectangle also change

gradually from red to blue as the horizontal coordinate goes from 0 to 200.

The following illustration shows the line, the ellipse, and the rectangle. Note that the color gradient repeats itself

as the horizontal coordinate increases beyond 200.

public void UseHorizontalLinearGradients(PaintEventArgs e)
{
 LinearGradientBrush linGrBrush = new LinearGradientBrush(
 new Point(0, 10),
 new Point(200, 10),
 Color.FromArgb(255, 255, 0, 0), // Opaque red
 Color.FromArgb(255, 0, 0, 255)); // Opaque blue

 Pen pen = new Pen(linGrBrush);

 e.Graphics.DrawLine(pen, 0, 10, 200, 10);
 e.Graphics.FillEllipse(linGrBrush, 0, 30, 200, 100);
 e.Graphics.FillRectangle(linGrBrush, 0, 155, 500, 30);
}

Pass in the opaque red and opaque blue as the third and fourth argument, respectively.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-linear-gradient.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush.-ctor

H O RIZ O N TA L C O O RDIN AT E RGB C O M P O N EN T S

0 (0, 0, 0)

40 (128, 0, 0)

200 (255, 0, 0)

To customize linear gradients

Dim linGrBrush As New LinearGradientBrush(_
 New Point(0, 10), _
 New Point(200, 10), _
 Color.FromArgb(255, 255, 0, 0), _
 Color.FromArgb(255, 0, 0, 255))
Dim pen As New Pen(linGrBrush)

e.Graphics.DrawLine(pen, 0, 10, 200, 10)
e.Graphics.FillEllipse(linGrBrush, 0, 30, 200, 100)
e.Graphics.FillRectangle(linGrBrush, 0, 155, 500, 30)

In the preceding example, the color components change linearly as you move from a horizontal coordinate of 0

to a horizontal coordinate of 200. For example, a point whose first coordinate is halfway between 0 and 200 will

have a blue component that is halfway between 0 and 255.

GDI+ allows you to adjust the way a color varies from one edge of a gradient to the other. Suppose you want to

create a gradient brush that changes from black to red according to the following table.

Note that the red component is at half intensity when the horizontal coordinate is only 20 percent of the way

from 0 to 200.

The following example sets the LinearGradientBrush.Blend property to associate three relative intensities with

three relative positions. As in the preceding table, a relative intensity of 0.5 is associated with a relative position

of 0.2. The code fills an ellipse and a rectangle with the gradient brush.

The following illustration shows the resulting ellipse and rectangle.

Pass in the opaque black and opaque red as the third and fourth argument, respectively.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush.blend

public void CustomizeLinearGradients(PaintEventArgs e)
{
 LinearGradientBrush linGrBrush = new LinearGradientBrush(
 new Point(0, 10),
 new Point(200, 10),
 Color.FromArgb(255, 0, 0, 0), // Opaque black
 Color.FromArgb(255, 255, 0, 0)); // Opaque red

 float[] relativeIntensities = { 0.0f, 0.5f, 1.0f };
 float[] relativePositions = { 0.0f, 0.2f, 1.0f };

 //Create a Blend object and assign it to linGrBrush.
 Blend blend = new Blend();
 blend.Factors = relativeIntensities;
 blend.Positions = relativePositions;
 linGrBrush.Blend = blend;

 e.Graphics.FillEllipse(linGrBrush, 0, 30, 200, 100);
 e.Graphics.FillRectangle(linGrBrush, 0, 155, 500, 30);
}

Dim linGrBrush As New LinearGradientBrush(_
 New Point(0, 10), _
 New Point(200, 10), _
 Color.FromArgb(255, 0, 0, 0), _
 Color.FromArgb(255, 255, 0, 0))

Dim relativeIntensities As Single() = {0.0F, 0.5F, 1.0F}
Dim relativePositions As Single() = {0.0F, 0.2F, 1.0F}

'Create a Blend object and assign it to linGrBrush.
Dim blend As New Blend()
blend.Factors = relativeIntensities
blend.Positions = relativePositions
linGrBrush.Blend = blend

e.Graphics.FillEllipse(linGrBrush, 0, 30, 200, 100)
e.Graphics.FillRectangle(linGrBrush, 0, 155, 500, 30)

The gradients in the preceding examples have been horizontal; that is, the color changes gradually as you move

along any horizontal line. You can also define vertical gradients and diagonal gradients.

The following example passes the points (0, 0) and (200, 100) to a LinearGradientBrush constructor. The color

blue is associated with (0, 0), and the color green is associated with (200, 100). A line (with pen width 10) and an

ellipse are filled with the linear gradient brush.

The following illustration shows the line and the ellipse. Note that the color in the ellipse changes gradually as

you move along any line that is parallel to the line passing through (0, 0) and (200, 100).

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush.-ctor

To create diagonal linear gradients

See also

public void CreateDiagonalLinearGradients(PaintEventArgs e)
{
 LinearGradientBrush linGrBrush = new LinearGradientBrush(
 new Point(0, 0),
 new Point(200, 100),
 Color.FromArgb(255, 0, 0, 255), // opaque blue
 Color.FromArgb(255, 0, 255, 0)); // opaque green

 Pen pen = new Pen(linGrBrush, 10);

 e.Graphics.DrawLine(pen, 0, 0, 600, 300);
 e.Graphics.FillEllipse(linGrBrush, 10, 100, 200, 100);
}

Dim linGrBrush As New LinearGradientBrush(_
 New Point(0, 0), _
 New Point(200, 100), _
 Color.FromArgb(255, 0, 0, 255), _
 Color.FromArgb(255, 0, 255, 0))
' opaque blue
' opaque green
Dim pen As New Pen(linGrBrush, 10)

e.Graphics.DrawLine(pen, 0, 0, 600, 300)
e.Graphics.FillEllipse(linGrBrush, 10, 100, 200, 100)

Pass in the opaque blue and opaque green as the third and fourth argument, respectively.

Using a Gradient Brush to Fill Shapes

Graphics and Drawing in Windows Forms

How to: Create a Path Gradient
11/3/2020 • 13 minutes to read • Edit Online

NOTE

To fill an ellipse with a path gradient

The PathGradientBrush class allows you to customize the way you fill a shape with gradually changing colors.

For example, you can specify one color for the center of a path and another color for the boundary of a path. You

can also specify separate colors for each of several points along the boundary of a path.

In GDI+, a path is a sequence of lines and curves maintained by a GraphicsPath object. For more information about GDI+

paths, see Graphics Paths in GDI+ and Constructing and Drawing Paths.

The examples in this article are methods that are called from a control's Paint event handler.

public void FillEllipseWithPathGradient(PaintEventArgs e)
{
 // Create a path that consists of a single ellipse.
 GraphicsPath path = new GraphicsPath();
 path.AddEllipse(0, 0, 140, 70);

 // Use the path to construct a brush.
 PathGradientBrush pthGrBrush = new PathGradientBrush(path);

 // Set the color at the center of the path to blue.
 pthGrBrush.CenterColor = Color.FromArgb(255, 0, 0, 255);

 // Set the color along the entire boundary
 // of the path to aqua.
 Color[] colors = { Color.FromArgb(255, 0, 255, 255) };
 pthGrBrush.SurroundColors = colors;

 e.Graphics.FillEllipse(pthGrBrush, 0, 0, 140, 70);
}

The following example fills an ellipse with a path gradient brush. The center color is set to blue and the

boundary color is set to aqua. The following illustration shows the filled ellipse.

By default, a path gradient brush does not extend outside the boundary of the path. If you use the path

gradient brush to fill a figure that extends beyond the boundary of the path, the area of the screen

outside the path will not be filled.

The following illustration shows what happens if you change the Graphics.FillEllipse call in the following

code to e.Graphics.FillRectangle(pthGrBrush, 0, 10, 200, 40) :

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-path-gradient.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillellipse

To specify points on the boundary

' Create a path that consists of a single ellipse.
Dim path As New GraphicsPath()
path.AddEllipse(0, 0, 140, 70)

' Use the path to construct a brush.
Dim pthGrBrush As New PathGradientBrush(path)

' Set the color at the center of the path to blue.
pthGrBrush.CenterColor = Color.FromArgb(255, 0, 0, 255)

' Set the color along the entire boundary
' of the path to aqua.
Dim colors As Color() = {Color.FromArgb(255, 0, 255, 255)}
pthGrBrush.SurroundColors = colors

e.Graphics.FillEllipse(pthGrBrush, 0, 0, 140, 70)

The preceding code example is designed for use with Windows Forms, and it requires the PaintEventArgs

e, which is a parameter of PaintEventHandler.

The following example constructs a path gradient brush from a star-shaped path. The code sets the

CenterColor property, which sets the color at the centroid of the star to red. Then the code sets the

SurroundColors property to specify various colors (stored in the colors array) at the individual points in

the points array. The final code statement fills the star-shaped path with the path gradient brush.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush.centercolor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush.surroundcolors

public void ConstructBrushFromStarShapedPath(PaintEventArgs e)
{
 // Put the points of a polygon in an array.
 Point[] points = {
 new Point(75, 0),
 new Point(100, 50),
 new Point(150, 50),
 new Point(112, 75),
 new Point(150, 150),
 new Point(75, 100),
 new Point(0, 150),
 new Point(37, 75),
 new Point(0, 50),
 new Point(50, 50)};

 // Use the array of points to construct a path.
 GraphicsPath path = new GraphicsPath();
 path.AddLines(points);

 // Use the path to construct a path gradient brush.
 PathGradientBrush pthGrBrush = new PathGradientBrush(path);

 // Set the color at the center of the path to red.
 pthGrBrush.CenterColor = Color.FromArgb(255, 255, 0, 0);

 // Set the colors of the points in the array.
 Color[] colors = {
 Color.FromArgb(255, 0, 0, 0),
 Color.FromArgb(255, 0, 255, 0),
 Color.FromArgb(255, 0, 0, 255),
 Color.FromArgb(255, 255, 255, 255),
 Color.FromArgb(255, 0, 0, 0),
 Color.FromArgb(255, 0, 255, 0),
 Color.FromArgb(255, 0, 0, 255),
 Color.FromArgb(255, 255, 255, 255),
 Color.FromArgb(255, 0, 0, 0),
 Color.FromArgb(255, 0, 255, 0)};

 pthGrBrush.SurroundColors = colors;

 // Fill the path with the path gradient brush.
 e.Graphics.FillPath(pthGrBrush, path);
}

' Put the points of a polygon in an array.
Dim points As Point() = { _
 New Point(75, 0), _
 New Point(100, 50), _
 New Point(150, 50), _
 New Point(112, 75), _
 New Point(150, 150), _
 New Point(75, 100), _
 New Point(0, 150), _
 New Point(37, 75), _
 New Point(0, 50), _
 New Point(50, 50)}

' Use the array of points to construct a path.
Dim path As New GraphicsPath()
path.AddLines(points)

' Use the path to construct a path gradient brush.
Dim pthGrBrush As New PathGradientBrush(path)

' Set the color at the center of the path to red.
pthGrBrush.CenterColor = Color.FromArgb(255, 255, 0, 0)

' Set the colors of the points in the array.
Dim colors As Color() = { _
 Color.FromArgb(255, 0, 0, 0), _
 Color.FromArgb(255, 0, 255, 0), _
 Color.FromArgb(255, 0, 0, 255), _
 Color.FromArgb(255, 255, 255, 255), _
 Color.FromArgb(255, 0, 0, 0), _
 Color.FromArgb(255, 0, 255, 0), _
 Color.FromArgb(255, 0, 0, 255), _
 Color.FromArgb(255, 255, 255, 255), _
 Color.FromArgb(255, 0, 0, 0), _
 Color.FromArgb(255, 0, 255, 0)}

pthGrBrush.SurroundColors = colors

' Fill the path with the path gradient brush.
e.Graphics.FillPath(pthGrBrush, path)

The following example draws a path gradient without a GraphicsPath object in the code. The particular

PathGradientBrush constructor in the example receives an array of points but does not require a

GraphicsPath object. Also, note that the PathGradientBrush is used to fill a rectangle, not a path. The

rectangle is larger than the closed path used to define the brush, so some of the rectangle is not painted

by the brush. The following illustration shows the rectangle (dotted line) and the portion of the rectangle

painted by the path gradient brush:

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush

To customize a path gradient

public void DrawPathGradentWthoutGraphicsPath(PaintEventArgs e)
{
 // Construct a path gradient brush based on an array of points.
 PointF[] ptsF = {
 new PointF(0, 0),
 new PointF(160, 0),
 new PointF(160, 200),
 new PointF(80, 150),
 new PointF(0, 200)};

 PathGradientBrush pBrush = new PathGradientBrush(ptsF);

 // An array of five points was used to construct the path gradient
 // brush. Set the color of each point in that array.
 Color[] colors = {
 Color.FromArgb(255, 255, 0, 0), // (0, 0) red
 Color.FromArgb(255, 0, 255, 0), // (160, 0) green
 Color.FromArgb(255, 0, 255, 0), // (160, 200) green
 Color.FromArgb(255, 0, 0, 255), // (80, 150) blue
 Color.FromArgb(255, 255, 0, 0)}; // (0, 200) red

 pBrush.SurroundColors = colors;

 // Set the center color to white.
 pBrush.CenterColor = Color.White;

 // Use the path gradient brush to fill a rectangle.
 e.Graphics.FillRectangle(pBrush, new Rectangle(0, 0, 160, 200));
}

' Construct a path gradient brush based on an array of points.
Dim ptsF As PointF() = { _
 New PointF(0, 0), _
 New PointF(160, 0), _
 New PointF(160, 200), _
 New PointF(80, 150), _
 New PointF(0, 200)}

Dim pBrush As New PathGradientBrush(ptsF)

' An array of five points was used to construct the path gradient
' brush. Set the color of each point in that array.
'Point (0, 0) is red
'Point (160, 0) is green
'Point (160, 200) is green
'Point (80, 150) is blue
'Point (0, 200) is red
Dim colors As Color() = { _
 Color.FromArgb(255, 255, 0, 0), _
 Color.FromArgb(255, 0, 255, 0), _
 Color.FromArgb(255, 0, 255, 0), _
 Color.FromArgb(255, 0, 0, 255), _
 Color.FromArgb(255, 255, 0, 0)}
pBrush.SurroundColors = colors

' Set the center color to white.
pBrush.CenterColor = Color.White

' Use the path gradient brush to fill a rectangle.
e.Graphics.FillRectangle(pBrush, New Rectangle(0, 0, 160, 200))

One way to customize a path gradient brush is to set its FocusScales property. The focus scales specify an

inner path that lies inside the main path. The center color is displayed everywhere inside that inner path

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush.focusscales

public void CustomizePathGradientBrush(PaintEventArgs e)
{
 // Create a path that consists of a single ellipse.
 GraphicsPath path = new GraphicsPath();
 path.AddEllipse(0, 0, 200, 100);

 // Create a path gradient brush based on the elliptical path.
 PathGradientBrush pthGrBrush = new PathGradientBrush(path);

 // Set the color along the entire boundary to blue.
 Color[] color = { Color.Blue };
 pthGrBrush.SurroundColors = color;

 // Set the center color to aqua.
 pthGrBrush.CenterColor = Color.Aqua;

 // Use the path gradient brush to fill the ellipse.
 e.Graphics.FillPath(pthGrBrush, path);

 // Set the focus scales for the path gradient brush.
 pthGrBrush.FocusScales = new PointF(0.3f, 0.8f);

 // Use the path gradient brush to fill the ellipse again.
 // Show this filled ellipse to the right of the first filled ellipse.
 e.Graphics.TranslateTransform(220.0f, 0.0f);
 e.Graphics.FillPath(pthGrBrush, path);
}

rather than only at the center point.

The following example creates a path gradient brush based on an elliptical path. The code sets the

boundary color to blue, sets the center color to aqua, and then uses the path gradient brush to fill the

elliptical path.

Next, the code sets the focus scales of the path gradient brush. The x focus scale is set to 0.3, and the y

focus scale is set to 0.8. The code calls the TranslateTransform method of a Graphics object so that the

subsequent call to FillPath fills an ellipse that sits to the right of the first ellipse.

To see the effect of the focus scales, imagine a small ellipse that shares its center with the main ellipse.

The small (inner) ellipse is the main ellipse scaled (about its center) horizontally by a factor of 0.3 and

vertically by a factor of 0.8. As you move from the boundary of the outer ellipse to the boundary of the

inner ellipse, the color changes gradually from blue to aqua. As you move from the boundary of the inner

ellipse to the shared center, the color remains aqua.

The following illustration shows the output of the following code. The ellipse on the left is aqua only at

the center point. The ellipse on the right is aqua everywhere inside the inner path.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.translatetransform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath

' Create a path that consists of a single ellipse.
Dim path As New GraphicsPath()
path.AddEllipse(0, 0, 200, 100)

' Create a path gradient brush based on the elliptical path.
Dim pthGrBrush As New PathGradientBrush(path)

' Set the color along the entire boundary to blue.
' Changed variable name from color
Dim blueColor As Color() = {Color.Blue}
pthGrBrush.SurroundColors = blueColor

' Set the center color to aqua.
pthGrBrush.CenterColor = Color.Aqua

' Use the path gradient brush to fill the ellipse.
e.Graphics.FillPath(pthGrBrush, path)

' Set the focus scales for the path gradient brush.
pthGrBrush.FocusScales = New PointF(0.3F, 0.8F)

' Use the path gradient brush to fill the ellipse again.
' Show this filled ellipse to the right of the first filled ellipse.
e.Graphics.TranslateTransform(220.0F, 0.0F)
e.Graphics.FillPath(pthGrBrush, path)

To customize with interpolation
Another way to customize a path gradient brush is to specify an array of interpolation colors and an array

of interpolation positions.

The following example creates a path gradient brush based on a triangle. The code sets the

InterpolationColors property of the path gradient brush to specify an array of interpolation colors (dark

green, aqua, blue) and an array of interpolation positions (0, 0.25, 1). As you move from the boundary of

the triangle to the center point, the color changes gradually from dark green to aqua and then from aqua

to blue. The change from dark green to aqua happens in 25 percent of the distance from dark green to

blue.

The following illustration shows the triangle filled with the custom path gradient brush.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush.interpolationcolors

public void CustomizeWithInterpolation(PaintEventArgs e)
{
 // Vertices of the outer triangle
 Point[] points = {
 new Point(100, 0),
 new Point(200, 200),
 new Point(0, 200)};

 // No GraphicsPath object is created. The PathGradientBrush
 // object is constructed directly from the array of points.
 PathGradientBrush pthGrBrush = new PathGradientBrush(points);

 Color[] colors = {
 Color.FromArgb(255, 0, 128, 0), // dark green
 Color.FromArgb(255, 0, 255, 255), // aqua
 Color.FromArgb(255, 0, 0, 255)}; // blue

 float[] relativePositions = {
 0f, // Dark green is at the boundary of the triangle.
 0.4f, // Aqua is 40 percent of the way from the boundary
 // to the center point.
 1.0f}; // Blue is at the center point.

 ColorBlend colorBlend = new ColorBlend();
 colorBlend.Colors = colors;
 colorBlend.Positions = relativePositions;
 pthGrBrush.InterpolationColors = colorBlend;

 // Fill a rectangle that is larger than the triangle
 // specified in the Point array. The portion of the
 // rectangle outside the triangle will not be painted.
 e.Graphics.FillRectangle(pthGrBrush, 0, 0, 200, 200);
}

To set the center point

' Vertices of the outer triangle
Dim points As Point() = { _
 New Point(100, 0), _
 New Point(200, 200), _
 New Point(0, 200)}

' No GraphicsPath object is created. The PathGradientBrush
' object is constructed directly from the array of points.
Dim pthGrBrush As New PathGradientBrush(points)

' Create an array of colors containing dark green, aqua, and blue.
Dim colors As Color() = { _
 Color.FromArgb(255, 0, 128, 0), _
 Color.FromArgb(255, 0, 255, 255), _
 Color.FromArgb(255, 0, 0, 255)}

' Dark green is at the boundary of the triangle.
' Aqua is 40 percent of the way from the boundary to the center point.
' Blue is at the center point.
Dim relativePositions As Single() = { _
 0.0F, _
 0.4F, _
 1.0F}

Dim colorBlend As New ColorBlend()
colorBlend.Colors = colors
colorBlend.Positions = relativePositions
pthGrBrush.InterpolationColors = colorBlend

' Fill a rectangle that is larger than the triangle
' specified in the Point array. The portion of the
' rectangle outside the triangle will not be painted.
e.Graphics.FillRectangle(pthGrBrush, 0, 0, 200, 200)

By default, the center point of a path gradient brush is at the centroid of the path used to construct the

brush. You can change the location of the center point by setting the CenterPoint property of the

PathGradientBrush class.

The following example creates a path gradient brush based on an ellipse. The center of the ellipse is at

(70, 35), but the center point of the path gradient brush is set to (120, 40).

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush.centerpoint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush

public void SetCenterPoint(PaintEventArgs e)
{
 // Create a path that consists of a single ellipse.
 GraphicsPath path = new GraphicsPath();
 path.AddEllipse(0, 0, 140, 70);

 // Use the path to construct a brush.
 PathGradientBrush pthGrBrush = new PathGradientBrush(path);

 // Set the center point to a location that is not
 // the centroid of the path.
 pthGrBrush.CenterPoint = new PointF(120, 40);

 // Set the color at the center of the path to blue.
 pthGrBrush.CenterColor = Color.FromArgb(255, 0, 0, 255);

 // Set the color along the entire boundary
 // of the path to aqua.
 Color[] colors = { Color.FromArgb(255, 0, 255, 255) };
 pthGrBrush.SurroundColors = colors;

 e.Graphics.FillEllipse(pthGrBrush, 0, 0, 140, 70);
}

' Create a path that consists of a single ellipse.
Dim path As New GraphicsPath()
path.AddEllipse(0, 0, 140, 70)

' Use the path to construct a brush.
Dim pthGrBrush As New PathGradientBrush(path)

' Set the center point to a location that is not
' the centroid of the path.
pthGrBrush.CenterPoint = New PointF(120, 40)

' Set the color at the center of the path to blue.
pthGrBrush.CenterColor = Color.FromArgb(255, 0, 0, 255)

' Set the color along the entire boundary
' of the path to aqua.
Dim colors As Color() = {Color.FromArgb(255, 0, 255, 255)}
pthGrBrush.SurroundColors = colors

e.Graphics.FillEllipse(pthGrBrush, 0, 0, 140, 70)

The following illustration shows the filled ellipse and the center point of the path gradient brush:

You can set the center point of a path gradient brush to a location outside the path that was used to

construct the brush. The following example replaces the call to set the CenterPoint property in the

preceding code.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.pathgradientbrush.centerpoint

Compiling the Code

See also

public void SetCenterPointOutsidePath(PaintEventArgs e)
{
 // Create a path that consists of a single ellipse.
 GraphicsPath path = new GraphicsPath();
 path.AddEllipse(0, 0, 140, 70);

 // Use the path to construct a brush.
 PathGradientBrush pthGrBrush = new PathGradientBrush(path);

 // Set the center point to a location that is not
 // the centroid of the path.
 pthGrBrush.CenterPoint = new PointF(145, 35);

 // Set the color at the center of the path to blue.
 pthGrBrush.CenterColor = Color.FromArgb(255, 0, 0, 255);

 // Set the color along the entire boundary
 // of the path to aqua.
 Color[] colors = { Color.FromArgb(255, 0, 255, 255) };
 pthGrBrush.SurroundColors = colors;

 e.Graphics.FillEllipse(pthGrBrush, 0, 0, 140, 70);
}

pthGrBrush.CenterPoint = New PointF(145, 35)

The following illustration shows the output with this change:

In the preceding illustration, the points at the far right of the ellipse are not pure blue (although they are

very close). The colors in the gradient are positioned as if the fill reached the point (145, 35) where the

color would be pure blue (0, 0, 255). But the fill never reaches (145, 35) because a path gradient brush

paints only inside its path.

The preceding examples are designed for use with Windows Forms, and they require PaintEventArgs e , which

is a parameter of the Paint event handler.

Using a Gradient Brush to Fill Shapes

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Apply Gamma Correction to a Gradient
11/3/2020 • 2 minutes to read • Edit Online

Example

public void FillTwoRectangles(PaintEventArgs e)
{
 LinearGradientBrush linGrBrush = new LinearGradientBrush(
 new Point(0, 10),
 new Point(200, 10),
 Color.Red,
 Color.Blue);

 e.Graphics.FillRectangle(linGrBrush, 0, 0, 200, 50);
 linGrBrush.GammaCorrection = true;
 e.Graphics.FillRectangle(linGrBrush, 0, 60, 200, 50);
}

Dim linGrBrush As New LinearGradientBrush(_
 New Point(0, 10), _
 New Point(200, 10), _
 Color.Red, _
 Color.Blue)

e.Graphics.FillRectangle(linGrBrush, 0, 0, 200, 50)
linGrBrush.GammaCorrection = True
e.Graphics.FillRectangle(linGrBrush, 0, 60, 200, 50)

Compiling the Code

See also

You can enable gamma correction for a linear gradient brush by setting the brush's GammaCorrection property

to true . You can disable gamma correction by setting the GammaCorrection property to false . Gamma

correction is disabled by default.

The following example is a method that is called from a control's Paint event handler. The example creates a

linear gradient brush and uses that brush to fill two rectangles. The first rectangle is filled without gamma

correction, and the second rectangle is filled with gamma correction.

The following illustration shows the two filled rectangles. The top rectangle, which does not have gamma

correction, appears dark in the middle. The bottom rectangle, which has gamma correction, appears to have

more uniform intensity.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-apply-gamma-correction-to-a-gradient.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush.gammacorrection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush.gammacorrection
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

System.Drawing.Drawing2D.LinearGradientBrush

Using a Gradient Brush to Fill Shapes

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.lineargradientbrush

Working with Images, Bitmaps, Icons, and Metafiles
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

GDI+ provides the Bitmap class for working with raster images and the Metafile class for working with vector

images. The Bitmap and the Metafile classes both inherit from the Image class.

How to: Draw an Existing Bitmap to the Screen

Describes how to load and draw bitmaps.

How to: Load and Display Metafiles

Shows how to load and draw metafiles.

Cropping and Scaling Images in GDI+

Explains how to crop and scale vector and raster images.

How to: Rotate, Reflect, and Skew Images

Describes how to draw rotated, reflected and skewed images.

How to: Use Interpolation Mode to Control Image Quality During Scaling

Shows how to use the InterpolationMode enumeration to change image quality.

How to: Create Thumbnail Images

Describes how to create thumbnail images.

How to: Improve Performance by Avoiding Automatic Scaling

Explains how to draw an image without automatic scaling.

How to: Read Image Metadata

Describes how to read metadata from an image.

How to: Create a Bitmap at Run Time

Shows how to draw a bitmap at runtime.

How to: Extract the Icon Associated with a File in Windows Forms

Describes how to extract an icon that is an embedded resource of a file.

Image

Describes this class and has links to all of its members.

Metafile

Describes this class and has links to all of its members.

Bitmap

Describes this class and has links to all of its members.

Images, Bitmaps, and Metafiles

Contains links to topics that discuss different types of bitmaps and manipulating them in your applications.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/working-with-images-bitmaps-icons-and-metafiles.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

How to: Draw an Existing Bitmap to the Screen
11/3/2020 • 2 minutes to read • Edit Online

Example

Bitmap bitmap = new Bitmap("Grapes.jpg");
e.Graphics.DrawImage(bitmap, 60, 10);

Dim bitmap As New Bitmap("Grapes.jpg")
e.Graphics.DrawImage(bitmap, 60, 10)

Compiling the Code

See also

You can easily draw an existing image on the screen. First you need to create a Bitmap object by using the

bitmap constructor that takes a file name, Bitmap(String). This constructor accepts images with several different

file formats, including BMP, GIF, JPEG, PNG, and TIFF. After you have created the Bitmap object, pass that Bitmap

object to the DrawImage method of a Graphics object.

This example creates a Bitmap object from a JPEG file and then draws the bitmap with its upper-left corner at

(60, 10).

The following illustration shows the bitmap drawn at the specified location:

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Graphics and Drawing in Windows Forms

Working with Images, Bitmaps, Icons, and Metafiles

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-an-existing-bitmap-to-the-screen.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap.-ctor#system_drawing_bitmap__ctor_system_string_
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Load and Display Metafiles
11/3/2020 • 2 minutes to read • Edit Online

Example

Metafile metafile = new Metafile("SampleMetafile.emf");
e.Graphics.DrawImage(metafile, 60, 10);

Dim metafile As New Metafile("SampleMetafile.emf")
e.Graphics.DrawImage(metafile, 60, 10)

Compiling the Code

See also

The Metafile class, which inherits from the Image class, provides methods for recording, displaying, and

examining vector images.

To display a vector image (metafile) on the screen, you need a Metafile object and a Graphics object. Pass the

name of a file (or a stream) to a Metafile constructor. After you have created a Metafile object, pass that Metafile

object to the DrawImage method of a Graphics object.

The example creates a Metafile object from an EMF (enhanced metafile) file and then draws the image with its

upper-left corner at (60, 10).

The following illustration shows the metafile drawn at the specified location.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Working with Images, Bitmaps, Icons, and Metafiles

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-load-and-display-metafiles.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.metafile
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Crop and Scale Images
11/3/2020 • 2 minutes to read • Edit Online

Example

The Graphics class provides several DrawImage methods, some of which have source and destination rectangle

parameters that you can use to crop and scale images.

The following example constructs an Image object from the disk file Apple.gif. The code draws the entire apple

image in its original size. The code then calls the DrawImage method of a Graphics object to draw a portion of

the apple image in a destination rectangle that is larger than the original apple image.

The DrawImage method determines which portion of the apple to draw by looking at the source rectangle,

which is specified by the third, fourth, fifth, and sixth arguments. In this case, the apple is cropped to 75 percent

of its width and 75 percent of its height.

The DrawImage method determines where to draw the cropped apple and how big to make the cropped apple

by looking at the destination rectangle, which is specified by the second argument. In this case, the destination

rectangle is 30 percent wider and 30 percent taller than the original image.

The following illustration shows the original apple and the scaled, cropped apple.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-crop-and-scale-images.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage

Image image = new Bitmap("Apple.gif");

// Draw the image unaltered with its upper-left corner at (0, 0).
e.Graphics.DrawImage(image, 0, 0);

// Make the destination rectangle 30 percent wider and
// 30 percent taller than the original image.
// Put the upper-left corner of the destination
// rectangle at (150, 20).
int width = image.Width;
int height = image.Height;
RectangleF destinationRect = new RectangleF(
 150,
 20,
 1.3f * width,
 1.3f * height);

// Draw a portion of the image. Scale that portion of the image
// so that it fills the destination rectangle.
RectangleF sourceRect = new RectangleF(0, 0, .75f * width, .75f * height);
e.Graphics.DrawImage(
 image,
 destinationRect,
 sourceRect,
 GraphicsUnit.Pixel);

Dim image As New Bitmap("Apple.gif")

' Draw the image unaltered with its upper-left corner at (0, 0).
e.Graphics.DrawImage(image, 0, 0)

' Make the destination rectangle 30 percent wider and
' 30 percent taller than the original image.
' Put the upper-left corner of the destination
' rectangle at (150, 20).
Dim width As Integer = image.Width
Dim height As Integer = image.Height
Dim destinationRect As New RectangleF(_
 150, _
 20, _
 1.3F * width, _
 1.3F * height)

' Draw a portion of the image. Scale that portion of the image
' so that it fills the destination rectangle.
Dim sourceRect As New RectangleF(0, 0, 0.75F * width, 0.75F * height)
e.Graphics.DrawImage(_
 image, _
 destinationRect, _
 sourceRect, _
 GraphicsUnit.Pixel)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. Make sure to replace Apple.gif with an image file name and path that are

valid on your system.

Images, Bitmaps, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

Working with Images, Bitmaps, Icons, and Metafiles

How to: Rotate, Reflect, and Skew Images
11/3/2020 • 2 minutes to read • Edit Online

Example

O RIGIN A L P O IN T DEST IN AT IO N P O IN T

Upper-left (0, 0) (200, 20)

Upper-right (100, 0) (110, 100)

Lower-left (0, 50) (250, 30)

You can rotate, reflect, and skew an image by specifying destination points for the upper-left, upper-right, and

lower-left corners of the original image. The three destination points determine an affine transformation that

maps the original rectangular image to a parallelogram.

For example, suppose the original image is a rectangle with upper-left corner at (0, 0), upper-right corner at

(100, 0), and lower-left corner at (0, 50). Now suppose you map those three points to destination points as

follows.

The following illustration shows the original image and the image mapped to the parallelogram. The original

image has been skewed, reflected, rotated, and translated. The x-axis along the top edge of the original image is

mapped to the line that runs through (200, 20) and (110, 100). The y-axis along the left edge of the original

image is mapped to the line that runs through (200, 20) and (250, 30).

The following illustration shows a similar transformation applied to a photographic image:

The following illustration shows a similar transformation applied to a metafile:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-rotate-reflect-and-skew-images.md

 Point[] destinationPoints = {
new Point(200, 20), // destination for upper-left point of
 // original
new Point(110, 100), // destination for upper-right point of
 // original
new Point(250, 30)}; // destination for lower-left point of
 // original

 Image image = new Bitmap("Stripes.bmp");

 // Draw the image unaltered with its upper-left corner at (0, 0).
 e.Graphics.DrawImage(image, 0, 0);

 // Draw the image mapped to the parallelogram.
 e.Graphics.DrawImage(image, destinationPoints);

' New Point(200, 20) = destination for upper-left point of original
' New Point(110, 100) = destination for upper-right point of original
' New Point(250, 30) = destination for lower-left point of original
Dim destinationPoints As Point() = { _
 New Point(200, 20), _
 New Point(110, 100), _
 New Point(250, 30)}

Dim image As New Bitmap("Stripes.bmp")

' Draw the image unaltered with its upper-left corner at (0, 0).
e.Graphics.DrawImage(image, 0, 0)

' Draw the image mapped to the parallelogram.
e.Graphics.DrawImage(image, destinationPoints)

Compiling the Code

See also

The following example produces the images shown in the first illustration.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. Make sure to replace Stripes.bmp with the path to an image that is valid

on your system.

Working with Images, Bitmaps, Icons, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Use Interpolation Mode to Control Image
Quality During Scaling
11/3/2020 • 3 minutes to read • Edit Online

Example

The interpolation mode of a Graphics object influences the way GDI+ scales (stretches and shrinks) images. The

InterpolationMode enumeration defines several interpolation modes, some of which are shown in the following

list:

NearestNeighbor

Bilinear

HighQualityBilinear

Bicubic

HighQualityBicubic

To stretch an image, each pixel in the original image must be mapped to a group of pixels in the larger image. To

shrink an image, groups of pixels in the original image must be mapped to single pixels in the smaller image.

The effectiveness of the algorithms that perform these mappings determines the quality of a scaled image.

Algorithms that produce higher-quality scaled images tend to require more processing time. In the preceding

list, NearestNeighbor is the lowest-quality mode and HighQualityBicubic is the highest-quality mode.

To set the interpolation mode, assign one of the members of the InterpolationMode enumeration to the

InterpolationMode property of a Graphics object.

The following example draws an image and then shrinks the image with three different interpolation modes.

The following illustration shows the original image and the three smaller images.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-interpolation-mode-to-control-image-quality-during-scaling.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode#system_drawing_drawing2d_interpolationmode_nearestneighbor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode#system_drawing_drawing2d_interpolationmode_bilinear
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode#system_drawing_drawing2d_interpolationmode_highqualitybilinear
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode#system_drawing_drawing2d_interpolationmode_bicubic
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode#system_drawing_drawing2d_interpolationmode_highqualitybicubic
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode#system_drawing_drawing2d_interpolationmode_nearestneighbor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode#system_drawing_drawing2d_interpolationmode_highqualitybicubic
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.interpolationmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.interpolationmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Image image = new Bitmap("GrapeBunch.bmp");
int width = image.Width;
int height = image.Height;

// Draw the image with no shrinking or stretching.
e.Graphics.DrawImage(
 image,
 new Rectangle(10, 10, width, height), // destination rectangle
 0,
 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 null);

// Shrink the image using low-quality interpolation.
e.Graphics.InterpolationMode = InterpolationMode.NearestNeighbor;
e.Graphics.DrawImage(
 image,
 new Rectangle(10, 250, (int)(0.6 * width), (int)(0.6 * height)),
 // destination rectangle
 0,
 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel);

// Shrink the image using medium-quality interpolation.
e.Graphics.InterpolationMode = InterpolationMode.HighQualityBilinear;
e.Graphics.DrawImage(
 image,
 new Rectangle(150, 250, (int)(0.6 * width), (int)(0.6 * height)),
 // destination rectangle
 0,
 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel);

// Shrink the image using high-quality interpolation.
e.Graphics.InterpolationMode = InterpolationMode.HighQualityBicubic;
e.Graphics.DrawImage(
 image,
 new Rectangle(290, 250, (int)(0.6 * width), (int)(0.6 * height)),
 // destination rectangle
 0,
 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel);

Dim image As New Bitmap("GrapeBunch.bmp")
Dim width As Integer = image.Width
Dim height As Integer = image.Height

' Draw the image with no shrinking or stretching. Pass in the destination
' rectangle (2nd argument), the upper-left corner (3rd and 4th arguments),
' width (5th argument), and height (6th argument) of the source
' rectangle.
e.Graphics.DrawImage(_
 image, _
 New Rectangle(10, 10, width, height), _
 0, _
 0, _
 width, _
 height, _
 GraphicsUnit.Pixel, _
 Nothing)

' Shrink the image using low-quality interpolation.
e.Graphics.InterpolationMode = InterpolationMode.NearestNeighbor

' Pass in the destination rectangle, and the upper-left corner, width,
' and height of the source rectangle as above.
e.Graphics.DrawImage(_
image, _
New Rectangle(10, 250, CInt(0.6 * width), CInt(0.6 * height)), _
0, _
0, _
width, _
height, _
GraphicsUnit.Pixel)

' Shrink the image using medium-quality interpolation.
e.Graphics.InterpolationMode = InterpolationMode.HighQualityBilinear

' Pass in the destination rectangle, and the upper-left corner, width,
' and height of the source rectangle as above.
e.Graphics.DrawImage(_
image, _
New Rectangle(150, 250, CInt(0.6 * width), _
CInt(0.6 * height)), _
0, _
0, _
width, _
height, _
GraphicsUnit.Pixel)

' Shrink the image using high-quality interpolation.
e.Graphics.InterpolationMode = InterpolationMode.HighQualityBicubic

' Pass in the destination rectangle, and the upper-left corner, width,
' and height of the source rectangle as above.
e.Graphics.DrawImage(_
 image, _
 New Rectangle(290, 250, CInt(0.6 * width), CInt(0.6 * height)), _
 0, _
 0, _
 width, _
 height, _
 GraphicsUnit.Pixel)

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs

See also

parameter of the Paint event handler.

Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Create Thumbnail Images
11/3/2020 • 2 minutes to read • Edit Online

Example

NOTE

public bool ThumbnailCallback()
{
 return true;
}

private void GetThumbnail(PaintEventArgs e)
{
 Image.GetThumbnailImageAbort callback =
 new Image.GetThumbnailImageAbort(ThumbnailCallback);
 Image image = new Bitmap(@"c:\FakePhoto.jpg");
 Image pThumbnail = image.GetThumbnailImage(100, 100, callback, new
 IntPtr());
 e.Graphics.DrawImage(
 pThumbnail,
 10,
 10,
 pThumbnail.Width,
 pThumbnail.Height);
}

A thumbnail image is a small version of an image. You can create a thumbnail image by calling the

GetThumbnailImage method of an Image object.

The following example constructs an Image object from a JPG file. The original image has a width of 640 pixels

and a height of 479 pixels. The code creates a thumbnail image that has a width of 100 pixels and a height of

100 pixels.

The following illustration shows the thumbnail image:

In this example, a callback method is declared, but never used. This supports all versions of GDI+.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-thumbnail-images.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.getthumbnailimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image

Public Function ThumbnailCallback() As Boolean
 Return True
End Function

Private Sub GetThumbnail(ByVal e As PaintEventArgs)

 Dim callback As New Image.GetThumbnailImageAbort(AddressOf ThumbnailCallback)
 Dim image As Image = New Bitmap("c:\FakePhoto.jpg")
 Dim pThumbnail As Image = image.GetThumbnailImage(100, 100, callback, New IntPtr())
 e.Graphics.DrawImage(pThumbnail, 10, 10, pThumbnail.Width, pThumbnail.Height)
End Sub

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. To run the example, follow these steps:

1. Create a new Windows Forms application.

2. Add the example code to the form.

3. Create a handler for the form's Paint event

4. In the Paint handler, call the GetThumbnail method and pass e for PaintEventArgs.

5. Find an image file that you want to make a thumbnail of.

6. In the GetThumbnail method, specify the path and file name to your image.

7. Press F5 to run the example.

A 100 by 100 thumbnail image appears on the form.

Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs

How to: Improve Performance by Avoiding
Automatic Scaling
11/3/2020 • 2 minutes to read • Edit Online

e.Graphics.DrawImage(image, 50, 30); // upper-left corner at (50, 30)

e.Graphics.DrawImage(image, 50, 30) ' upper-left corner at (50, 30)

Example

Image image = new Bitmap("Texture.jpg");

e.Graphics.DrawImage(image, 10, 10);
e.Graphics.DrawImage(image, 120, 10, image.Width, image.Height);

GDI+ may automatically scale an image as you draw it, which would decrease performance. Alternatively, you

can control the scaling of the image by passing the dimensions of the destination rectangle to the DrawImage

method.

For example, the following call to the DrawImage method specifies an upper-left corner of (50, 30) but does not

specify a destination rectangle.

Although this is the easiest version of the DrawImage method in terms of the number of required arguments, it

is not necessarily the most efficient. If the resolution used by GDI+ (usually 96 dots per inch) is different from

the resolution stored in the Image object, then the DrawImage method will scale the image. For example,

suppose an Image object has a width of 216 pixels and a stored horizontal resolution value of 72 dots per inch.

Because 216/72 is 3, DrawImage will scale the image so that it has a width of 3 inches at a resolution of 96 dots

per inch. That is, DrawImage will display an image that has a width of 96x3 = 288 pixels.

Even if your screen resolution is different from 96 dots per inch, GDI+ will probably scale the image as if the

screen resolution were 96 dots per inch. That is because a GDI+ Graphics object is associated with a device

context, and when GDI+ queries the device context for the screen resolution, the result is usually 96, regardless

of the actual screen resolution. You can avoid automatic scaling by specifying the destination rectangle in the

DrawImage method.

The following example draws the same image twice. In the first case, the width and height of the destination

rectangle are not specified, and the image is automatically scaled. In the second case, the width and height

(measured in pixels) of the destination rectangle are specified to be the same as the width and height of the

original image. The following illustration shows the image rendered twice:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-improve-performance-by-avoiding-automatic-scaling.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage

Dim image As New Bitmap("Texture.jpg")

e.Graphics.DrawImage(image, 10, 10)
e.Graphics.DrawImage(image, 120, 10, image.Width, image.Height)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. Replace Texture.jpg with an image name and path that are valid on your

system.

Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Read Image Metadata
11/3/2020 • 4 minutes to read • Edit Online

Id

H EXA DEC IM A L VA L UE DESC RIP T IO N

0x0320

0x010F

0x0110

0x9003

0x829A

0x5090

0x5091

Image title

Equipment manufacturer

Equipment model

ExifDTOriginal

Exif exposure time

Luminance table

Chrominance table

Value

Len

Type

N UM ERIC VA L UE DESC RIP T IO N

1 A Byte

2 An array of Byte objects encoded as ASCII

Some image files contain metadata that you can read to determine features of the image. For example, a digital

photograph might contain metadata that you can read to determine the make and model of the camera used to

capture the image. With GDI+, you can read existing metadata, and you can also write new metadata to image

files.

GDI+ stores an individual piece of metadata in a PropertyItem object. You can read the PropertyItems property

of an Image object to retrieve all the metadata from a file. The PropertyItems property returns an array of

PropertyItem objects.

A PropertyItem object has the following four properties: Id , Value , Len , and Type .

A tag that identifies the metadata item. Some values that can be assigned to Id are shown in the following table:

An array of values. The format of the values is determined by the Type property.

The length (in bytes) of the array of values pointed to by the Value property.

The data type of the values in the array pointed to by the Value property. The formats indicated by the Type

property values are shown in the following table:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-read-image-metadata.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.propertyitems
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.propertyitems
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem.id
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem.type
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem.value

3 A 16-bit integer

4 A 32-bit integer

5 An array of two Byte objects that represent a rational

number

6 Not used

7 Undefined

8 Not used

9 SLong

10 SRational

N UM ERIC VA L UE DESC RIP T IO N

Example
The following code example reads and displays the seven pieces of metadata in the file FakePhoto.jpg . The

second (index 1) property item in the list has Id 0x010F (equipment manufacturer) and Type 2 (ASCII-encoded

byte array). The code example displays the value of that property item.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem.id
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.propertyitem.type

// Create an Image object.
Image image = new Bitmap(@"c:\FakePhoto.jpg");

// Get the PropertyItems property from image.
PropertyItem[] propItems = image.PropertyItems;

// Set up the display.
Font font = new Font("Arial", 12);
SolidBrush blackBrush = new SolidBrush(Color.Black);
int X = 0;
int Y = 0;

// For each PropertyItem in the array, display the ID, type, and
// length.
int count = 0;
foreach (PropertyItem propItem in propItems)
{
 e.Graphics.DrawString(
 "Property Item " + count.ToString(),
 font,
 blackBrush,
 X, Y);

 Y += font.Height;

 e.Graphics.DrawString(
 " id: 0x" + propItem.Id.ToString("x"),
 font,
 blackBrush,
 X, Y);

 Y += font.Height;

 e.Graphics.DrawString(
 " type: " + propItem.Type.ToString(),
 font,
 blackBrush,
 X, Y);

 Y += font.Height;

 e.Graphics.DrawString(
 " length: " + propItem.Len.ToString() + " bytes",
 font,
 blackBrush,
 X, Y);

 Y += font.Height;

 count++;
}
// Convert the value of the second property to a string, and display
// it.
System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding();
string manufacturer = encoding.GetString(propItems[1].Value);

e.Graphics.DrawString(
 "The equipment make is " + manufacturer + ".",
 font,
 blackBrush,
 X, Y);

'Create an Image object.
Dim image As Bitmap = New Bitmap("c:\FakePhoto.jpg")

'Get the PropertyItems property from image.
Dim propItems As PropertyItem() = image.PropertyItems

'Set up the display.
Dim font As New Font("Arial", 12)
Dim blackBrush As New SolidBrush(Color.Black)
Dim X As Integer = 0
Dim Y As Integer = 0

'For each PropertyItem in the array, display the ID, type, and length.
Dim count As Integer = 0
Dim propItem As PropertyItem
For Each propItem In propItems
 e.Graphics.DrawString(_
 "Property Item " & count.ToString(), _
 font, _
 blackBrush, _
 X, Y)

 Y += font.Height

 e.Graphics.DrawString(_
 " id: 0x" & propItem.Id.ToString("x"), _
 font, _
 blackBrush, _
 X, Y)

 Y += font.Height

 e.Graphics.DrawString(_
 " type: " & propItem.Type.ToString(), _
 font, _
 blackBrush, _
 X, Y)

 Y += font.Height

 e.Graphics.DrawString(_
 " length: " & propItem.Len.ToString() & " bytes", _
 font, _
 blackBrush, _
 X, Y)

 Y += font.Height

 count += 1
Next propItem
'Convert the value of the second property to a string, and display it.
Dim encoding As New System.Text.ASCIIEncoding()
Dim manufacturer As String = encoding.GetString(propItems(1).Value)

e.Graphics.DrawString(_
 "The equipment make is " & manufacturer & ".", _
 font, _
 blackBrush, _
 X, Y)

The code produces output similar to the following:

 Property Item 0

 id: 0x320

 type: 2

 length: 16 bytes

 Property Item 1

 id: 0x10f

 type: 2

 length: 17 bytes

 Property Item 2

 id: 0x110

 type: 2

 length: 7 bytes

 Property Item 3

 id: 0x9003

 type: 2

 length: 20 bytes

 Property Item 4

 id: 0x829a

 type: 5

 length: 8 bytes

 Property Item 5

 id: 0x5090

 type: 3

 length: 128 bytes

 Property Item 6

 id: 0x5091

 type: 3

 length: 128 bytes

 The equipment make is Northwind Camera.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. Handle the form's Paint event and paste this code into the paint event

handler. You must replace FakePhoto.jpg with an image name and path valid on your system and import the

System.Drawing.Imaging namespace.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

See also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

How to: Create a Bitmap at Run Time
11/3/2020 • 2 minutes to read • Edit Online

Example

PictureBox pictureBox1 = new PictureBox();
public void CreateBitmapAtRuntime()
{
 pictureBox1.Size = new Size(210, 110);
 this.Controls.Add(pictureBox1);

 Bitmap flag = new Bitmap(200, 100);
 Graphics flagGraphics = Graphics.FromImage(flag);
 int red = 0;
 int white = 11;
 while (white <= 100) {
 flagGraphics.FillRectangle(Brushes.Red, 0, red, 200,10);
 flagGraphics.FillRectangle(Brushes.White, 0, white, 200, 10);
 red += 20;
 white += 20;
 }
 pictureBox1.Image = flag;
}

Private pictureBox1 As New PictureBox()

Public Sub CreateBitmapAtRuntime()
 pictureBox1.Size = New Size(210, 110)
 Me.Controls.Add(pictureBox1)

 Dim flag As New Bitmap(200, 100)
 Dim flagGraphics As Graphics = Graphics.FromImage(flag)
 Dim red As Integer = 0
 Dim white As Integer = 11
 While white <= 100
 flagGraphics.FillRectangle(Brushes.Red, 0, red, 200, 10)
 flagGraphics.FillRectangle(Brushes.White, 0, white, 200, 10)
 red += 20
 white += 20
 End While
 pictureBox1.Image = flag

End Sub

Compiling the Code

See also

This example creates and draws in a Bitmap object and displays it in an existing Windows Forms PictureBox

control.

This example requires:

A Windows Form that imports the System, System.Drawing and System.Windows.Forms assemblies.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-bitmap-at-run-time.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.picturebox

Bitmap

Images, Bitmaps, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

How to: Extract the Icon Associated with a File in
Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

Example

Many files have embedded icons that provide a visual representation of the associated file type. For example,

Microsoft Word documents contain an icon that identifies them as Word documents. When displaying files in a

list control or table control, you may want to display the icon representing the file type next to each file name.

You can do this easily by using the ExtractAssociatedIcon method.

The following code example demonstrates how to extract the icon associated with a file and display the file

name and its associated icon in a ListView control.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-extract-the-icon-associated-with-a-file-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.icon.extractassociatedicon
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview

ListView listView1;
ImageList imageList1;

public void ExtractAssociatedIconEx()
{
 // Initialize the ListView, ImageList and Form.
 listView1 = new ListView();
 imageList1 = new ImageList();
 listView1.Location = new Point(37, 12);
 listView1.Size = new Size(151, 262);
 listView1.SmallImageList = imageList1;
 listView1.View = View.SmallIcon;
 this.ClientSize = new System.Drawing.Size(292, 266);
 this.Controls.Add(this.listView1);
 this.Text = "Form1";

 // Get the c:\ directory.
 System.IO.DirectoryInfo dir = new System.IO.DirectoryInfo(@"c:\");

 ListViewItem item;
 listView1.BeginUpdate();

 // For each file in the c:\ directory, create a ListViewItem
 // and set the icon to the icon extracted from the file.
 foreach (System.IO.FileInfo file in dir.GetFiles())
 {
 // Set a default icon for the file.
 Icon iconForFile = SystemIcons.WinLogo;

 item = new ListViewItem(file.Name, 1);

 // Check to see if the image collection contains an image
 // for this extension, using the extension as a key.
 if (!imageList1.Images.ContainsKey(file.Extension))
 {
 // If not, add the image to the image list.
 iconForFile = System.Drawing.Icon.ExtractAssociatedIcon(file.FullName);
 imageList1.Images.Add(file.Extension, iconForFile);
 }
 item.ImageKey = file.Extension;
 listView1.Items.Add(item);
 }
 listView1.EndUpdate();
}

Private listView1 As ListView
Private imageList1 As ImageList

Public Sub ExtractAssociatedIconEx()

 ' Initialize the ListView, ImageList and Form.
 listView1 = New ListView()
 imageList1 = New ImageList()
 listView1.Location = New Point(37, 12)
 listView1.Size = New Size(161, 242)
 listView1.SmallImageList = imageList1
 listView1.View = View.SmallIcon
 Me.ClientSize = New System.Drawing.Size(292, 266)
 Me.Controls.Add(Me.listView1)
 Me.Text = "Form1"

 ' Get the c:\ directory.
 Dim dir As New System.IO.DirectoryInfo("c:\")

 Dim item As ListViewItem
 listView1.BeginUpdate()
 Dim file As System.IO.FileInfo
 For Each file In dir.GetFiles()

 ' Set a default icon for the file.
 Dim iconForFile As Icon = SystemIcons.WinLogo

 item = New ListViewItem(file.Name, 1)

 ' Check to see if the image collection contains an image
 ' for this extension, using the extension as a key.
 If Not (imageList1.Images.ContainsKey(file.Extension)) Then

 ' If not, add the image to the image list.
 iconForFile = System.Drawing.Icon.ExtractAssociatedIcon(file.FullName)
 imageList1.Images.Add(file.Extension, iconForFile)
 End If
 item.ImageKey = file.Extension
 listView1.Items.Add(item)

 Next file
 listView1.EndUpdate()
End Sub

Compiling the Code

See also

To compile the example:

Paste the preceding code into a Windows Form, and call the ExtractAssociatedIconExample method from

the form's constructor or Load event-handling method.

You will need to make sure that your form imports the System.IO namespace.

Images, Bitmaps, and Metafiles

ListView Control

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load
https://docs.microsoft.com/en-us/dotnet/api/system.io
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/listview-control-windows-forms

Alpha Blending Lines and Fills
11/3/2020 • 2 minutes to read • Edit Online

In This Section

In GDI+, a color is a 32-bit value with 8 bits each for alpha, red, green, and blue. The alpha value indicates the

transparency of the color — the extent to which the color is blended with the background color. Alpha values

range from 0 through 255, where 0 represents a fully transparent color, and 255 represents a fully opaque color.

Alpha blending is a pixel-by-pixel blending of source and background color data. Each of the three components

(red, green, blue) of a given source color is blended with the corresponding component of the background color

according to the following formula:

displayColor = sourceColor × alpha / 255 + backgroundColor × (255 – alpha) / 255

For example, suppose the red component of the source color is 150 and the red component of the background

color is 100. If the alpha value is 200, the red component of the resultant color is calculated as follows:

150 × 200 / 255 + 100 × (255 – 200) / 255 = 139

How to: Draw Opaque and Semitransparent Lines

Shows how to draw alpha-blended lines.

How to: Draw with Opaque and Semitransparent Brushes

Explains how to alpha-blend with brushes.

How to: Use Compositing Mode to Control Alpha Blending

Describes how to control alpha blending using CompositingMode.

How to: Use a Color Matrix to Set Alpha Values in Images

Explains how to use a ColorMatrix object to control alpha blending.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/alpha-blending-lines-and-fills.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.compositingmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix

How to: Draw Opaque and Semitransparent Lines
11/3/2020 • 2 minutes to read • Edit Online

Example

Bitmap bitmap = new Bitmap("Texture1.jpg");
e.Graphics.DrawImage(bitmap, 10, 5, bitmap.Width, bitmap.Height);

Pen opaquePen = new Pen(Color.FromArgb(255, 0, 0, 255), 15);
Pen semiTransPen = new Pen(Color.FromArgb(128, 0, 0, 255), 15);

e.Graphics.DrawLine(opaquePen, 0, 20, 100, 20);
e.Graphics.DrawLine(semiTransPen, 0, 40, 100, 40);

e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected;
e.Graphics.DrawLine(semiTransPen, 0, 60, 100, 60);

Dim bitmap As New Bitmap("Texture1.jpg")
e.Graphics.DrawImage(bitmap, 10, 5, bitmap.Width, bitmap.Height)

Dim opaquePen As New Pen(Color.FromArgb(255, 0, 0, 255), 15)
Dim semiTransPen As New Pen(Color.FromArgb(128, 0, 0, 255), 15)

e.Graphics.DrawLine(opaquePen, 0, 20, 100, 20)
e.Graphics.DrawLine(semiTransPen, 0, 40, 100, 40)

e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected
e.Graphics.DrawLine(semiTransPen, 0, 60, 100, 60)

Compiling the Code

When you draw a line, you must pass a Pen object to the DrawLine method of the Graphics class. One of the

parameters of the Pen constructor is a Color object. To draw an opaque line, set the alpha component of the

color to 255. To draw a semitransparent line, set the alpha component to any value from 1 through 254.

When you draw a semitransparent line over a background, the color of the line is blended with the colors of the

background. The alpha component specifies how the line and background colors are mixed; alpha values near 0

place more weight on the background colors, and alpha values near 255 place more weight on the line color.

The following example draws a bitmap and then draws three lines that use the bitmap as a background. The first

line uses an alpha component of 255, so it is opaque. The second and third lines use an alpha component of

128, so they are semitransparent; you can see the background image through the lines. The statement that sets

the CompositingQuality property causes the blending for the third line to be done in conjunction with gamma

correction.

The following illustration shows the output of the following code:

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-opaque-and-semitransparent-lines.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.compositingquality
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs

See also

parameter of the Paint event handler.

Alpha Blending Lines and Fills

How to: Give Your Control a Transparent Background

How to: Draw with Opaque and Semitransparent Brushes

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-give-your-control-a-transparent-background

How to: Draw with Opaque and Semitransparent
Brushes
11/3/2020 • 2 minutes to read • Edit Online

Example

Bitmap bitmap = new Bitmap("Texture1.jpg");
e.Graphics.DrawImage(bitmap, 50, 50, bitmap.Width, bitmap.Height);

SolidBrush opaqueBrush = new SolidBrush(Color.FromArgb(255, 0, 0, 255));
SolidBrush semiTransBrush = new SolidBrush(Color.FromArgb(128, 0, 0, 255));

e.Graphics.FillEllipse(opaqueBrush, 35, 45, 45, 30);
e.Graphics.FillEllipse(semiTransBrush, 86, 45, 45, 30);

e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected;
e.Graphics.FillEllipse(semiTransBrush, 40, 90, 86, 30);

Dim bitmap As New Bitmap("Texture1.jpg")
e.Graphics.DrawImage(bitmap, 50, 50, bitmap.Width, bitmap.Height)

Dim opaqueBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))
Dim semiTransBrush As New SolidBrush(Color.FromArgb(128, 0, 0, 255))

e.Graphics.FillEllipse(opaqueBrush, 35, 45, 45, 30)
e.Graphics.FillEllipse(semiTransBrush, 86, 45, 45, 30)

e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected
e.Graphics.FillEllipse(semiTransBrush, 40, 90, 86, 30)

When you fill a shape, you must pass a Brush object to one of the fill methods of the Graphics class. The one

parameter of the SolidBrush constructor is a Color object. To fill an opaque shape, set the alpha component of

the color to 255. To fill a semitransparent shape, set the alpha component to any value from 1 through 254.

When you fill a semitransparent shape, the color of the shape is blended with the colors of the background. The

alpha component specifies how the shape and background colors are mixed; alpha values near 0 place more

weight on the background colors, and alpha values near 255 place more weight on the shape color.

The following example draws a bitmap and then fills three ellipses that overlap the bitmap. The first ellipse uses

an alpha component of 255, so it is opaque. The second and third ellipses use an alpha component of 128, so

they are semitransparent; you can see the background image through the ellipses. The call that sets the

CompositingQuality property causes the blending for the third ellipse to be done in conjunction with gamma

correction.

The following illustration shows the output of the following code:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-with-opaque-and-semitransparent-brushes.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.solidbrush.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.compositingquality

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

Graphics and Drawing in Windows Forms

Alpha Blending Lines and Fills

How to: Give Your Control a Transparent Background

How to: Draw Opaque and Semitransparent Lines

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-give-your-control-a-transparent-background

How to: Use Compositing Mode to Control Alpha
Blending
11/3/2020 • 3 minutes to read • Edit Online

Example

bitmapGraphics.CompositingMode = CompositingMode.SourceCopy;

bitmapGraphics.CompositingMode = CompositingMode.SourceCopy

bitmapGraphics.CompositingMode = CompositingMode.SourceOver;

There may be times when you want to create an off-screen bitmap that has the following characteristics:

Colors have alpha values that are less than 255.

Colors are not alpha blended with each other as you create the bitmap.

When you display the finished bitmap, colors in the bitmap are alpha blended with the background colors

on the display device.

To create such a bitmap, construct a blank Bitmap object, and then construct a Graphics object based on that

bitmap. Set the compositing mode of the Graphics object to CompositingMode.SourceCopy.

The following example creates a Graphics object based on a Bitmap object. The code uses the Graphics object

along with two semitransparent brushes (alpha = 160) to paint on the bitmap. The code fills a red ellipse and a

green ellipse using the semitransparent brushes. The green ellipse overlaps the red ellipse, but the green is not

blended with the red because the compositing mode of the Graphics object is set to SourceCopy.

The code draws the bitmap on the screen twice: once on a white background and once on a multicolored

background. The pixels in the bitmap that are part of the two ellipses have an alpha component of 160, so the

ellipses are blended with the background colors on the screen.

The following illustration shows the output of the code example. Note that the ellipses are blended with the

background, but they are not blended with each other.

The code example contains this statement:

If you want the ellipses to be blended with each other as well as with the background, change that statement to

the following:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-compositing-mode-to-control-alpha-blending.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.compositingmode#system_drawing_drawing2d_compositingmode_sourcecopy
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.compositingmode#system_drawing_drawing2d_compositingmode_sourcecopy

bitmapGraphics.CompositingMode = CompositingMode.SourceOver

// Create a blank bitmap.
Bitmap myBitmap = new Bitmap(180, 100);

// Create a Graphics object that we can use to draw on the bitmap.
Graphics bitmapGraphics = Graphics.FromImage(myBitmap);

// Create a red brush and a green brush, each with an alpha value of 160.
SolidBrush redBrush = new SolidBrush(Color.FromArgb(160, 255, 0, 0));
SolidBrush greenBrush = new SolidBrush(Color.FromArgb(160, 0, 255, 0));

// Set the compositing mode so that when we draw overlapping ellipses,
// the colors of the ellipses are not blended.
bitmapGraphics.CompositingMode = CompositingMode.SourceCopy;

// Fill an ellipse using a red brush that has an alpha value of 160.
bitmapGraphics.FillEllipse(redBrush, 0, 0, 150, 70);

// Fill a second ellipse using a green brush that has an alpha value of 160.
// The green ellipse overlaps the red ellipse, but the green is not
// blended with the red.
bitmapGraphics.FillEllipse(greenBrush, 30, 30, 150, 70);

// Set the compositing quality of the form's Graphics object.
e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected;

// Draw a multicolored background.
SolidBrush colorBrush = new SolidBrush(Color.Aqua);
e.Graphics.FillRectangle(colorBrush, 200, 0, 60, 100);
colorBrush.Color = Color.Yellow;
e.Graphics.FillRectangle(colorBrush, 260, 0, 60, 100);
colorBrush.Color = Color.Fuchsia;
e.Graphics.FillRectangle(colorBrush, 320, 0, 60, 100);

// Display the bitmap on a white background.
e.Graphics.DrawImage(myBitmap, 0, 0);

// Display the bitmap on a multicolored background.
e.Graphics.DrawImage(myBitmap, 200, 0);

The following illustration shows the output of the revised code.

' Create a blank bitmap.
Dim myBitmap As New Bitmap(180, 100)

' Create a Graphics object that we can use to draw on the bitmap.
Dim bitmapGraphics As Graphics = Graphics.FromImage(myBitmap)

' Create a red brush and a green brush, each with an alpha value of 160.
Dim redBrush As New SolidBrush(Color.FromArgb(160, 255, 0, 0))
Dim greenBrush As New SolidBrush(Color.FromArgb(160, 0, 255, 0))

' Set the compositing mode so that when we draw overlapping ellipses,
' the colors of the ellipses are not blended.
bitmapGraphics.CompositingMode = CompositingMode.SourceCopy

' Fill an ellipse using a red brush that has an alpha value of 160.
bitmapGraphics.FillEllipse(redBrush, 0, 0, 150, 70)

' Fill a second ellipse using a green brush that has an alpha value of
' 160. The green ellipse overlaps the red ellipse, but the green is not
' blended with the red.
bitmapGraphics.FillEllipse(greenBrush, 30, 30, 150, 70)

'Set the compositing quality of the form's Graphics object.
e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected

' Draw a multicolored background.
Dim colorBrush As New SolidBrush(Color.Aqua)
e.Graphics.FillRectangle(colorBrush, 200, 0, 60, 100)
colorBrush.Color = Color.Yellow
e.Graphics.FillRectangle(colorBrush, 260, 0, 60, 100)
colorBrush.Color = Color.Fuchsia
e.Graphics.FillRectangle(colorBrush, 320, 0, 60, 100)

'Display the bitmap on a white background.
e.Graphics.DrawImage(myBitmap, 0, 0)

' Display the bitmap on a multicolored background.
e.Graphics.DrawImage(myBitmap, 200, 0)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

FromArgb

Alpha Blending Lines and Fills

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color.fromargb

How to: Use a Color Matrix to Set Alpha Values in
Images
11/3/2020 • 3 minutes to read • Edit Online

Example

The Bitmap class (which inherits from the Image class) and the ImageAttributes class provide functionality for

getting and setting pixel values. You can use the ImageAttributes class to modify the alpha values for an entire

image, or you can call the SetPixel method of the Bitmap class to modify individual pixel values.

The ImageAttributes class has many properties that you can use to modify images during rendering. In the

following example, an ImageAttributes object is used to set all the alpha values to 80 percent of what they were.

This is done by initializing a color matrix and setting the alpha scaling value in the matrix to 0.8. The address of

the color matrix is passed to the SetColorMatrix method of the ImageAttributes object, and the ImageAttributes

object is passed to the DrawString method of the Graphics object.

During rendering, the alpha values in the bitmap are converted to 80 percent of what they were. This results in

an image that is blended with the background. As the following illustration shows, the bitmap image looks

transparent; you can see the solid black line through it.

Where the image is over the white portion of the background, the image has been blended with the color white.

Where the image crosses the black line, the image is blended with the color black.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-a-color-matrix-to-set-alpha-values-in-images.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap.setpixel
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes.setcolormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

// Create the Bitmap object and load it with the texture image.
Bitmap bitmap = new Bitmap("Texture.jpg");

// Initialize the color matrix.
// Note the value 0.8 in row 4, column 4.
float[][] matrixItems ={
 new float[] {1, 0, 0, 0, 0},
 new float[] {0, 1, 0, 0, 0},
 new float[] {0, 0, 1, 0, 0},
 new float[] {0, 0, 0, 0.8f, 0},
 new float[] {0, 0, 0, 0, 1}};
ColorMatrix colorMatrix = new ColorMatrix(matrixItems);

// Create an ImageAttributes object and set its color matrix.
ImageAttributes imageAtt = new ImageAttributes();
imageAtt.SetColorMatrix(
 colorMatrix,
 ColorMatrixFlag.Default,
 ColorAdjustType.Bitmap);

// First draw a wide black line.
e.Graphics.DrawLine(
 new Pen(Color.Black, 25),
 new Point(10, 35),
 new Point(200, 35));

// Now draw the semitransparent bitmap image.
int iWidth = bitmap.Width;
int iHeight = bitmap.Height;
e.Graphics.DrawImage(
 bitmap,
 new Rectangle(30, 0, iWidth, iHeight), // destination rectangle
 0.0f, // source rectangle x
 0.0f, // source rectangle y
 iWidth, // source rectangle width
 iHeight, // source rectangle height
 GraphicsUnit.Pixel,
 imageAtt);

' Create the Bitmap object and load it with the texture image.
Dim bitmap As New Bitmap("Texture.jpg")

' Initialize the color matrix.
' Note the value 0.8 in row 4, column 4.
Dim matrixItems As Single()() = { _
 New Single() {1, 0, 0, 0, 0}, _
 New Single() {0, 1, 0, 0, 0}, _
 New Single() {0, 0, 1, 0, 0}, _
 New Single() {0, 0, 0, 0.8F, 0}, _
 New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(matrixItems)

' Create an ImageAttributes object and set its color matrix.
Dim imageAtt As New ImageAttributes()
imageAtt.SetColorMatrix(_
 colorMatrix, _
 ColorMatrixFlag.Default, _
 ColorAdjustType.Bitmap)

' First draw a wide black line.
e.Graphics.DrawLine(_
 New Pen(Color.Black, 25), _
 New Point(10, 35), _
 New Point(200, 35))

' Now draw the semitransparent bitmap image.
Dim iWidth As Integer = bitmap.Width
Dim iHeight As Integer = bitmap.Height

' Pass in the destination rectangle (2nd argument) and the x _
' coordinate (3rd argument), x coordinate (4th argument), width _
' (5th argument), and height (6th argument) of the source rectangle.
e.Graphics.DrawImage(_
 bitmap, _
 New Rectangle(30, 0, iWidth, iHeight), _
 0.0F, _
 0.0F, _
 iWidth, _
 iHeight, _
 GraphicsUnit.Pixel, _
 imageAtt)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

Graphics and Drawing in Windows Forms

Alpha Blending Lines and Fills

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

Using Fonts and Text
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

There are several classes offered by GDI+ and GDI for drawing text on Windows Forms. The GDI+ Graphics class

has several DrawString methods that allow you to specify various features of text, such as location, bounding

rectangle, font, and format. In addition, you can draw and measure text with GDI using the static DrawText and

MeasureText methods offered by the TextRenderer class. The GDI methods also allow you to specify location,

font, and format. You can choose either GDI or GDI+ for text rendering; however, GDI generally offers better

performance and more accurate text measuring. Other classes that contribute to text rendering include

FontFamily , Font , StringFormat, and TextFormatFlags .

How to: Construct Font Families and Fonts

Shows how to create Font and FontFamily objects.

How to: Draw Text at a Specified Location

Describes how to draw text in a certain location using GDI+ and GDI.

How to: Draw Wrapped Text in a Rectangle

Explains how to draw text in a rectangle using GDI+ and GDI.

How to: Draw Text with GDI

Demonstrates how to use GDI for drawing text.

How to: Align Drawn Text

Shows how to format GDI+ and GDI text.

How to: Create Vertical Text

Describes how to draw vertically aligned text with GDI+.

How to: Set Tab Stops in Drawn Text

Shows how draw text with tab stops with GDI+.

How to: Enumerate Installed Fonts

Explains how to list the names of installed fonts.

How to: Create a Private Font Collection

Describes how to create a PrivateFontCollection object.

How to: Obtain Font Metrics

Shows how to obtain font metrics such as cell ascent and descent.

How to: Use Antialiasing with Text

Explains how to use antialiasing when drawing text.

Font

Describes this class and contains links to all of its members.

FontFamily

Describes this class and contains links to all of its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-fonts-and-text.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.measuretext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily

PrivateFontCollection

Describes this class and contains links to all of its members.

TextRenderer

Describes this class and contains links to all of its members.

TextFormatFlags

Describes this class and contains links to all of its members.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textformatflags

How to: Construct Font Families and Fonts
11/3/2020 • 2 minutes to read • Edit Online

Example

FontFamily fontFamily = new FontFamily("Arial");
Font font = new Font(
 fontFamily,
 16,
 FontStyle.Regular,
 GraphicsUnit.Pixel);

Dim fontFamily As New FontFamily("Arial")
Dim font As New Font(_
 fontFamily, _
 16, _
 FontStyle.Regular, _
 GraphicsUnit.Pixel)

Compiling the Code

GDI+ groups fonts with the same typeface but different styles into font families. For example, the Arial font

family contains the following fonts:

Arial Regular

Arial Bold

Arial Italic

Arial Bold Italic

GDI+ uses four styles to form families: regular, bold, italic, and bold italic. Adjectives such as narrow and

rounded are not considered styles; rather they are part of the family name. For example, Arial Narrow is a font

family with the following members:

Arial Narrow Regular

Arial Narrow Bold

Arial Narrow Italic

Arial Narrow Bold Italic

Before you can draw text with GDI+, you need to construct a FontFamily object and a Font object. The

FontFamily object specifies the typeface (for example, Arial), and the Font object specifies the size, style, and

units.

The following example constructs a regular style Arial font with a size of 16 pixels. In the following code, the first

argument passed to the Font constructor is the FontFamily object. The second argument specifies the size of the

font measured in units identified by the fourth argument. The third argument identifies the style.

Pixel is a member of the GraphicsUnit enumeration, and Regular is a member of the FontStyle enumeration.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-construct-font-families-and-fonts.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphicsunit#system_drawing_graphicsunit_pixel
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphicsunit
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontstyle#system_drawing_fontstyle_regular
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontstyle

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

Using Fonts and Text

Graphics and Drawing in Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Draw Text at a Specified Location
11/3/2020 • 2 minutes to read • Edit Online

To draw a line of text with GDI+

To draw a line of text with GDI

Compiling the Code

When you perform custom drawing, you can draw text in a single horizontal line starting at a specified point.

You can draw text in this manner by using the DrawString overloaded method of the Graphics class that takes a

Point or PointF parameter. The DrawString method also requires a Brush and Font

You can also use the DrawText overloaded method of the TextRenderer that takes a Point. DrawText also requires

a Color and a Font.

The following illustration shows the output of text drawn at a specified point when you use the DrawString

overloaded method.

using (Font font1 = new Font("Times New Roman", 24, FontStyle.Bold, GraphicsUnit.Pixel)){
PointF pointF1 = new PointF(30, 10);
e.Graphics.DrawString("Hello", font1, Brushes.Blue, pointF1);
}

Dim font1 As New Font("Times New Roman", 24, FontStyle.Bold, GraphicsUnit.Pixel)
Try
 Dim pointF1 As New PointF(30, 10)
 e.Graphics.DrawString("Hello", font1, Brushes.Blue, pointF1)
Finally
 font1.Dispose()
End Try

1. Use the DrawString method, passing the text you want, Point or PointF, Font, and Brush.

using (Font font = new Font("Times New Roman", 24, FontStyle.Bold, GraphicsUnit.Pixel))
{
 Point point1 = new Point(30, 10);
 TextRenderer.DrawText(e.Graphics, "Hello", font, point1, Color.Blue);
}

Dim font As New Font("Times New Roman", 24, FontStyle.Bold, GraphicsUnit.Pixel)
Try
 Dim point1 As New Point(30, 10)
 TextRenderer.DrawText(e.Graphics, "Hello", font, point1, Color.Blue)
Finally
 font.Dispose()
End Try

1. Use the DrawText method, passing the text you want, Point, Font, and Color.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-text-at-a-specified-location.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pointf
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pointf
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color

See also

The previous examples require:

PaintEventArgs e , which is a parameter of PaintEventHandler.

How to: Draw Text with GDI

Using Fonts and Text

How to: Construct Font Families and Fonts

How to: Draw Wrapped Text in a Rectangle

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Draw Wrapped Text in a Rectangle
11/3/2020 • 2 minutes to read • Edit Online

To draw wrapped text in a rectangle with GDI+

To draw wrapped text in a rectangle with GDI

You can draw wrapped text in a rectangle by using the DrawString overloaded method of the Graphics class that

takes a Rectangle or RectangleF parameter. You will also use a Brush and a Font.

You can also draw wrapped text in a rectangle by using the DrawText overloaded method of the TextRenderer

that takes a Rectangle and a TextFormatFlags parameter. You will also use a Color and a Font.

The following illustration shows the output of text drawn in the rectangle when you use the DrawString method:

string text1 = "Draw text in a rectangle by passing a RectF to the DrawString method.";
using (Font font1 = new Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point))
{
 RectangleF rectF1 = new RectangleF(30, 10, 100, 122);
 e.Graphics.DrawString(text1, font1, Brushes.Blue, rectF1);
 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(rectF1));
}

Dim text1 As String = "Draw text in a rectangle by passing a RectF to the DrawString method."
Dim font1 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)
Try
 Dim rectF1 As New RectangleF(30, 10, 100, 122)
 e.Graphics.DrawString(text1, font1, Brushes.Blue, rectF1)
 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(rectF1))
Finally
 font1.Dispose()
End Try

1. Use the DrawString overloaded method, passing the text you want, Rectangle or RectangleF, Font and

Brush.

1. Use the TextFormatFlags enumeration value to specify the text should be wrapped with the DrawText

overloaded method, passing the text you want, Rectangle, Font and Color.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-wrapped-text-in-a-rectangle.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectanglef
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectanglef
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color

Compiling the Code

See also

string text2 = "Draw text in a rectangle by passing a RectF to the DrawString method.";
using (Font font2 = new Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point))
{
 Rectangle rect2 = new Rectangle(30, 10, 100, 122);

 // Specify the text is wrapped.
 TextFormatFlags flags = TextFormatFlags.WordBreak;
 TextRenderer.DrawText(e.Graphics, text2, font2, rect2, Color.Blue, flags);
 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(rect2));
}

Dim text2 As String = _
 "Draw text in a rectangle by passing a RectF to the DrawString method."
Dim font2 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)
Try
 Dim rect2 As New Rectangle(30, 10, 100, 122)

 ' Specify the text is wrapped.
 Dim flags As TextFormatFlags = TextFormatFlags.WordBreak
 TextRenderer.DrawText(e.Graphics, text2, font2, rect2, Color.Blue, flags)
 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(rect2))
Finally
 font2.Dispose()
End Try

The previous examples require:

PaintEventArgs e , which is a parameter of PaintEventHandler.

How to: Draw Text with GDI

Using Fonts and Text

How to: Construct Font Families and Fonts

How to: Draw Text at a Specified Location

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Draw Text with GDI
11/3/2020 • 2 minutes to read • Edit Online

NOTE

Example

private void RenderText6(PaintEventArgs e)
{
 TextFormatFlags flags = TextFormatFlags.Bottom | TextFormatFlags.EndEllipsis;
 TextRenderer.DrawText(e.Graphics, "This is some text that will be clipped at the end.", this.Font,
 new Rectangle(10, 10, 100, 50), SystemColors.ControlText, flags);
}

Private Sub RenderText6(ByVal e As PaintEventArgs)
 Dim flags As TextFormatFlags = TextFormatFlags.Bottom Or _
 TextFormatFlags.EndEllipsis
 TextRenderer.DrawText(e.Graphics, _
 "This is some text that will be clipped at the end.", _
 Me.Font, New Rectangle(10, 10, 100, 50), SystemColors.ControlText, flags)

End Sub

Compiling the Code

See also

With the DrawText method in the TextRenderer class, you can access GDI functionality for drawing text on a form

or control. GDI text rendering typically offers better performance and more accurate text measuring than GDI+.

The DrawText methods of the TextRenderer class are not supported for printing. When printing, always use the DrawString

methods of the Graphics class.

The following code example demonstrates how to draw text on multiple lines within a rectangle using the

DrawText method.

To render text with the TextRenderer class, you need an IDeviceContext, such as a Graphics and a Font, a location

to draw the text, and the color in which it should be drawn. Optionally, you can specify the text formatting by

using the TextFormatFlags enumeration.

For more information about obtaining a Graphics, see How to: Create Graphics Objects for Drawing. For more

information about constructing a Font, see How to: Construct Font Families and Fonts.

The preceding code example is designed for use with Windows Forms, and it requires the PaintEventArgs e ,

which is a parameter of PaintEventHandler.

TextRenderer

Font

Color

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-text-with-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.idevicecontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.color

Using Fonts and Text

How to: Align Drawn Text
11/3/2020 • 2 minutes to read • Edit Online

To draw centered text with GDI+ (DrawString)

To draw centered text with GDI (DrawText)

When you perform custom drawing, you may often want to center drawn text on a form or control. You can

easily align text drawn with the DrawString or DrawText methods by creating the correct formatting object and

setting the appropriate format flags.

string text1 = "Use StringFormat and Rectangle objects to"
 + " center text in a rectangle.";
using (Font font1 = new Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point))
{
 Rectangle rect1 = new Rectangle(10, 10, 130, 140);

 // Create a StringFormat object with the each line of text, and the block
 // of text centered on the page.
 StringFormat stringFormat = new StringFormat();
 stringFormat.Alignment = StringAlignment.Center;
 stringFormat.LineAlignment = StringAlignment.Center;

 // Draw the text and the surrounding rectangle.
 e.Graphics.DrawString(text1, font1, Brushes.Blue, rect1, stringFormat);
 e.Graphics.DrawRectangle(Pens.Black, rect1);
}

Dim text1 As String = "Use StringFormat and Rectangle objects to" & _
 " center text in a rectangle."
Dim font1 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)
Try
 Dim rect1 As New Rectangle(10, 10, 130, 140)

 ' Create a StringFormat object with the each line of text, and the block
 ' of text centered on the page.
 Dim stringFormat As New StringFormat()
 stringFormat.Alignment = StringAlignment.Center
 stringFormat.LineAlignment = StringAlignment.Center

 ' Draw the text and the surrounding rectangle.
 e.Graphics.DrawString(text1, font1, Brushes.Blue, rect1, stringFormat)
 e.Graphics.DrawRectangle(Pens.Black, rect1)
Finally
 font1.Dispose()
End Try

1. Use a StringFormat with the appropriate DrawString method to specify centered text.

1. Use the TextFormatFlags enumeration for wrapping as well as vertically and horizontally centering text

with the appropriate DrawText method.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-align-drawn-text.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext

Compiling the Code

See also

string text2 = "Use TextFormatFlags and Rectangle objects to"
 + " center text in a rectangle.";

using (Font font2 = new Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point))
{
 Rectangle rect2 = new Rectangle(150, 10, 130, 140);

 // Create a TextFormatFlags with word wrapping, horizontal center and
 // vertical center specified.
 TextFormatFlags flags = TextFormatFlags.HorizontalCenter |
 TextFormatFlags.VerticalCenter | TextFormatFlags.WordBreak;

 // Draw the text and the surrounding rectangle.
 TextRenderer.DrawText(e.Graphics, text2, font2, rect2, Color.Blue, flags);
 e.Graphics.DrawRectangle(Pens.Black, rect2);
}

Dim text2 As String = "Use TextFormatFlags and Rectangle objects to" & _
 " center text in a rectangle."

Dim font2 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)
Try
 Dim rect2 As New Rectangle(150, 10, 130, 140)

 ' Create a TextFormatFlags with word wrapping, horizontal center and
 ' vertical center specified.
 Dim flags As TextFormatFlags = TextFormatFlags.HorizontalCenter Or _
 TextFormatFlags.VerticalCenter Or TextFormatFlags.WordBreak

 ' Draw the text and the surrounding rectangle.
 TextRenderer.DrawText(e.Graphics, text2, font2, rect2, Color.Blue, flags)
 e.Graphics.DrawRectangle(Pens.Black, rect2)
Finally
 font2.Dispose()
End Try

The preceding code examples are designed for use with Windows Forms, and they require PaintEventArgs e ,

which is a parameter of PaintEventHandler.

How to: Draw Text with GDI

Using Fonts and Text

How to: Construct Font Families and Fonts

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Create Vertical Text
11/3/2020 • 2 minutes to read • Edit Online

Example

string myText = "Vertical text";

FontFamily fontFamily = new FontFamily("Lucida Console");
Font font = new Font(
fontFamily,
 14,
 FontStyle.Regular,
 GraphicsUnit.Point);
PointF pointF = new PointF(40, 10);
StringFormat stringFormat = new StringFormat();
SolidBrush solidBrush = new SolidBrush(Color.FromArgb(255, 0, 0, 255));

stringFormat.FormatFlags = StringFormatFlags.DirectionVertical;

e.Graphics.DrawString(myText, font, solidBrush, pointF, stringFormat);

Dim myText As String = "Vertical text"

Dim fontFamily As New FontFamily("Lucida Console")
Dim font As New Font(_
 fontFamily, _
 14, _
 FontStyle.Regular, _
 GraphicsUnit.Point)
Dim pointF As New PointF(40, 10)
Dim stringFormat As New StringFormat()
Dim solidBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))

stringFormat.FormatFlags = StringFormatFlags.DirectionVertical

e.Graphics.DrawString(myText, font, solidBrush, pointF, stringFormat)

You can use a StringFormat object to specify that text be drawn vertically rather than horizontally.

The following example assigns the value DirectionVertical to the FormatFlags property of a StringFormat object.

That StringFormat object is passed to the DrawString method of the Graphics class. The value DirectionVertical is

a member of the StringFormatFlags enumeration.

The following illustration shows the vertical text:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-vertical-text.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformatflags#system_drawing_stringformatflags_directionvertical
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat.formatflags
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformatflags#system_drawing_stringformatflags_directionvertical
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformatflags

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is

a parameter of PaintEventHandler.

How to: Draw Text with GDI

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Set Tab Stops in Drawn Text
11/3/2020 • 2 minutes to read • Edit Online

NOTE

Example

string text = "Name\tTest 1\tTest 2\tTest 3\n";
text = text + "Joe\t95\t88\t91\n";
text = text + "Mary\t98\t84\t90\n";
text = text + "Sam\t42\t76\t98\n";
text = text + "Jane\t65\t73\t92\n";

FontFamily fontFamily = new FontFamily("Courier New");
Font font = new Font(
 fontFamily,
 12,
 FontStyle.Regular,
 GraphicsUnit.Point);
Rectangle rect = new Rectangle(10, 10, 450, 100);
StringFormat stringFormat = new StringFormat();
SolidBrush solidBrush = new SolidBrush(Color.FromArgb(255, 0, 0, 255));
float[] tabs = { 150, 100, 100, 100 };

stringFormat.SetTabStops(0, tabs);

e.Graphics.DrawString(text, font, solidBrush, rect, stringFormat);

Pen pen = Pens.Black;
e.Graphics.DrawRectangle(pen, rect);

You can set tab stops for text by calling the SetTabStops method of a StringFormat object and then passing that

StringFormat object to the DrawString method of the Graphics class.

The System.Windows.Forms.TextRenderer does not support adding tab stops to drawn text, although you can expand

existing tab stops using the TextFormatFlags.ExpandTabs flag.

The following example sets tab stops at 150, 250, and 350. Then, the code displays a tabbed list of names and

test scores.

The following illustration shows the tabbed text:

The following code passes two arguments to the SetTabStops method. The second argument is an array that

contains tab offsets. The first argument passed to SetTabStops is 0, which indicates that the first offset in the

array is measured from position 0, the left edge of the bounding rectangle.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-set-tab-stops-in-drawn-text.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat.settabstops
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textformatflags#system_windows_forms_textformatflags_expandtabs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat.settabstops
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformat.settabstops

Dim myText As String = _
 "Name" & ControlChars.Tab & _
 "Test 1" & ControlChars.Tab & _
 "Test 2" & ControlChars.Tab & _
 "Test 3" & ControlChars.Cr

myText = myText & "Joe" & ControlChars.Tab & _
 "95" & ControlChars.Tab & _
 "88" & ControlChars.Tab & _
 "91" & ControlChars.Cr
myText = myText & "Mary" & ControlChars.Tab & _
 "98" & ControlChars.Tab & _
 "84" & ControlChars.Tab & _
 "90" & ControlChars.Cr
myText = myText & "Sam" & ControlChars.Tab & _
 "42" & ControlChars.Tab & _
 "76" & ControlChars.Tab & _
 "98" & ControlChars.Cr
myText = myText & "Jane" & ControlChars.Tab & _
 "65" & ControlChars.Tab & _
 "73" & ControlChars.Tab & _
 "92" & ControlChars.Cr

Dim fontFamily As New FontFamily("Courier New")
Dim font As New Font(_
 fontFamily, _
 12, _
 FontStyle.Regular, _
 GraphicsUnit.Point)
Dim rect As New Rectangle(10, 10, 450, 100)
Dim stringFormat As New StringFormat()
Dim solidBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))
Dim tabs As Single() = {150, 100, 100, 100}

stringFormat.SetTabStops(0, tabs)

e.Graphics.DrawString(myText, font, solidBrush, RectangleF.op_implicit(rect), stringFormat)

Dim pen As Pen = Pens.Black
e.Graphics.DrawRectangle(pen, rect)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is

a parameter of PaintEventHandler.

Using Fonts and Text

How to: Draw Text with GDI

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Enumerate Installed Fonts
11/3/2020 • 2 minutes to read • Edit Online

Example

The InstalledFontCollection class inherits from the FontCollection abstract base class. You can use an

InstalledFontCollection object to enumerate the fonts installed on the computer. The Families property of an

InstalledFontCollection object is an array of FontFamily objects.

The following example lists the names of all the font families installed on the computer. The code retrieves the

Name property of each FontFamily object in the array returned by the Families property. As the family names

are retrieved, they are concatenated to form a comma-separated list. Then the DrawString method of the

Graphics class draws the comma-separated list in a rectangle.

If you run the example code, the output will be similar to that shown in the following illustration:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-enumerate-installed-fonts.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.installedfontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.fontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.installedfontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.fontcollection.families
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.installedfontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily.name
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.fontcollection.families
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

FontFamily fontFamily = new FontFamily("Arial");
Font font = new Font(
 fontFamily,
 8,
 FontStyle.Regular,
 GraphicsUnit.Point);
RectangleF rectF = new RectangleF(10, 10, 500, 500);
SolidBrush solidBrush = new SolidBrush(Color.Black);

string familyName;
string familyList = "";
FontFamily[] fontFamilies;

InstalledFontCollection installedFontCollection = new InstalledFontCollection();

// Get the array of FontFamily objects.
fontFamilies = installedFontCollection.Families;

// The loop below creates a large string that is a comma-separated
// list of all font family names.

int count = fontFamilies.Length;
for (int j = 0; j < count; ++j)
{
 familyName = fontFamilies[j].Name;
 familyList = familyList + familyName;
 familyList = familyList + ", ";
}

// Draw the large string (list of all families) in a rectangle.
e.Graphics.DrawString(familyList, font, solidBrush, rectF);

Dim fontFamily As New FontFamily("Arial")
Dim font As New Font(_
 fontFamily, _
 8, _
 FontStyle.Regular, _
 GraphicsUnit.Point)
Dim rectF As New RectangleF(10, 10, 500, 500)
Dim solidBrush As New SolidBrush(Color.Black)

Dim familyName As String
Dim familyList As String = ""
Dim fontFamilies() As FontFamily

Dim installedFontCollection As New InstalledFontCollection()

' Get the array of FontFamily objects.
fontFamilies = installedFontCollection.Families

' The loop below creates a large string that is a comma-separated
' list of all font family names.
Dim count As Integer = fontFamilies.Length
Dim j As Integer

While j < count
 familyName = fontFamilies(j).Name
 familyList = familyList & familyName
 familyList = familyList & ", "
 j += 1
End While

' Draw the large string (list of all families) in a rectangle.
e.Graphics.DrawString(familyList, font, solidBrush, rectF)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler. In addition, you should import the System.Drawing.Text namespace.

Using Fonts and Text

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text

How to: Create a Private Font Collection
11/3/2020 • 6 minutes to read • Edit Online

Example

The PrivateFontCollection class inherits from the FontCollection abstract base class. You can use a

PrivateFontCollection object to maintain a set of fonts specifically for your application. A private font collection

can include installed system fonts as well as fonts that have not been installed on the computer. To add a font file

to a private font collection, call the AddFontFile method of a PrivateFontCollection object.

The Families property of a PrivateFontCollection object contains an array of FontFamily objects.

The number of font families in a private font collection is not necessarily the same as the number of font files

that have been added to the collection. For example, suppose you add the files ArialBd.tff, Times.tff, and

TimesBd.tff to a collection. There will be three files but only two families in the collection because Times.tff and

TimesBd.tff belong to the same family.

The following example adds the following three font files to a PrivateFontCollection object:

C:\systemroot\Fonts\Arial.tff (Arial, regular)

C:\systemroot\Fonts\CourBI.tff (Courier New, bold italic)

C:\systemroot\Fonts\TimesBd.tff (Times New Roman, bold)

The code retrieves an array of FontFamily objects from the Families property of the PrivateFontCollection object.

For each FontFamily object in the collection, the code calls the IsStyleAvailable method to determine whether

various styles (regular, bold, italic, bold italic, underline, and strikeout) are available. The arguments passed to

the IsStyleAvailable method are members of the FontStyle enumeration.

If a given family/style combination is available, a Font object is constructed using that family and style. The first

argument passed to the Font constructor is the font family name (not a FontFamily object as is the case for other

variations of the Font constructor). After the Font object is constructed, it is passed to the DrawString method of

the Graphics class to display the family name along with the name of the style.

The output of the following code is similar to the output shown in the following illustration:

Arial.tff (which was added to the private font collection in the following code example) is the font file for the

Arial regular style. Note, however, that the program output shows several available styles other than regular for

the Arial font family. That is because GDI+ can simulate the bold, italic, and bold italic styles from the regular

style. GDI+ can also produce underlines and strikeouts from the regular style.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-private-font-collection.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.fontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection.addfontfile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.fontcollection.families
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.fontcollection.families
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily.isstyleavailable
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily.isstyleavailable
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontstyle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

PointF pointF = new PointF(10, 0);
SolidBrush solidBrush = new SolidBrush(Color.Black);

int count = 0;
string familyName = "";
string familyNameAndStyle;
FontFamily[] fontFamilies;
PrivateFontCollection privateFontCollection = new PrivateFontCollection();

// Add three font files to the private collection.
privateFontCollection.AddFontFile("D:\\systemroot\\Fonts\\Arial.ttf");
privateFontCollection.AddFontFile("D:\\systemroot\\Fonts\\CourBI.ttf");
privateFontCollection.AddFontFile("D:\\systemroot\\Fonts\\TimesBD.ttf");

// Get the array of FontFamily objects.
fontFamilies = privateFontCollection.Families;

// How many objects in the fontFamilies array?
count = fontFamilies.Length;

// Display the name of each font family in the private collection
// along with the available styles for that font family.
for (int j = 0; j < count; ++j)
{
 // Get the font family name.
 familyName = fontFamilies[j].Name;

 // Is the regular style available?
 if (fontFamilies[j].IsStyleAvailable(FontStyle.Regular))
 {
 familyNameAndStyle = "";
 familyNameAndStyle = familyNameAndStyle + familyName;
 familyNameAndStyle = familyNameAndStyle + " Regular";

 Font regFont = new Font(
 familyName,
 16,
 FontStyle.Regular,
 GraphicsUnit.Pixel);

 e.Graphics.DrawString(
 familyNameAndStyle,
 regFont,
 solidBrush,
 pointF);

 pointF.Y += regFont.Height;
 }

 // Is the bold style available?
 if (fontFamilies[j].IsStyleAvailable(FontStyle.Bold))
 {
 familyNameAndStyle = "";
 familyNameAndStyle = familyNameAndStyle + familyName;
 familyNameAndStyle = familyNameAndStyle + " Bold";

 Font boldFont = new Font(
 familyName,
 16,
 FontStyle.Bold,
 GraphicsUnit.Pixel);

 e.Graphics.DrawString(familyNameAndStyle, boldFont, solidBrush, pointF);

Similarly, GDI+ can simulate the bold italic style from either the bold style or the italic style. The program output

shows that the bold italic style is available for the Times family even though TimesBd.tff (Times New Roman,

bold) is the only Times file in the collection.

 pointF.Y += boldFont.Height;
 }
 // Is the italic style available?
 if (fontFamilies[j].IsStyleAvailable(FontStyle.Italic))
 {
 familyNameAndStyle = "";
 familyNameAndStyle = familyNameAndStyle + familyName;
 familyNameAndStyle = familyNameAndStyle + " Italic";

 Font italicFont = new Font(
 familyName,
 16,
 FontStyle.Italic,
 GraphicsUnit.Pixel);

 e.Graphics.DrawString(
 familyNameAndStyle,
 italicFont,
 solidBrush,
 pointF);

 pointF.Y += italicFont.Height;
 }

 // Is the bold italic style available?
 if (fontFamilies[j].IsStyleAvailable(FontStyle.Italic) &&
 fontFamilies[j].IsStyleAvailable(FontStyle.Bold))
 {
 familyNameAndStyle = "";
 familyNameAndStyle = familyNameAndStyle + familyName;
 familyNameAndStyle = familyNameAndStyle + "BoldItalic";

 Font italicFont = new Font(
 familyName,
 16,
 FontStyle.Italic | FontStyle.Bold,
 GraphicsUnit.Pixel);

 e.Graphics.DrawString(
 familyNameAndStyle,
 italicFont,
 solidBrush,
 pointF);

 pointF.Y += italicFont.Height;
 }
 // Is the underline style available?
 if (fontFamilies[j].IsStyleAvailable(FontStyle.Underline))
 {
 familyNameAndStyle = "";
 familyNameAndStyle = familyNameAndStyle + familyName;
 familyNameAndStyle = familyNameAndStyle + " Underline";

 Font underlineFont = new Font(
 familyName,
 16,
 FontStyle.Underline,
 GraphicsUnit.Pixel);

 e.Graphics.DrawString(
 familyNameAndStyle,
 underlineFont,
 solidBrush,
 pointF);

 pointF.Y += underlineFont.Height;
 }

 // Is the strikeout style available?
 if (fontFamilies[j].IsStyleAvailable(FontStyle.Strikeout))
 {
 familyNameAndStyle = "";
 familyNameAndStyle = familyNameAndStyle + familyName;
 familyNameAndStyle = familyNameAndStyle + " Strikeout";

 Font strikeFont = new Font(
 familyName,
 16,
 FontStyle.Strikeout,
 GraphicsUnit.Pixel);

 e.Graphics.DrawString(
 familyNameAndStyle,
 strikeFont,
 solidBrush,
 pointF);

 pointF.Y += strikeFont.Height;
 }

 // Separate the families with white space.
 pointF.Y += 10;
} // for

Dim pointF As New PointF(10, 0)
Dim solidBrush As New SolidBrush(Color.Black)

Dim count As Integer = 0
Dim familyName As String = ""
Dim familyNameAndStyle As String
Dim fontFamilies() As FontFamily
Dim privateFontCollection As New PrivateFontCollection()

' Add three font files to the private collection.
privateFontCollection.AddFontFile("D:\systemroot\Fonts\Arial.ttf")
privateFontCollection.AddFontFile("D:\systemroot\Fonts\CourBI.ttf")
privateFontCollection.AddFontFile("D:\systemroot\Fonts\TimesBD.ttf")

' Get the array of FontFamily objects.
fontFamilies = privateFontCollection.Families

' How many objects in the fontFamilies array?
count = fontFamilies.Length

' Display the name of each font family in the private collection
' along with the available styles for that font family.
Dim j As Integer

While j < count
 ' Get the font family name.
 familyName = fontFamilies(j).Name

 ' Is the regular style available?
 If fontFamilies(j).IsStyleAvailable(FontStyle.Regular) Then
 familyNameAndStyle = ""
 familyNameAndStyle = familyNameAndStyle & familyName
 familyNameAndStyle = familyNameAndStyle & " Regular"

 Dim regFont As New Font(_
 familyName, _
 16, _
 FontStyle.Regular, _
 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_

 familyNameAndStyle, _
 regFont, _
 solidBrush, _
 pointF)

 pointF.Y += regFont.Height
 End If

 ' Is the bold style available?
 If fontFamilies(j).IsStyleAvailable(FontStyle.Bold) Then
 familyNameAndStyle = ""
 familyNameAndStyle = familyNameAndStyle & familyName
 familyNameAndStyle = familyNameAndStyle & " Bold"

 Dim boldFont As New Font(_
 familyName, _
 16, _
 FontStyle.Bold, _
 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_
 familyNameAndStyle, _
 boldFont, _
 solidBrush, _
 pointF)

 pointF.Y += boldFont.Height
 End If

 ' Is the italic style available?
 If fontFamilies(j).IsStyleAvailable(FontStyle.Italic) Then
 familyNameAndStyle = ""
 familyNameAndStyle = familyNameAndStyle & familyName
 familyNameAndStyle = familyNameAndStyle & " Italic"

 Dim italicFont As New Font(_
 familyName, _
 16, _
 FontStyle.Italic, _
 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_
 familyNameAndStyle, _
 italicFont, _
 solidBrush, pointF)

 pointF.Y += italicFont.Height
 End If

 ' Is the bold italic style available?
 If fontFamilies(j).IsStyleAvailable(FontStyle.Italic) And _
 fontFamilies(j).IsStyleAvailable(FontStyle.Bold) Then
 familyNameAndStyle = ""
 familyNameAndStyle = familyNameAndStyle & familyName
 familyNameAndStyle = familyNameAndStyle & "BoldItalic"

 Dim italicFont As New Font(_
 familyName, _
 16, _
 FontStyle.Italic Or FontStyle.Bold, _
 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_
 familyNameAndStyle, _
 italicFont, _
 solidBrush, _
 pointF)

 pointF.Y += italicFont.Height

 End If
 ' Is the underline style available?
 If fontFamilies(j).IsStyleAvailable(FontStyle.Underline) Then
 familyNameAndStyle = ""
 familyNameAndStyle = familyNameAndStyle & familyName
 familyNameAndStyle = familyNameAndStyle & " Underline"

 Dim underlineFont As New Font(_
 familyName, _
 16, _
 FontStyle.Underline, _
 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_
 familyNameAndStyle, _
 underlineFont, _
 solidBrush, _
 pointF)

 pointF.Y += underlineFont.Height
 End If

 ' Is the strikeout style available?
 If fontFamilies(j).IsStyleAvailable(FontStyle.Strikeout) Then
 familyNameAndStyle = ""
 familyNameAndStyle = familyNameAndStyle & familyName
 familyNameAndStyle = familyNameAndStyle & " Strikeout"

 Dim strikeFont As New Font(_
 familyName, _
 16, _
 FontStyle.Strikeout, _
 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_
 familyNameAndStyle, _
 strikeFont, _
 solidBrush, _
 pointF)

 pointF.Y += strikeFont.Height
 End If

 ' Separate the families with white space.
 pointF.Y += 10
End While

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

PrivateFontCollection

Using Fonts and Text

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.privatefontcollection

How to: Obtain Font Metrics
11/3/2020 • 5 minutes to read • Edit Online

Example

The FontFamily class provides the following methods that retrieve various metrics for a particular family/style

combination:

GetEmHeight(FontStyle)

GetCellAscent(FontStyle)

GetCellDescent(FontStyle)

GetLineSpacing(FontStyle)

The values returned by these methods are in font design units, so they are independent of the size and units of a

particular Font object.

The following illustration shows the various metrics:

The following example displays the metrics for the regular style of the Arial font family. The code also creates a

Font object (based on the Arial family) with size 16 pixels and displays the metrics (in pixels) for that particular

Font object.

The following illustration shows the output of the example code:

Note the first two lines of output in the preceding illustration. The Font object returns a size of 16, and the

FontFamily object returns an em height of 2,048. These two numbers (16 and 2,048) are the key to converting

between font design units and the units (in this case pixels) of the Font object.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-obtain-font-metrics.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily.getemheight
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily.getcellascent
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily.getcelldescent
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily.getlinespacing
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font

For example, you can convert the ascent from design units to pixels as follows:

The following code positions text vertically by setting the Y data member of a PointF object. The y-coordinate is

increased by font.Height for each new line of text. The Height property of a Font object returns the line spacing

(in pixels) for that particular Font object. In this example, the number returned by Height is 19. Note that this is

the same as the number (rounded up to an integer) obtained by converting the line-spacing metric to pixels.

Note that the em height (also called size or em size) is not the sum of the ascent and the descent. The sum of the

ascent and the descent is called the cell height. The cell height minus the internal leading is equal to the em

height. The cell height plus the external leading is equal to the line spacing.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pointf.y
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pointf
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.height
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.height

string infoString = ""; // enough space for one line of output
int ascent; // font family ascent in design units
float ascentPixel; // ascent converted to pixels
int descent; // font family descent in design units
float descentPixel; // descent converted to pixels
int lineSpacing; // font family line spacing in design units
float lineSpacingPixel; // line spacing converted to pixels

FontFamily fontFamily = new FontFamily("Arial");
Font font = new Font(
 fontFamily,
 16, FontStyle.Regular,
 GraphicsUnit.Pixel);
PointF pointF = new PointF(10, 10);
SolidBrush solidBrush = new SolidBrush(Color.Black);

// Display the font size in pixels.
infoString = "font.Size returns " + font.Size + ".";
e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down one line.
pointF.Y += font.Height;

// Display the font family em height in design units.
infoString = "fontFamily.GetEmHeight() returns " +
 fontFamily.GetEmHeight(FontStyle.Regular) + ".";
e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down two lines.
pointF.Y += 2 * font.Height;

// Display the ascent in design units and pixels.
ascent = fontFamily.GetCellAscent(FontStyle.Regular);

// 14.484375 = 16.0 * 1854 / 2048
ascentPixel =
 font.Size * ascent / fontFamily.GetEmHeight(FontStyle.Regular);
infoString = "The ascent is " + ascent + " design units, " + ascentPixel +
 " pixels.";
e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down one line.
pointF.Y += font.Height;

// Display the descent in design units and pixels.
descent = fontFamily.GetCellDescent(FontStyle.Regular);

// 3.390625 = 16.0 * 434 / 2048
descentPixel =
 font.Size * descent / fontFamily.GetEmHeight(FontStyle.Regular);
infoString = "The descent is " + descent + " design units, " +
 descentPixel + " pixels.";
e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down one line.
pointF.Y += font.Height;

// Display the line spacing in design units and pixels.
lineSpacing = fontFamily.GetLineSpacing(FontStyle.Regular);

// 18.398438 = 16.0 * 2355 / 2048
lineSpacingPixel =
font.Size * lineSpacing / fontFamily.GetEmHeight(FontStyle.Regular);
infoString = "The line spacing is " + lineSpacing + " design units, " +
 lineSpacingPixel + " pixels.";
e.Graphics.DrawString(infoString, font, solidBrush, pointF);

Dim infoString As String = "" ' enough space for one line of output
Dim ascent As Integer ' font family ascent in design units
Dim ascentPixel As Single ' ascent converted to pixels
Dim descent As Integer ' font family descent in design units
Dim descentPixel As Single ' descent converted to pixels
Dim lineSpacing As Integer ' font family line spacing in design units
Dim lineSpacingPixel As Single ' line spacing converted to pixels
Dim fontFamily As New FontFamily("Arial")
Dim font As New Font(_
 fontFamily, _
 16, _
 FontStyle.Regular, _
 GraphicsUnit.Pixel)
Dim pointF As New PointF(10, 10)
Dim solidBrush As New SolidBrush(Color.Black)

' Display the font size in pixels.
infoString = "font.Size returns " & font.Size.ToString() & "."
e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down one line.
pointF.Y += font.Height

' Display the font family em height in design units.
infoString = "fontFamily.GetEmHeight() returns " & _
 fontFamily.GetEmHeight(FontStyle.Regular) & "."
e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down two lines.
pointF.Y += 2 * font.Height

' Display the ascent in design units and pixels.
ascent = fontFamily.GetCellAscent(FontStyle.Regular)

' 14.484375 = 16.0 * 1854 / 2048
ascentPixel = _
 font.Size * ascent / fontFamily.GetEmHeight(FontStyle.Regular)
infoString = "The ascent is " & ascent & " design units, " & ascentPixel _
 & " pixels."
e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down one line.
pointF.Y += font.Height

' Display the descent in design units and pixels.
descent = fontFamily.GetCellDescent(FontStyle.Regular)

' 3.390625 = 16.0 * 434 / 2048
descentPixel = _
 font.Size * descent / fontFamily.GetEmHeight(FontStyle.Regular)
infoString = "The descent is " & descent & " design units, " & _
 descentPixel & " pixels."
e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down one line.
pointF.Y += font.Height

' Display the line spacing in design units and pixels.
lineSpacing = fontFamily.GetLineSpacing(FontStyle.Regular)

' 18.398438 = 16.0 * 2355 / 2048
lineSpacingPixel = _
 font.Size * lineSpacing / fontFamily.GetEmHeight(FontStyle.Regular)
infoString = "The line spacing is " & lineSpacing & " design units, " & _
 lineSpacingPixel & " pixels."
e.Graphics.DrawString(infoString, font, solidBrush, pointF)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

Graphics and Drawing in Windows Forms

Using Fonts and Text

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Use Antialiasing with Text
11/3/2020 • 2 minutes to read • Edit Online

Example

FontFamily fontFamily = new FontFamily("Times New Roman");
Font font = new Font(
 fontFamily,
 32,
 FontStyle.Regular,
 GraphicsUnit.Pixel);
SolidBrush solidBrush = new SolidBrush(Color.FromArgb(255, 0, 0, 255));
string string1 = "SingleBitPerPixel";
string string2 = "AntiAlias";

e.Graphics.TextRenderingHint = TextRenderingHint.SingleBitPerPixel;
e.Graphics.DrawString(string1, font, solidBrush, new PointF(10, 10));

e.Graphics.TextRenderingHint = TextRenderingHint.AntiAlias;
e.Graphics.DrawString(string2, font, solidBrush, new PointF(10, 60));

Dim fontFamily As New FontFamily("Times New Roman")
Dim font As New Font(_
 fontFamily, _
 32, _
 FontStyle.Regular, _
 GraphicsUnit.Pixel)
Dim solidBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))
Dim string1 As String = "SingleBitPerPixel"
Dim string2 As String = "AntiAlias"

e.Graphics.TextRenderingHint = TextRenderingHint.SingleBitPerPixel
e.Graphics.DrawString(string1, font, solidBrush, New PointF(10, 10))

e.Graphics.TextRenderingHint = TextRenderingHint.AntiAlias
e.Graphics.DrawString(string2, font, solidBrush, New PointF(10, 60))

Compiling the Code

Antialiasing refers to the smoothing of jagged edges of drawn graphics and text to improve their appearance or

readability. With the managed GDI+ classes, you can render high quality antialiased text, as well as lower quality

text. Typically, higher quality rendering takes more processing time than lower quality rendering. To set the text

quality level, set the TextRenderingHint property of a Graphics to one of the elements of the TextRenderingHint

enumeration

The following code example draws text with two different quality settings.

The following illustration shows the output of the example code:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-antialiasing-with-text.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.textrenderinghint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.textrenderinghint

See also

The preceding code example is designed for use with Windows Forms, and it requires PaintEventArgs e , which

is a parameter of PaintEventHandler.

Using Fonts and Text

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

Constructing and Drawing Curves
11/3/2020 • 2 minutes to read • Edit Online

In This Section

GDI+ supports several types of curves: ellipses, arcs, cardinal splines, and Bézier splines. An ellipse is defined by

its bounding rectangle; an arc is a portion of an ellipse defined by a starting angle and a sweep angle. A cardinal

spline is defined by an array of points and a tension parameter — the curve passes smoothly through each

point in the array, and the tension parameter influences the way the curve bends. A Bézier spline is defined by

two endpoints and two control points the curve does not pass through the control points, but the control points

influence the direction and bend as the curve goes from one endpoint to the other.

How to: Draw Cardinal Splines

Describes cardinal splines and how to draw them.

How to: Draw a Single Bézier Spline

Describes a Bézier spline and how to draw one.

How to: Draw a Sequence of Bézier Splines

Explains how to draw several Bézier splines in sequence.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/constructing-and-drawing-curves.md

How to: Draw Cardinal Splines
11/3/2020 • 2 minutes to read • Edit Online

Drawing a Bell-Shaped Cardinal Spline

Point[] points = {
 new Point(0, 100),
 new Point(50, 80),
 new Point(100, 20),
 new Point(150, 80),
 new Point(200, 100)};

Pen pen = new Pen(Color.FromArgb(255, 0, 0, 255));
e.Graphics.DrawCurve(pen, points);

Dim points As Point() = { _
 New Point(0, 100), _
 New Point(50, 80), _
 New Point(100, 20), _
 New Point(150, 80), _
 New Point(200, 100)}

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))
e.Graphics.DrawCurve(pen, points)

Drawing a Closed Cardinal Spline

A cardinal spline is a curve that passes smoothly through a given set of points. To draw a cardinal spline, create a

Graphics object and pass the address of an array of points to the DrawCurve method.

The following example draws a bell-shaped cardinal spline that passes through five designated points.

The following illustration shows the curve and five points.

Use the DrawClosedCurve method of the Graphics class to draw a closed cardinal spline. In a closed cardinal

spline, the curve continues through the last point in the array and connects with the first point in the array.

The following example draws a closed cardinal spline that passes through six designated points. The

following illustration shows the closed spline along with the six points:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-cardinal-splines.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawclosedcurve
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Point[] points = {
 new Point(60, 60),
 new Point(150, 80),
 new Point(200, 40),
 new Point(180, 120),
 new Point(120, 100),
 new Point(80, 160)};

Pen pen = new Pen(Color.FromArgb(255, 0, 0, 255));
e.Graphics.DrawClosedCurve(pen, points);

Dim points As Point() = { _
 New Point(60, 60), _
 New Point(150, 80), _
 New Point(200, 40), _
 New Point(180, 120), _
 New Point(120, 100), _
 New Point(80, 160)}

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))
e.Graphics.DrawClosedCurve(pen, points)

Changing the Bend of a Cardinal Spline

Point[] points = {
 new Point(20, 50),
 new Point(100, 10),
 new Point(200, 100),
 new Point(300, 50),
 new Point(400, 80)};

Pen pen = new Pen(Color.FromArgb(255, 0, 0, 255));
e.Graphics.DrawCurve(pen, points, 0.0f);
e.Graphics.DrawCurve(pen, points, 0.6f);
e.Graphics.DrawCurve(pen, points, 1.0f);

Change the way a cardinal spline bends by passing a tension argument to the DrawCurve method. The

following example draws three cardinal splines that pass through the same set of points. The following

illustration shows the three splines along with their tension values. Note that when the tension is 0, the

points are connected by straight lines.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawcurve

Dim points As Point() = { _
 New Point(20, 50), _
 New Point(100, 10), _
 New Point(200, 100), _
 New Point(300, 50), _
 New Point(400, 80)}

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))
e.Graphics.DrawCurve(pen, points, 0.0F)
e.Graphics.DrawCurve(pen, points, 0.6F)
e.Graphics.DrawCurve(pen, points, 1.0F)

Compiling the Code

See also

The preceding examples are designed for use with Windows Forms, and they require PaintEventArgs e , which

is a parameter of the Paint event handler.

Lines, Curves, and Shapes

Constructing and Drawing Curves

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Draw a Single Bézier Spline
11/3/2020 • 2 minutes to read • Edit Online

Example

Point p1 = new Point(10, 100); // Start point
Point c1 = new Point(100, 10); // First control point
Point c2 = new Point(150, 150); // Second control point
Point p2 = new Point(200, 100); // Endpoint

Pen pen = new Pen(Color.FromArgb(255, 0, 0, 255));
e.Graphics.DrawBezier(pen, p1, c1, c2, p2);

Dim p1 As New Point(10, 100) ' Start point
Dim c1 As New Point(100, 10) ' First control point
Dim c2 As New Point(150, 150) ' Second control point
Dim p2 As New Point(200, 100) ' Endpoint

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))
e.Graphics.DrawBezier(pen, p1, c1, c2, p2)

Compiling the Code

See also

A Bézier spline is defined by four points: a start point, two control points, and an endpoint.

The following example draws a Bézier spline with start point (10, 100) and endpoint (200, 100). The control

points are (100, 10) and (150, 150).

The following illustration shows the resulting Bézier spline along with its start point, control points, and

endpoint. The illustration also shows the spline's convex hull, which is a polygon formed by connecting the four

points with straight lines.

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

DrawBezier

Bézier Splines in GDI+

How to: Draw a Sequence of Bézier Splines

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-single-bezier-spline.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawbezier

How to: Draw a Sequence of Bézier Splines
11/3/2020 • 2 minutes to read • Edit Online

Example

Point[] p = {
 new Point(10, 100), // start point of first spline
 new Point(75, 10), // first control point of first spline
 new Point(80, 50), // second control point of first spline

 new Point(100, 150), // endpoint of first spline and
 // start point of second spline

 new Point(125, 80), // first control point of second spline
 new Point(175, 200), // second control point of second spline
 new Point(200, 80)}; // endpoint of second spline

Pen pen = new Pen(Color.Blue);
e.Graphics.DrawBeziers(pen, p);

You can use the DrawBeziers method of the Graphics class to draw a sequence of connected Bézier splines.

The following example draws a curve that consists of two connected Bézier splines. The endpoint of the first

Bézier spline is the start point of the second Bézier spline.

The following illustration shows the connected splines along with the seven points:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-draw-a-sequence-of-bezier-splines.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawbeziers
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

' Point(10, 100) = start point of first spline
' Point(75, 10) = first control point of first spline
' Point(80, 50) = second control point of first spline

' Point(100, 150) = endpoint of first spline and start point of second spline

' Point(125, 80) = first control point of second spline
' Point(175, 200) = second control point of second spline
' Point(200, 80)} = endpoint of second spline
Dim p As Point() = { _
 New Point(10, 100), _
 New Point(75, 10), _
 New Point(80, 50), _
 New Point(100, 150), _
 New Point(125, 80), _
 New Point(175, 200), _
 New Point(200, 80)}

Dim pen As New Pen(Color.Blue)
e.Graphics.DrawBeziers(pen, p)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Graphics and Drawing in Windows Forms

Bézier Splines in GDI+

Constructing and Drawing Curves

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

Constructing and Drawing Paths
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

A path is a sequence of graphics primitives (lines, rectangles, curves, text, and the like) that can be manipulated

and drawn as a single unit. A path can be divided into figures that are either open or closed. A figure can contain

several primitives.

You can draw a path by calling the DrawPath method of the Graphics class, and you can fill a path by calling the

FillPath method of the Graphics class.

How to: Create Figures from Lines, Curves, and Shapes

Shows how to use a GraphicsPath to create figures.

How to: Fill Open Figures

Explains how to fill a GraphicsPath.

How to: Flatten a Curved Path into a Line

Shows how to flatten a GraphicsPath.

GraphicsPath

Describes this class and contains links to all of its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/constructing-and-drawing-paths.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath

How to: Create Figures from Lines, Curves, and
Shapes
11/3/2020 • 2 minutes to read • Edit Online

Example

GraphicsPath path = new GraphicsPath();
path.AddArc(175, 50, 50, 50, 0, -180);
e.Graphics.DrawPath(new Pen(Color.FromArgb(128, 255, 0, 0), 4), path);

Dim path As New GraphicsPath()
path.AddArc(175, 50, 50, 50, 0, -180)
e.Graphics.DrawPath(New Pen(Color.FromArgb(128, 255, 0, 0), 4), path)

 // Create an array of points for the curve in the second figure.
 Point[] points = {
new Point(40, 60),
new Point(50, 70),
new Point(30, 90)};

 GraphicsPath path = new GraphicsPath();

 path.StartFigure(); // Start the first figure.
 path.AddArc(175, 50, 50, 50, 0, -180);
 path.AddLine(100, 0, 250, 20);
 // First figure is not closed.

 path.StartFigure(); // Start the second figure.
 path.AddLine(50, 20, 5, 90);
 path.AddCurve(points, 3);
 path.AddLine(50, 150, 150, 180);
 path.CloseFigure(); // Second figure is closed.

 e.Graphics.DrawPath(new Pen(Color.FromArgb(255, 255, 0, 0), 2), path);

To create a figure, construct a GraphicsPath, and then call methods, such as AddLine and AddCurve, to add

primitives to the path.

The following code examples create paths that have figures:

The first example creates a path that has a single figure. The figure consists of a single arc. The arc has a

sweep angle of –180 degrees, which is counterclockwise in the default coordinate system.

The second example creates a path that has two figures. The first figure is an arc followed by a line. The

second figure is a line followed by a curve followed by a line. The first figure is left open, and the second

figure is closed.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-figures-from-lines-curves-and-shapes.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.addcurve

' Create an array of points for the curve in the second figure.
Dim points As Point() = { _
 New Point(40, 60), _
 New Point(50, 70), _
 New Point(30, 90)}

Dim path As New GraphicsPath()

path.StartFigure() ' Start the first figure.
path.AddArc(175, 50, 50, 50, 0, -180)
path.AddLine(100, 0, 250, 20)
' First figure is not closed.

path.StartFigure() ' Start the second figure.
path.AddLine(50, 20, 5, 90)
path.AddCurve(points, 3)
path.AddLine(50, 150, 150, 180)
path.CloseFigure() ' Second figure is closed.
e.Graphics.DrawPath(New Pen(Color.FromArgb(255, 255, 0, 0), 2), path)

Compiling the Code

See also

The previous examples are designed for use with Windows Forms, and they require PaintEventArgs e , which is

a parameter of the Paint event handler.

GraphicsPath

Constructing and Drawing Paths

Using a Pen to Draw Lines and Shapes

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath

How to: Fill Open Figures
11/3/2020 • 2 minutes to read • Edit Online

Example

GraphicsPath path = new GraphicsPath();

// Add an open figure.
path.AddArc(0, 0, 150, 120, 30, 120);

// Add an intrinsically closed figure.
path.AddEllipse(50, 50, 50, 100);

Pen pen = new Pen(Color.FromArgb(128, 0, 0, 255), 5);
SolidBrush brush = new SolidBrush(Color.Red);

// The fill mode is FillMode.Alternate by default.
e.Graphics.FillPath(brush, path);
e.Graphics.DrawPath(pen, path);

Dim path As New GraphicsPath()

' Add an open figure.
path.AddArc(0, 0, 150, 120, 30, 120)

' Add an intrinsically closed figure.
path.AddEllipse(50, 50, 50, 100)

Dim pen As New Pen(Color.FromArgb(128, 0, 0, 255), 5)
Dim brush As New SolidBrush(Color.Red)

' The fill mode is FillMode.Alternate by default.
e.Graphics.FillPath(brush, path)
e.Graphics.DrawPath(pen, path)

Compiling the Code

You can fill a path by passing a GraphicsPath object to the FillPath method. The FillPath method fills the path

according to the fill mode (alternate or winding) currently set for the path. If the path has any open figures, the

path is filled as if those figures were closed. GDI+ closes a figure by drawing a straight line from its ending point

to its starting point.

The following example creates a path that has one open figure (an arc) and one closed figure (an ellipse). The

FillPath method fills the path according to the default fill mode, which is Alternate.

The following illustration shows the output of the example code. Note that the path is filled (according to

Alternate) as if the open figure were closed by a straight line from its ending point to its starting point.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-fill-open-figures.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.fillpath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.fillmode#system_drawing_drawing2d_fillmode_alternate
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.fillmode#system_drawing_drawing2d_fillmode_alternate

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

GraphicsPath

Graphics Paths in GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath

How to: Flatten a Curved Path into a Line
11/3/2020 • 2 minutes to read • Edit Online

To Flatten a Path

See also

A GraphicsPath object stores a sequence of lines and Bézier splines. You can add several types of curves (ellipses,

arcs, cardinal splines) to a path, but each curve is converted to a Bézier spline before it is stored in the path.

Flattening a path consists of converting each Bézier spline in the path to a sequence of straight lines. The

following illustration shows a path before and after flattening.

call the Flatten method of a GraphicsPath object. The Flatten method receives a flatness argument that

specifies the maximum distance between the flattened path and the original path.

System.Drawing.Drawing2D.GraphicsPath

Lines, Curves, and Shapes

Constructing and Drawing Paths

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-flatten-a-curved-path-into-a-line.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.flatten
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath.flatten
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.graphicspath

Using Transformations in Managed GDI+
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Affine transformations include rotating, scaling, reflecting, shearing, and translating. In GDI+, the Matrix class

provides the foundation for performing affine transformations on vector drawings, images, and text.

Using the World Transformation

Describes how to scale and rotate graphics using a world transformation matrix.

Why Transformation Order Is Significant

Demonstrates why the order of transform operations is important.

Matrix

Describes this class and contains links to all of its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-transformations-in-managed-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix

Using the World Transformation
11/3/2020 • 2 minutes to read • Edit Online

Different Types of Transformations

Rectangle rect = new Rectangle(0, 0, 50, 50);
Pen pen = new Pen(Color.FromArgb(128, 200, 0, 200), 2);
e.Graphics.DrawRectangle(pen, rect);

Dim rect As New Rectangle(0, 0, 50, 50)
Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)
e.Graphics.DrawRectangle(pen, rect)

e.Graphics.ScaleTransform(1.75f, 0.5f);
e.Graphics.DrawRectangle(pen, rect);

e.Graphics.ScaleTransform(1.75F, 0.5F)
e.Graphics.DrawRectangle(pen, rect)

e.Graphics.ResetTransform();
e.Graphics.RotateTransform(28); // 28 degrees
e.Graphics.DrawRectangle(pen, rect);

e.Graphics.ResetTransform()
e.Graphics.RotateTransform(28) ' 28 degrees
e.Graphics.DrawRectangle(pen, rect)

The world transformation is a property of the Graphics class. The numbers that specify the world transformation

are stored in a Matrix object, which represents a 3×3 matrix. The Matrix and Graphics classes have several

methods for setting the numbers in the world transformation matrix.

In the following example, the code first creates a 50×50 rectangle and locates it at the origin (0, 0). The origin is

at the upper-left corner of the client area.

The following code applies a scaling transformation that expands the rectangle by a factor of 1.75 in the x

direction and shrinks the rectangle by a factor of 0.5 in the y direction:

The result is a rectangle that is longer in the x direction and shorter in the y direction than the original.

To rotate the rectangle instead of scaling it, use the following code:

To translate the rectangle, use the following code:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-the-world-transformation.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

e.Graphics.ResetTransform();
e.Graphics.TranslateTransform(150, 150);
e.Graphics.DrawRectangle(pen, rect);

e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(150, 150)
e.Graphics.DrawRectangle(pen, rect)

See also
Matrix

Coordinate Systems and Transformations

Using Transformations in Managed GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix

Why Transformation Order Is Significant
11/3/2020 • 3 minutes to read • Edit Online

Composite Transform Examples

Rectangle rect = new Rectangle(0, 0, 50, 50);
Pen pen = new Pen(Color.FromArgb(128, 200, 0, 200), 2);
e.Graphics.ResetTransform();
e.Graphics.ScaleTransform(1.75f, 0.5f);
e.Graphics.RotateTransform(28, MatrixOrder.Append);
e.Graphics.TranslateTransform(150, 150, MatrixOrder.Append);
e.Graphics.DrawRectangle(pen, rect);

Dim rect As New Rectangle(0, 0, 50, 50)
Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)
e.Graphics.ResetTransform()
e.Graphics.ScaleTransform(1.75F, 0.5F)
e.Graphics.RotateTransform(28, MatrixOrder.Append)
e.Graphics.TranslateTransform(150, 150, MatrixOrder.Append)
e.Graphics.DrawRectangle(pen, rect)

A single Matrix object can store a single transformation or a sequence of transformations. The latter is called a

composite transformation. The matrix of a composite transformation is obtained by multiplying the matrices of

individual transformations.

In a composite transformation, the order of individual transformations is important. For example, if you first

rotate, then scale, then translate, you get a different result than if you first translate, then rotate, then scale. In

GDI+, composite transformations are built from left to right. If S, R, and T are scale, rotation, and translation

matrices respectively, then the product SRT (in that order) is the matrix of the composite transformation that first

scales, then rotates, then translates. The matrix produced by the product SRT is different from the matrix

produced by the product TRS.

One reason order is significant is that transformations like rotation and scaling are done with respect to the

origin of the coordinate system. Scaling an object that is centered at the origin produces a different result than

scaling an object that has been moved away from the origin. Similarly, rotating an object that is centered at the

origin produces a different result than rotating an object that has been moved away from the origin.

The following example combines scaling, rotation and translation (in that order) to form a composite

transformation. The argument Append passed to the RotateTransform method indicates that the rotation will

follow the scaling. Likewise, the argument Append passed to the TranslateTransform method indicates that the

translation will follow the rotation. Append and Prepend are members of the MatrixOrder enumeration.

The following example makes the same method calls as the preceding example, but the order of the calls is

reversed. The resulting order of operations is first translate, then rotate, then scale, which produces a very

different result than first scale, then rotate, then translate.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/why-transformation-order-is-significant.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrixorder#system_drawing_drawing2d_matrixorder_append
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.rotatetransform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrixorder#system_drawing_drawing2d_matrixorder_append
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.translatetransform
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrixorder#system_drawing_drawing2d_matrixorder_append
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrixorder#system_drawing_drawing2d_matrixorder_prepend
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrixorder

Rectangle rect = new Rectangle(0, 0, 50, 50);
Pen pen = new Pen(Color.FromArgb(128, 200, 0, 200), 2);
e.Graphics.ResetTransform();
e.Graphics.TranslateTransform(150, 150, MatrixOrder.Append);
e.Graphics.RotateTransform(28, MatrixOrder.Append);
e.Graphics.ScaleTransform(1.75f, 0.5f);
e.Graphics.DrawRectangle(pen, rect);

Dim rect As New Rectangle(0, 0, 50, 50)
Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(150, 150, MatrixOrder.Append)
e.Graphics.RotateTransform(28, MatrixOrder.Append)
e.Graphics.ScaleTransform(1.75F, 0.5F)
e.Graphics.DrawRectangle(pen, rect)

Rectangle rect = new Rectangle(0, 0, 50, 50);
Pen pen = new Pen(Color.FromArgb(128, 200, 0, 200), 2);
e.Graphics.ResetTransform();
e.Graphics.TranslateTransform(150, 150, MatrixOrder.Prepend);
e.Graphics.RotateTransform(28, MatrixOrder.Prepend);
e.Graphics.ScaleTransform(1.75f, 0.5f);
e.Graphics.DrawRectangle(pen, rect);

Dim rect As New Rectangle(0, 0, 50, 50)
Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(150, 150, MatrixOrder.Prepend)
e.Graphics.RotateTransform(28, MatrixOrder.Prepend)
e.Graphics.ScaleTransform(1.75F, 0.5F)
e.Graphics.DrawRectangle(pen, rect)

See also

One way to reverse the order of individual transformations in a composite transformation is to reverse the

order of a sequence of method calls. A second way to control the order of operations is to change the matrix

order argument. The following example is the same as the preceding example, except that Append has been

changed to Prepend. The matrix multiplication is done in the order SRT, where S, R, and T are the matrices for

scale, rotate, and translate, respectively. The order of the composite transformation is first scale, then rotate, then

translate.

The result of the immediately preceding example is the same as the result of the first example in this topic. This

is because we reversed both the order of the method calls and the order of the matrix multiplication.

Matrix

Coordinate Systems and Transformations

Using Transformations in Managed GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrixorder#system_drawing_drawing2d_matrixorder_append
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrixorder#system_drawing_drawing2d_matrixorder_prepend
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.matrix

Using Graphics Containers
11/3/2020 • 2 minutes to read • Edit Online

In This Section

A Graphics object provides methods such as DrawLine, DrawImage, and DrawString for displaying vector

images, raster images, and text. A Graphics object also has several properties that influence the quality and

orientation of the items that are drawn. For example, the smoothing mode property determines whether

antialiasing is applied to lines and curves, and the world transformation property influences the position and

rotation of the items that are drawn.

A Graphics object is associated with a particular display device. When you use a Graphics object to draw in a

window, the Graphics object is also associated with that particular window.

A Graphics object can be thought of as a container because it holds a set of properties that influence drawing

and it is linked to device-specific information. You can create a secondary container within an existing Graphics

object by calling the BeginContainer method of that Graphics object.

Managing the State of a Graphics Object

Describes how manage the quality settings, clipping area and transformations of a Graphics object.

Using Nested Graphics Containers

Shows how to use containers to control the state of the Graphics object.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-graphics-containers.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.begincontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Managing the State of a Graphics Object
11/3/2020 • 3 minutes to read • Edit Online

Dim graphics As Graphics = e.Graphics
Dim pen As New Pen(Color.Blue) ' Opaque blue
graphics.DrawRectangle(pen, 10, 10, 200, 100)

Graphics graphics = e.Graphics;
Pen pen = new Pen(Color.Blue); // Opaque blue
graphics.DrawRectangle(pen, 10, 10, 200, 100);

Graphics State

Quality Settings

Dim graphics As Graphics = e.Graphics
Dim pen As New Pen(Color.Blue)

graphics.SmoothingMode = SmoothingMode.AntiAlias
graphics.DrawEllipse(pen, 0, 0, 200, 100)
graphics.SmoothingMode = SmoothingMode.HighSpeed
graphics.DrawEllipse(pen, 0, 150, 200, 100)

The Graphics class is at the heart of GDI+. To draw anything, you obtain a Graphics object, set its properties, and

call its methods DrawLine, DrawImage, DrawString, and the like).

The following example calls the DrawRectangle method of a Graphics object. The first argument passed to the

DrawRectangle method is a Pen object.

A Graphics object does more than provide drawing methods, such as DrawLine and DrawRectangle. A Graphics

object also maintains graphics state, which can be divided into the following categories:

Quality settings

Transformations

Clipping region

A Graphics object has several properties that influence the quality of the items that are drawn. For example, you

can set the TextRenderingHint property to specify the type of antialiasing (if any) applied to text. Other

properties that influence quality are SmoothingMode, CompositingMode, CompositingQuality, and

InterpolationMode.

The following example draws two ellipses, one with the smoothing mode set to AntiAlias and one with the

smoothing mode set to HighSpeed:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/managing-the-state-of-a-graphics-object.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.textrenderinghint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.smoothingmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.compositingmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.compositingquality
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.interpolationmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_antialias
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_highspeed

Graphics graphics = e.Graphics;
Pen pen = new Pen(Color.Blue);

graphics.SmoothingMode = SmoothingMode.AntiAlias;
graphics.DrawEllipse(pen, 0, 0, 200, 100);
graphics.SmoothingMode = SmoothingMode.HighSpeed;
graphics.DrawEllipse(pen, 0, 150, 200, 100);

Transformations

Dim graphics As Graphics = e.Graphics
Dim pen As New Pen(Color.Red)

graphics.ResetTransform()
graphics.RotateTransform(30) ' world transformation
graphics.DrawEllipse(pen, 0, 0, 100, 50)
graphics.PageUnit = GraphicsUnit.Millimeter ' page transformation
graphics.DrawEllipse(pen, 0, 0, 100, 50)

Graphics graphics = e.Graphics;
Pen pen = new Pen(Color.Red);

graphics.ResetTransform();
graphics.RotateTransform(30); // world transformation
graphics.DrawEllipse(pen, 0, 0, 100, 50);
graphics.PageUnit = GraphicsUnit.Millimeter; // page transformation
graphics.DrawEllipse(pen, 0, 0, 100, 50);

Clipping Region

A Graphics object maintains two transformations (world and page) that are applied to all items drawn by that

Graphics object. Any affine transformation can be stored in the world transformation. Affine transformations

include scaling, rotating, reflecting, skewing, and translating. The page transformation can be used for scaling

and for changing units (for example, pixels to inches). For more information, see Coordinate Systems and

Transformations.

The following example sets the world and page transformations of a Graphics object. The world transformation

is set to a 30-degree rotation. The page transformation is set so that the coordinates passed to the second

DrawEllipse will be treated as millimeters instead of pixels. The code makes two identical calls to the DrawEllipse

method. The world transformation is applied to the first DrawEllipse call, and both transformations (world and

page) are applied to the second DrawEllipse call.

The following illustration shows the two ellipses. Note that the 30-degree rotation is about the origin of the

coordinate system (upper-left corner of the client area), not about the centers of the ellipses. Also note that the

pen width of 1 means 1 pixel for the first ellipse and 1 millimeter for the second ellipse.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawellipse

Dim graphics As Graphics = e.Graphics

' Opaque red, width 5
Dim pen As New Pen(Color.Red, 5)

' Opaque aqua
Dim brush As New SolidBrush(Color.FromArgb(255, 180, 255, 255))

' Create a plus-shaped region by forming the union of two rectangles.
Dim [region] As New [Region](New Rectangle(50, 0, 50, 150))
[region].Union(New Rectangle(0, 50, 150, 50))
graphics.FillRegion(brush, [region])

' Set the clipping region.
graphics.SetClip([region], CombineMode.Replace)

' Draw two clipped lines.
graphics.DrawLine(pen, 0, 30, 150, 160)
graphics.DrawLine(pen, 40, 20, 190, 150)

Graphics graphics = e.Graphics;

// Opaque red, width 5
Pen pen = new Pen(Color.Red, 5);

// Opaque aqua
SolidBrush brush = new SolidBrush(Color.FromArgb(255, 180, 255, 255));

// Create a plus-shaped region by forming the union of two rectangles.
Region region = new Region(new Rectangle(50, 0, 50, 150));
region.Union(new Rectangle(0, 50, 150, 50));
graphics.FillRegion(brush, region);

// Set the clipping region.
graphics.SetClip(region, CombineMode.Replace);

// Draw two clipped lines.
graphics.DrawLine(pen, 0, 30, 150, 160);
graphics.DrawLine(pen, 40, 20, 190, 150);

See also

A Graphics object maintains a clipping region that applies to all items drawn by that Graphics object. You can set

the clipping region by calling the SetClip method.

The following example creates a plus-shaped region by forming the union of two rectangles. That region is

designated as the clipping region of a Graphics object. Then the code draws two lines that are restricted to the

interior of the clipping region.

The following illustration shows the clipped lines:

Graphics and Drawing in Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.setclip
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Using Nested Graphics Containers

Using Nested Graphics Containers
11/3/2020 • 5 minutes to read • Edit Online

Transformations in Nested Containers

Graphics graphics = e.Graphics;
Pen pen = new Pen(Color.Red);
GraphicsContainer graphicsContainer;
graphics.FillRectangle(Brushes.Black, 100, 80, 3, 3);

graphics.TranslateTransform(100, 80);

graphicsContainer = graphics.BeginContainer();
graphics.RotateTransform(30);
graphics.DrawRectangle(pen, -60, -30, 120, 60);
graphics.EndContainer(graphicsContainer);

graphics.DrawRectangle(pen, -60, -30, 120, 60);

Dim graphics As Graphics = e.Graphics
Dim pen As New Pen(Color.Red)
Dim graphicsContainer As GraphicsContainer
graphics.FillRectangle(Brushes.Black, 100, 80, 3, 3)

graphics.TranslateTransform(100, 80)

graphicsContainer = graphics.BeginContainer()
graphics.RotateTransform(30)
graphics.DrawRectangle(pen, -60, -30, 120, 60)
graphics.EndContainer(graphicsContainer)

graphics.DrawRectangle(pen, -60, -30, 120, 60)

GDI+ provides containers that you can use to temporarily replace or augment part of the state in a Graphics

object. You create a container by calling the BeginContainer method of a Graphics object. You can call

BeginContainer repeatedly to form nested containers. Each call to BeginContainer must be paired with a call to

EndContainer.

The following example creates a Graphics object and a container within that Graphics object. The world

transformation of the Graphics object is a translation 100 units in the x direction and 80 units in the y direction.

The world transformation of the container is a 30-degree rotation. The code makes the call

DrawRectangle(pen, -60, -30, 120, 60) twice. The first call to DrawRectangle is inside the container ; that is, the

call is in between the calls to BeginContainer and EndContainer. The second call to DrawRectangle is after the

call to EndContainer.

In the preceding code, the rectangle drawn from inside the container is transformed first by the world

transformation of the container (rotation) and then by the world transformation of the Graphics object

(translation). The rectangle drawn from outside the container is transformed only by the world transformation

of the Graphics object (translation). The following illustration shows the two rectangles:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-nested-graphics-containers.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.begincontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.begincontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.begincontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.endcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.begincontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.endcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.endcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Clipping in Nested Containers

Graphics graphics = e.Graphics;
GraphicsContainer graphicsContainer;
Pen redPen = new Pen(Color.Red, 2);
Pen bluePen = new Pen(Color.Blue, 2);
SolidBrush aquaBrush = new SolidBrush(Color.FromArgb(255, 180, 255, 255));
SolidBrush greenBrush = new SolidBrush(Color.FromArgb(255, 150, 250, 130));

graphics.SetClip(new Rectangle(50, 65, 150, 120));
graphics.FillRectangle(aquaBrush, 50, 65, 150, 120);

graphicsContainer = graphics.BeginContainer();
// Create a path that consists of a single ellipse.
GraphicsPath path = new GraphicsPath();
path.AddEllipse(75, 50, 100, 150);

// Construct a region based on the path.
Region region = new Region(path);
graphics.FillRegion(greenBrush, region);

graphics.SetClip(region, CombineMode.Replace);
graphics.DrawLine(redPen, 50, 0, 350, 300);
graphics.EndContainer(graphicsContainer);

graphics.DrawLine(bluePen, 70, 0, 370, 300);

The following example demonstrates how nested containers handle clipping regions. The code creates a

Graphics object and a container within that Graphics object. The clipping region of the Graphics object is a

rectangle, and the clipping region of the container is an ellipse. The code makes two calls to the DrawLine

method. The first call to DrawLine is inside the container, and the second call to DrawLine is outside the

container (after the call to EndContainer). The first line is clipped by the intersection of the two clipping regions.

The second line is clipped only by the rectangular clipping region of the Graphics object.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawline
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.endcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Dim graphics As Graphics = e.Graphics
Dim graphicsContainer As GraphicsContainer
Dim redPen As New Pen(Color.Red, 2)
Dim bluePen As New Pen(Color.Blue, 2)
Dim aquaBrush As New SolidBrush(Color.FromArgb(255, 180, 255, 255))
Dim greenBrush As New SolidBrush(Color.FromArgb(255, 150, 250, 130))

graphics.SetClip(New Rectangle(50, 65, 150, 120))
graphics.FillRectangle(aquaBrush, 50, 65, 150, 120)

graphicsContainer = graphics.BeginContainer()
' Create a path that consists of a single ellipse.
Dim path As New GraphicsPath()
path.AddEllipse(75, 50, 100, 150)

' Construct a region based on the path.
Dim [region] As New [Region](path)
graphics.FillRegion(greenBrush, [region])

graphics.SetClip([region], CombineMode.Replace)
graphics.DrawLine(redPen, 50, 0, 350, 300)
graphics.EndContainer(graphicsContainer)

graphics.DrawLine(bluePen, 70, 0, 370, 300)

Quality Settings in Nested Containers

Several Layers of Nested Containers

The following illustration shows the two clipped lines:

As the two preceding examples show, transformations and clipping regions are cumulative in nested containers.

If you set the world transformations of the container and the Graphics object, both transformations will apply to

items drawn from inside the container. The transformation of the container will be applied first, and the

transformation of the Graphics object will be applied second. If you set the clipping regions of the container and

the Graphics object, items drawn from inside the container will be clipped by the intersection of the two clipping

regions.

Quality settings (SmoothingMode, TextRenderingHint, and the like) in nested containers are not cumulative;

rather, the quality settings of the container temporarily replace the quality settings of a Graphics object. When

you create a new container, the quality settings for that container are set to default values. For example, suppose

you have a Graphics object with a smoothing mode of AntiAlias. When you create a container, the smoothing

mode inside the container is the default smoothing mode. You are free to set the smoothing mode of the

container, and any items drawn from inside the container will be drawn according to the mode you set. Items

drawn after the call to EndContainer will be drawn according to the smoothing mode (AntiAlias) that was in

place before the call to BeginContainer.

You are not limited to one container in a Graphics object. You can create a sequence of containers, each nested in

the preceding, and you can specify the world transformation, clipping region, and quality settings of each of

those nested containers. If you call a drawing method from inside the innermost container, the transformations

will be applied in order, starting with the innermost container and ending with the outermost container. Items

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.smoothingmode
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.textrenderinghint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_antialias
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.endcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_antialias
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.begincontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Graphics graphics = e.Graphics;
GraphicsContainer innerContainer;
GraphicsContainer outerContainer;
SolidBrush brush = new SolidBrush(Color.Blue);
FontFamily fontFamily = new FontFamily("Times New Roman");
Font font = new Font(fontFamily, 36, FontStyle.Regular, GraphicsUnit.Pixel);

graphics.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAlias;

outerContainer = graphics.BeginContainer();

graphics.TextRenderingHint = System.Drawing.Text.TextRenderingHint.SingleBitPerPixel;

innerContainer = graphics.BeginContainer();
graphics.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAlias;
graphics.DrawString(
 "Inner Container",
 font,
 brush,
 new PointF(20, 10));
graphics.EndContainer(innerContainer);

graphics.DrawString(
 "Outer Container",
 font,
 brush,
 new PointF(20, 50));

graphics.EndContainer(outerContainer);

graphics.DrawString(
 "Graphics Object",
 font,
 brush,
 new PointF(20, 90));

drawn from inside the innermost container will be clipped by the intersection of all the clipping regions.

The following example creates a Graphics object and sets its text rendering hint to AntiAlias. The code creates

two containers, one nested within the other. The text rendering hint of the outer container is set to

SingleBitPerPixel, and the text rendering hint of the inner container is set to AntiAlias. The code draws three

strings: one from the inner container, one from the outer container, and one from the Graphics object itself.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_antialias
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.textrenderinghint#system_drawing_text_textrenderinghint_singlebitperpixel
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d.smoothingmode#system_drawing_drawing2d_smoothingmode_antialias
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Dim graphics As Graphics = e.Graphics
Dim innerContainer As GraphicsContainer
Dim outerContainer As GraphicsContainer
Dim brush As New SolidBrush(Color.Blue)
Dim fontFamily As New FontFamily("Times New Roman")
Dim font As New Font(_
 fontFamily, _
 36, _
 FontStyle.Regular, _
 GraphicsUnit.Pixel)

graphics.TextRenderingHint = _
System.Drawing.Text.TextRenderingHint.AntiAlias

outerContainer = graphics.BeginContainer()

graphics.TextRenderingHint = _
 System.Drawing.Text.TextRenderingHint.SingleBitPerPixel

innerContainer = graphics.BeginContainer()
graphics.TextRenderingHint = _
 System.Drawing.Text.TextRenderingHint.AntiAlias
graphics.DrawString(_
 "Inner Container", _
 font, _
 brush, _
 New PointF(20, 10))
graphics.EndContainer(innerContainer)

graphics.DrawString("Outer Container", font, brush, New PointF(20, 50))

graphics.EndContainer(outerContainer)

graphics.DrawString("Graphics Object", font, brush, New PointF(20, 90))

See also

The following illustration shows the three strings. The strings drawn from the inner container and from the

Graphics object are smoothed by antialiasing. The string drawn from the outer container is not smoothed by

antialiasing because the TextRenderingHint property is set to SingleBitPerPixel.

Graphics

Managing the State of a Graphics Object

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.textrenderinghint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.text.textrenderinghint#system_drawing_text_textrenderinghint_singlebitperpixel
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Using Regions
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

The GDI+ Region class allows you to define a custom shape. The shape can be made up of lines, polygons, and

curves.

Two common uses for regions are hit testing and clipping. Hit testing is determining whether the mouse was

clicked in a certain region of the screen. Clipping is restricting drawing to a certain region.

How to: Use Hit Testing with a Region

Shows how to use a Region to perform a hit test.

How to: Use Clipping with a Region

Explains how to set the clipping region for a Graphics object.

Region

Describes this class and contains links to all of its members.

Graphics

Describes this class and contains links to all of its members.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-regions.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

How to: Use Hit Testing with a Region
11/3/2020 • 2 minutes to read • Edit Online

Example

Point point = new Point(60, 10);

// Assume that the variable "point" contains the location of the
// most recent mouse click.
// To simulate a hit, assign (60, 10) to point.
// To simulate a miss, assign (0, 0) to point.

SolidBrush solidBrush = new SolidBrush(Color.Black);
Region region1 = new Region(new Rectangle(50, 0, 50, 150));
Region region2 = new Region(new Rectangle(0, 50, 150, 50));

// Create a plus-shaped region by forming the union of region1 and
// region2.
// The union replaces region1.
region1.Union(region2);

if (region1.IsVisible(point, e.Graphics))
{
 // The point is in the region. Use an opaque brush.
 solidBrush.Color = Color.FromArgb(255, 255, 0, 0);
}
else
{
 // The point is not in the region. Use a semitransparent brush.
 solidBrush.Color = Color.FromArgb(64, 255, 0, 0);
}

e.Graphics.FillRegion(solidBrush, region1);

The purpose of hit testing is to determine whether the cursor is over a given object, such as an icon or a button.

The following example creates a plus-shaped region by forming the union of two rectangular regions. Assume

that the variable point holds the location of the most recent click. The code checks to see whether point is in

the plus-shaped region. If the point is in the region (a hit), the region is filled with an opaque red brush.

Otherwise, the region is filled with a semitransparent red brush.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-hit-testing-with-a-region.md

Dim point As New Point(60, 10)

' Assume that the variable "point" contains the location of the
' most recent mouse click.
' To simulate a hit, assign (60, 10) to point.
' To simulate a miss, assign (0, 0) to point.

Dim solidBrush As New SolidBrush(Color.Black)
Dim region1 As New [Region](New Rectangle(50, 0, 50, 150))
Dim region2 As New [Region](New Rectangle(0, 50, 150, 50))

' Create a plus-shaped region by forming the union of region1 and region2.
' The union replaces region1.
region1.Union(region2)

If region1.IsVisible(point, e.Graphics) Then
 ' The point is in the region. Use an opaque brush.
 solidBrush.Color = Color.FromArgb(255, 255, 0, 0)
Else
 ' The point is not in the region. Use a semitransparent brush.
 solidBrush.Color = Color.FromArgb(64, 255, 0, 0)
End If

e.Graphics.FillRegion(solidBrush, region1)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

Region

Regions in GDI+

How to: Use Clipping with a Region

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region

How to: Use Clipping with a Region
11/3/2020 • 2 minutes to read • Edit Online

Example

One of the properties of the Graphics class is the clip region. All drawing done by a given Graphics object is

restricted to the clip region of that Graphics object. You can set the clip region by calling the SetClip method.

The following example constructs a path that consists of a single polygon. Then the code constructs a region,

based on that path. The region is passed to the SetClip method of a Graphics object, and then two strings are

drawn.

The following illustration shows the clipped strings:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-clipping-with-a-region.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.setclip
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.setclip
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

 // Create a path that consists of a single polygon.
 Point[] polyPoints = {
new Point(10, 10),
new Point(150, 10),
new Point(100, 75),
new Point(100, 150)};
 GraphicsPath path = new GraphicsPath();
 path.AddPolygon(polyPoints);

 // Construct a region based on the path.
 Region region = new Region(path);

 // Draw the outline of the region.
 Pen pen = Pens.Black;
 e.Graphics.DrawPath(pen, path);

 // Set the clipping region of the Graphics object.
 e.Graphics.SetClip(region, CombineMode.Replace);

 // Draw some clipped strings.
 FontFamily fontFamily = new FontFamily("Arial");
 Font font = new Font(
 fontFamily,
 36, FontStyle.Bold,
 GraphicsUnit.Pixel);
 SolidBrush solidBrush = new SolidBrush(Color.FromArgb(255, 255, 0, 0));

 e.Graphics.DrawString(
 "A Clipping Region",
 font, solidBrush,
 new PointF(15, 25));

 e.Graphics.DrawString(
 "A Clipping Region",
 font,
 solidBrush,
 new PointF(15, 68));

' Create a path that consists of a single polygon.
Dim polyPoints As Point() = { _
 New Point(10, 10), _
 New Point(150, 10), _
 New Point(100, 75), _
 New Point(100, 150)}
Dim path As New GraphicsPath()
path.AddPolygon(polyPoints)

' Construct a region based on the path.
Dim [region] As New [Region](path)

' Draw the outline of the region.
Dim pen As Pen = Pens.Black
e.Graphics.DrawPath(pen, path)

' Set the clipping region of the Graphics object.
e.Graphics.SetClip([region], CombineMode.Replace)

' Draw some clipped strings.
Dim fontFamily As New FontFamily("Arial")
Dim font As New Font(_
 fontFamily, _
 36, _
 FontStyle.Bold, _
 GraphicsUnit.Pixel)
Dim solidBrush As New SolidBrush(Color.FromArgb(255, 255, 0, 0))

e.Graphics.DrawString(_
 "A Clipping Region", _
 font, _
 solidBrush, _
 New PointF(15, 25))

e.Graphics.DrawString(_
 "A Clipping Region", _
 font, _
 solidBrush, _
 New PointF(15, 68))

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of PaintEventHandler.

Regions in GDI+

Using Regions

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

Recoloring Images
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

Recoloring is the process of adjusting image colors. Some examples of recoloring are changing one color to

another, adjusting a color's intensity relative to another color, adjusting the brightness or contrast of all colors,

and converting colors to shades of gray.

How to: Use a Color Matrix to Transform a Single Color

Discusses using a color matrix to transform a color.

How to: Translate Image Colors

Shows how to translate colors using a color matrix.

Using Transformations to Scale Colors

Explains how to scale colors using a color matrix.

How to: Rotate Colors

Describes how to rotate a color using a color matrix.

How to: Shear Colors

Defines shearing and explains how to shear colors using a color matrix.

How to: Use a Color Remap Table

Defines remapping and shows how to use a color remap table.

ColorMatrix

Describes this class and contains links to all of its members.

ColorMap

Describes this class and contains links to all of its members.

Images, Bitmaps, and Metafiles

Provides a list of topics regarding the different types of images.

Working with Images, Bitmaps, Icons, and Metafiles

Contains a list of topics that show how to use different types of images.

Using Managed Graphics Classes

Contains a list of topics describing how to use managed graphics classes.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/recoloring-images.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap

How to: Use a Color Matrix to Transform a Single
Color
11/3/2020 • 3 minutes to read • Edit Online

GDI+ provides the Image and Bitmap classes for storing and manipulating images. Image and Bitmap objects

store the color of each pixel as a 32-bit number: 8 bits each for red, green, blue, and alpha. Each of the four

components is a number from 0 through 255, with 0 representing no intensity and 255 representing full

intensity. The alpha component specifies the transparency of the color : 0 is fully transparent, and 255 is fully

opaque.

A color vector is a 4-tuple of the form (red, green, blue, alpha). For example, the color vector (0, 255, 0, 255)

represents an opaque color that has no red or blue, but has green at full intensity.

Another convention for representing colors uses the number 1 for full intensity. Using that convention, the color

described in the preceding paragraph would be represented by the vector (0, 1, 0, 1). GDI+ uses the convention

of 1 as full intensity when it performs color transformations.

You can apply linear transformations (rotation, scaling, and the like) to color vectors by multiplying the color

vectors by a 4×4 matrix. However, you cannot use a 4×4 matrix to perform a translation (nonlinear). If you add a

dummy fifth coordinate (for example, the number 1) to each of the color vectors, you can use a 5×5 matrix to

apply any combination of linear transformations and translations. A transformation consisting of a linear

transformation followed by a translation is called an affine transformation.

For example, suppose you want to start with the color (0.2, 0.0, 0.4, 1.0) and apply the following transformations:

1. Double the red component

2. Add 0.2 to the red, green, and blue components

The following matrix multiplication will perform the pair of transformations in the order listed.

The elements of a color matrix are indexed (zero-based) by row and then column. For example, the entry in the

fifth row and third column of matrix M is denoted by M[4][2].

The 5×5 identity matrix (shown in the following illustration) has 1s on the diagonal and 0s everywhere else. If

you multiply a color vector by the identity matrix, the color vector does not change. A convenient way to form

the matrix of a color transformation is to start with the identity matrix and make a small change that produces

the desired transformation.

For a more detailed discussion of matrices and transformations, see Coordinate Systems and Transformations.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-a-color-matrix-to-transform-a-single-color.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

Example

Image image = new Bitmap("InputColor.bmp");
ImageAttributes imageAttributes = new ImageAttributes();
int width = image.Width;
int height = image.Height;

float[][] colorMatrixElements = {
 new float[] {2, 0, 0, 0, 0}, // red scaling factor of 2
 new float[] {0, 1, 0, 0, 0}, // green scaling factor of 1
 new float[] {0, 0, 1, 0, 0}, // blue scaling factor of 1
 new float[] {0, 0, 0, 1, 0}, // alpha scaling factor of 1
 new float[] {.2f, .2f, .2f, 0, 1}}; // three translations of 0.2

ColorMatrix colorMatrix = new ColorMatrix(colorMatrixElements);

imageAttributes.SetColorMatrix(
 colorMatrix,
 ColorMatrixFlag.Default,
 ColorAdjustType.Bitmap);

e.Graphics.DrawImage(image, 10, 10);

e.Graphics.DrawImage(
 image,
 new Rectangle(120, 10, width, height), // destination rectangle
 0, 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 imageAttributes);

The following example takes an image that is all one color (0.2, 0.0, 0.4, 1.0) and applies the transformation

described in the preceding paragraphs.

The following illustration shows the original image on the left and the transformed image on the right.

The code in the following example uses the following steps to perform the recoloring:

1. Initialize a ColorMatrix object.

2. Create an ImageAttributes object and pass the ColorMatrix object to the SetColorMatrix method of the

ImageAttributes object.

3. Pass the ImageAttributes object to the DrawImage method of a Graphics object.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes.setcolormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Dim image As New Bitmap("InputColor.bmp")
Dim imageAttributes As New ImageAttributes()
Dim width As Integer = image.Width
Dim height As Integer = image.Height

' The following matrix consists of the following transformations:
' red scaling factor of 2
' green scaling factor of 1
' blue scaling factor of 1
' alpha scaling factor of 1
' three translations of 0.2
Dim colorMatrixElements As Single()() = { _
 New Single() {2, 0, 0, 0, 0}, _
 New Single() {0, 1, 0, 0, 0}, _
 New Single() {0, 0, 1, 0, 0}, _
 New Single() {0, 0, 0, 1, 0}, _
 New Single() {0.2F, 0.2F, 0.2F, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(colorMatrix, ColorMatrixFlag.Default, ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10)

e.Graphics.DrawImage(_
 image, _
 New Rectangle(120, 10, width, height), _
 0, _
 0, _
 width, _
 height, _
 GraphicsUnit.Pixel, _
 imageAttributes)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Recoloring Images

Coordinate Systems and Transformations

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

How to: Translate Image Colors
11/3/2020 • 2 minutes to read • Edit Online

C O M P O N EN T TO B E T RA N SL AT ED M AT RIX EN T RY

Red [4][0]

Green [4][1]

Blue [4][2]

Alpha [4][3]

Example

O RIGIN A L T RA N SL AT ED

Black (0, 0, 0, 1) (0.75, 0, 0, 1)

Red (1, 0, 0, 1) (1, 0, 0, 1)

Green (0, 1, 0, 1) (0.75, 1, 0, 1)

Blue (0, 0, 1, 1) (0.75, 0, 1, 1)

A translation adds a value to one or more of the four color components. The color matrix entries that represent

translations are given in the following table.

The following example constructs an Image object from the file ColorBars.bmp. Then the code adds 0.75 to the

red component of each pixel in the image. The original image is drawn alongside the transformed image.

The following illustration shows the original image on the left and the transformed image on the right:

The following table lists the color vectors for the four bars before and after the red translation. Note that

because the maximum value for a color component is 1, the red component in the second row does not change.

(Similarly, the minimum value for a color component is 0.)

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-translate-image-colors.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image

Image image = new Bitmap("ColorBars.bmp");
ImageAttributes imageAttributes = new ImageAttributes();
int width = image.Width;
int height = image.Height;

float[][] colorMatrixElements = {
 new float[] {1, 0, 0, 0, 0},
 new float[] {0, 1, 0, 0, 0},
 new float[] {0, 0, 1, 0, 0},
 new float[] {0, 0, 0, 1, 0},
 new float[] {.75f, 0, 0, 0, 1}};

ColorMatrix colorMatrix = new ColorMatrix(colorMatrixElements);

imageAttributes.SetColorMatrix(
 colorMatrix,
 ColorMatrixFlag.Default,
 ColorAdjustType.Bitmap);

e.Graphics.DrawImage(image, 10, 10, width, height);

e.Graphics.DrawImage(
 image,
 new Rectangle(150, 10, width, height), // destination rectangle
 0, 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 imageAttributes);

Dim image As New Bitmap("ColorBars.bmp")
Dim imageAttributes As New ImageAttributes()
Dim width As Integer = image.Width
Dim height As Integer = image.Height

Dim colorMatrixElements As Single()() = { _
 New Single() {1, 0, 0, 0, 0}, _
 New Single() {0, 1, 0, 0, 0}, _
 New Single() {0, 0, 1, 0, 0}, _
 New Single() {0, 0, 0, 1, 0}, _
 New Single() {0.75F, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(_
 colorMatrix, _
 ColorMatrixFlag.Default, _
 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle (2nd argument), the upper-left corner
' (3rd and 4th arguments), width (5th argument), and height (6th
' argument) of the source rectangle.
e.Graphics.DrawImage(_
 image, _
 New Rectangle(150, 10, width, height), _
 0, 0, _
 width, _
 height, _
 GraphicsUnit.Pixel, _
 imageAttributes)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. Replace ColorBars.bmp with an image file name and path that are valid on

your system.

ColorMatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes

Using Transformations to Scale Colors
11/3/2020 • 4 minutes to read • Edit Online

C O M P O N EN T TO B E SC A L ED M AT RIX EN T RY

Red [0][0]

Green [1][1]

Blue [2][2]

Alpha [3][3]

Scaling One Color

Image image = new Bitmap("ColorBars2.bmp");
ImageAttributes imageAttributes = new ImageAttributes();
int width = image.Width;
int height = image.Height;

float[][] colorMatrixElements = {
 new float[] {1, 0, 0, 0, 0},
 new float[] {0, 1, 0, 0, 0},
 new float[] {0, 0, 2, 0, 0},
 new float[] {0, 0, 0, 1, 0},
 new float[] {0, 0, 0, 0, 1}};

ColorMatrix colorMatrix = new ColorMatrix(colorMatrixElements);

imageAttributes.SetColorMatrix(
 colorMatrix,
 ColorMatrixFlag.Default,
 ColorAdjustType.Bitmap);

e.Graphics.DrawImage(image, 10, 10, width, height);

e.Graphics.DrawImage(
 image,
 new Rectangle(150, 10, width, height), // destination rectangle
 0, 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 imageAttributes);

A scaling transformation multiplies one or more of the four color components by a number. The color matrix

entries that represent scaling are given in the following table.

The following example constructs an Image object from the file ColorBars2.bmp. Then the code scales the blue

component of each pixel in the image by a factor of 2. The original image is drawn alongside the transformed

image.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-transformations-to-scale-colors.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image

Dim image As New Bitmap("ColorBars2.bmp")
Dim imageAttributes As New ImageAttributes()
Dim width As Integer = image.Width
Dim height As Integer = image.Height

Dim colorMatrixElements As Single()() = { _
 New Single() {1, 0, 0, 0, 0}, _
 New Single() {0, 1, 0, 0, 0}, _
 New Single() {0, 0, 2, 0, 0}, _
 New Single() {0, 0, 0, 1, 0}, _
 New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(_
 colorMatrix, _
 ColorMatrixFlag.Default, _
 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle (2nd argument), the upper-left corner
' (3rd and 4th arguments), width (5th argument), and height (6th
' argument) of the source rectangle.
e.Graphics.DrawImage(_
 image, _
 New Rectangle(150, 10, width, height), _
 0, 0, _
 width, _
 height, _
 GraphicsUnit.Pixel, _
 imageAttributes)

O RIGIN A L SC A L ED

(0.4, 0.4, 0.4, 1) (0.4, 0.4, 0.8, 1)

(0.4, 0.2, 0.2, 1) (0.4, 0.2, 0.4, 1)

(0.2, 0.4, 0.2, 1) (0.2, 0.4, 0.4, 1)

(0.4, 0.4, 0.8, 1) (0.4, 0.4, 0.6, 1)

Scaling Multiple Colors

The following illustration shows the original image on the left and the scaled image on the right:

The following table lists the color vectors for the four bars before and after the blue scaling. Note that the blue

component in the fourth color bar went from 0.8 to 0.6. That is because GDI+ retains only the fractional part of

the result. For example, (2)(0.8) = 1.6, and the fractional part of 1.6 is 0.6. Retaining only the fractional part

ensures that the result is always in the interval [0, 1].

The following example constructs an Image object from the file ColorBars2.bmp. Then the code scales the red,

green, and blue components of each pixel in the image. The red components are scaled down 25 percent, the

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image

Image image = new Bitmap("ColorBars.bmp");
ImageAttributes imageAttributes = new ImageAttributes();
int width = image.Width;
int height = image.Height;

float[][] colorMatrixElements = {
 new float[] {.75F, 0, 0, 0, 0},
 new float[] {0, .65F, 0, 0, 0},
 new float[] {0, 0, .5F, 0, 0},
 new float[] {0, 0, 0, 1F, 0},
 new float[] {0, 0, 0, 0, 1F}};

ColorMatrix colorMatrix = new ColorMatrix(colorMatrixElements);

imageAttributes.SetColorMatrix(
 colorMatrix,
 ColorMatrixFlag.Default,
 ColorAdjustType.Bitmap);

e.Graphics.DrawImage(image, 10, 10, width, height);

e.Graphics.DrawImage(
 image,
 new Rectangle(150, 10, width, height), // destination rectangle
 0, 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 imageAttributes);

Dim image As New Bitmap("ColorBars.bmp")
Dim imageAttributes As New ImageAttributes()
Dim width As Integer = image.Width
Dim height As Integer = image.Height

Dim colorMatrixElements As Single()() = { _
 New Single() {0.75F, 0, 0, 0, 0}, _
 New Single() {0, 0.65F, 0, 0, 0}, _
 New Single() {0, 0, 0.5F, 0, 0}, _
 New Single() {0, 0, 0, 1, 0}, _
 New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(_
 colorMatrix, _
 ColorMatrixFlag.Default, _
 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle, and the upper-left corner, width,
' and height of the source rectangle as in the previous example.
e.Graphics.DrawImage(_
 image, _
 New Rectangle(150, 10, width, height), _
 0, 0, _
 width, _
 height, _
 GraphicsUnit.Pixel, _
 imageAttributes)

green components are scaled down 35 percent, and the blue components are scaled down 50 percent.

O RIGIN A L SC A L ED

(0.6, 0.6, 0.6, 1) (0.45, 0.39, 0.3, 1)

(0, 1, 1, 1) (0, 0.65, 0.5, 1)

(1, 1, 0, 1) (0.75, 0.65, 0, 1)

(1, 0, 1, 1) (0.75, 0, 0.5, 1)

See also

The following illustration shows the original image on the left and the scaled image on the right:

The following table lists the color vectors for the four bars before and after the red, green and blue scaling.

ColorMatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes

How to: Rotate Colors
11/3/2020 • 2 minutes to read • Edit Online

Example

Rotation in a four-dimensional color space is difficult to visualize. We can make it easier to visualize rotation by

agreeing to keep one of the color components fixed. Suppose we agree to keep the alpha component fixed at 1

(fully opaque). Then we can visualize a three-dimensional color space with red, green, and blue axes as shown in

the following illustration.

A color can be thought of as a point in 3D space. For example, the point (1, 0, 0) in space represents the color

red, and the point (0, 1, 0) in space represents the color green.

The following illustration shows what it means to rotate the color (1, 0, 0) through an angle of 60 degrees in the

Red-Green plane. Rotation in a plane parallel to the Red-Green plane can be thought of as rotation about the

blue axis.

The following illustration shows how to initialize a color matrix to perform rotations about each of the three

coordinate axes (red, green, blue):

The following example takes an image that is all one color (1, 0, 0.6) and applies a 60-degree rotation about the

blue axis. The angle of the rotation is swept out in a plane that is parallel to the red-green plane.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-rotate-colors.md

private void RotateColors(PaintEventArgs e)
{
 Bitmap image = new Bitmap("RotationInput.bmp");
 ImageAttributes imageAttributes = new ImageAttributes();
 int width = image.Width;
 int height = image.Height;
 float degrees = 60f;
 double r = degrees * System.Math.PI / 180; // degrees to radians

 float[][] colorMatrixElements = {
 new float[] {(float)System.Math.Cos(r), (float)System.Math.Sin(r), 0, 0, 0},
 new float[] {(float)-System.Math.Sin(r), (float)-System.Math.Cos(r), 0, 0, 0},
 new float[] {0, 0, 2, 0, 0},
 new float[] {0, 0, 0, 1, 0},
 new float[] {0, 0, 0, 0, 1}};

 ColorMatrix colorMatrix = new ColorMatrix(colorMatrixElements);

 imageAttributes.SetColorMatrix(
 colorMatrix,
 ColorMatrixFlag.Default,
 ColorAdjustType.Bitmap);

 e.Graphics.DrawImage(image, 10, 10, width, height);

 e.Graphics.DrawImage(
 image,
 new Rectangle(150, 10, width, height), // destination rectangle
 0, 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 imageAttributes);
}

The following illustration shows the original image on the left and the color-rotated image on the right:

The following illustration shows a visualization of the color rotation performed in the following code:

Private Sub RotateColors(ByVal e As PaintEventArgs)
 Dim image As Bitmap = New Bitmap("RotationInput.bmp")
 Dim imageAttributes As New ImageAttributes()
 Dim width As Integer = image.Width
 Dim height As Integer = image.Height
 Dim degrees As Single = 60.0F
 Dim r As Double = degrees * System.Math.PI / 180 ' degrees to radians
 Dim colorMatrixElements As Single()() = { _
 New Single() {CSng(System.Math.Cos(r)), _
 CSng(System.Math.Sin(r)), 0, 0, 0}, _
 New Single() {CSng(-System.Math.Sin(r)), _
 CSng(-System.Math.Cos(r)), 0, 0, 0}, _
 New Single() {0, 0, 2, 0, 0}, _
 New Single() {0, 0, 0, 1, 0}, _
 New Single() {0, 0, 0, 0, 1}}

 Dim colorMatrix As New ColorMatrix(colorMatrixElements)

 imageAttributes.SetColorMatrix(_
 colorMatrix, _
 ColorMatrixFlag.Default, _
 ColorAdjustType.Bitmap)

 e.Graphics.DrawImage(image, 10, 10, width, height)

 ' Pass in the destination rectangle (2nd argument), the upper-left corner
 ' (3rd and 4th arguments), width (5th argument), and height (6th
 ' argument) of the source rectangle.
 e.Graphics.DrawImage(_
 image, _
 New Rectangle(150, 10, width, height), _
 0, 0, _
 width, _
 height, _
 GraphicsUnit.Pixel, _
 imageAttributes)
End Sub

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. Replace RotationInput.bmp with an image file name and path valid on

your system.

ColorMatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes

How to: Shear Colors
11/3/2020 • 2 minutes to read • Edit Online

Example

O RIGIN A L SH EA RED

(0, 0, 1, 1) (0.5, 0, 1, 1)

(0.5, 1, 0.5, 1) (0.75, 1, 0.5, 1)

(1, 1, 0, 1) (1, 1, 0, 1)

(0.4, 0.4, 0.4, 1) (0.6, 0.4, 0.4, 1)

Shearing increases or decreases a color component by an amount proportional to another color component. For

example, consider the transformation where the red component is increased by one half the value of the blue

component. Under such a transformation, the color (0.2, 0.5, 1) would become (0.7, 0.5, 1). The new red

component is 0.2 + (1/2)(1) = 0.7.

The following example constructs an Image object from the file ColorBars4.bmp. Then the code applies the

shearing transformation described in the preceding paragraph to each pixel in the image.

The following illustration shows the original image on the left and the sheared image on the right:

The following table lists the color vectors for the four bars before and after the shearing transformation.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-shear-colors.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image

Image image = new Bitmap("ColorBars.bmp");
ImageAttributes imageAttributes = new ImageAttributes();
int width = image.Width;
int height = image.Height;

float[][] colorMatrixElements = {
 new float[] {1, 0, 0, 0, 0},
 new float[] {0, 1, 0, 0, 0},
 new float[] {0.5f, 0, 1, 0, 0},
 new float[] {0, 0, 0, 1, 0},
 new float[] {0, 0, 0, 0, 1}};

ColorMatrix colorMatrix = new ColorMatrix(colorMatrixElements);

imageAttributes.SetColorMatrix(
 colorMatrix,
 ColorMatrixFlag.Default,
 ColorAdjustType.Bitmap);

e.Graphics.DrawImage(image, 10, 10, width, height);

e.Graphics.DrawImage(
 image,
 new Rectangle(150, 10, width, height), // destination rectangle
 0, 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 imageAttributes);

Dim image = New Bitmap("ColorBars.bmp")
Dim imageAttributes As New ImageAttributes()
Dim width As Integer = image.Width
Dim height As Integer = image.Height

Dim colorMatrixElements As Single()() = _
 {New Single() {1, 0, 0, 0, 0}, _
 New Single() {0, 1, 0, 0, 0}, _
 New Single() {0.5F, 0, 1, 0, 0}, _
 New Single() {0, 0, 0, 1, 0}, _
 New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(colorMatrix, ColorMatrixFlag.Default, _
 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

e.Graphics.DrawImage(image, New Rectangle(150, 10, width, height), 0, 0, _
 width, height, GraphicsUnit.Pixel, imageAttributes)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler. Replace ColorBars.bmp with an image name and path valid on your

system.

ColorMatrix

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes

How to: Use a Color Remap Table
11/3/2020 • 2 minutes to read • Edit Online

Example

Image image = new Bitmap("RemapInput.bmp");
ImageAttributes imageAttributes = new ImageAttributes();
int width = image.Width;
int height = image.Height;
ColorMap colorMap = new ColorMap();

colorMap.OldColor = Color.FromArgb(255, 255, 0, 0); // opaque red
colorMap.NewColor = Color.FromArgb(255, 0, 0, 255); // opaque blue

ColorMap[] remapTable = { colorMap };

imageAttributes.SetRemapTable(remapTable, ColorAdjustType.Bitmap);

e.Graphics.DrawImage(image, 10, 10, width, height);

e.Graphics.DrawImage(
 image,
 new Rectangle(150, 10, width, height), // destination rectangle
 0, 0, // upper-left corner of source rectangle
 width, // width of source rectangle
 height, // height of source rectangle
 GraphicsUnit.Pixel,
 imageAttributes);

Remapping is the process of converting the colors in an image according to a color remap table. The color

remap table is an array of ColorMap objects. Each ColorMap object in the array has an OldColor property and a

NewColor property.

When GDI+ draws an image, each pixel of the image is compared to the array of old colors. If a pixel's color

matches an old color, its color is changed to the corresponding new color. The colors are changed only for

rendering — the color values of the image itself (stored in an Image or Bitmap object) are not changed.

To draw a remapped image, initialize an array of ColorMap objects. Pass that array to the SetRemapTable

method of an ImageAttributes object, and then pass the ImageAttributes object to the DrawImage method of a

Graphics object.

The following example creates an Image object from the file RemapInput.bmp. The code creates a color remap

table that consists of a single ColorMap object. The OldColor property of the ColorRemap object is red, and the

NewColor property is blue. The image is drawn once without remapping and once with remapping. The

remapping process changes all the red pixels to blue.

The following illustration shows the original image on the left and the remapped image on the right.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-a-color-remap-table.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap.oldcolor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap.newcolor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes.setremaptable
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageattributes
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawimage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap.oldcolor
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.colormap.newcolor

Dim image As New Bitmap("RemapInput.bmp")
Dim imageAttributes As New ImageAttributes()
Dim width As Integer = image.Width
Dim height As Integer = image.Height
Dim colorMap As New ColorMap()

colorMap.OldColor = Color.FromArgb(255, 255, 0, 0) ' opaque red
colorMap.NewColor = Color.FromArgb(255, 0, 0, 255) ' opaque blue
Dim remapTable As ColorMap() = {colorMap}

imageAttributes.SetRemapTable(remapTable, ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle (2nd argument), the upper-left corner
' (3rd and 4th arguments), width (5th argument), and height (6th
' argument) of the source rectangle.
e.Graphics.DrawImage(_
 image, _
 New Rectangle(150, 10, width, height), _
 0, 0, _
 width, _
 height, _
 GraphicsUnit.Pixel, _
 imageAttributes)

Compiling the Code

See also

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

parameter of the Paint event handler.

Recoloring Images

Images, Bitmaps, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint

Using Image Encoders and Decoders in Managed
GDI+
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

The System.Drawing namespace provides the Image and Bitmap classes for storing and manipulating images.

By using image encoders in GDI+, you can write images from memory to disk. By using image decoders in

GDI+, you can load images from disk into memory. An encoder translates the data in an Image or Bitmap object

into a designated disk file format. A decoder translates the data in a disk file to the format required by the Image

and Bitmap objects.

GDI+ has built-in encoders and decoders that support the following file types:

BMP

GIF

JPEG

PNG

TIFF

GDI+ also has built-in decoders that support the following file types:

WMF

EMF

ICON

The following topics discuss encoders and decoders in more detail:

How to: List Installed Encoders

Describes how to list the encoders available on a computer.

How to: List Installed Decoders

Describes how to list the decoders available on a computer.

How to: Determine the Parameters Supported by an Encoder

Describes how to list the EncoderParameters supported by an encoder.

How to: Convert a BMP image to a PNG image

Describes how to save a image in a different image format.

How to: Set JPEG Compression Level

Describes how to change the quality level of an image.

Image

Bitmap

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-image-encoders-and-decoders-in-managed-gdi.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameters
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bitmap

Related Sections

ImageCodecInfo

EncoderParameter

Encoder

About GDI+ Managed Code

Images, Bitmaps, and Metafiles

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameter
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoder

How to: List Installed Encoders
11/3/2020 • 3 minutes to read • Edit Online

Example

You may want to list the image encoders available on a computer, to determine whether your application can

save to a particular image file format. The ImageCodecInfo class provides the GetImageEncoders static methods

so that you can determine which image encoders are available. GetImageEncoders returns an array of

ImageCodecInfo objects.

The following code example outputs the list of installed encoders and their property values.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-list-installed-encoders.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo.getimageencoders
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo.getimageencoders
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo

private void GetImageEncodersExample(PaintEventArgs e)
{
 // Get an array of available encoders.
 ImageCodecInfo[] myCodecs;
 myCodecs = ImageCodecInfo.GetImageEncoders();
 int numCodecs = myCodecs.GetLength(0);

 // Set up display variables.
 Color foreColor = Color.Black;
 Font font = new Font("Arial", 8);
 int i = 0;

 // Check to determine whether any codecs were found.
 if (numCodecs > 0)
 {
 // Set up an array to hold codec information. There are 9
 // information elements plus 1 space for each codec, so 10 times
 // the number of codecs found is allocated.
 string[] myCodecInfo = new string[numCodecs * 10];

 // Write all the codec information to the array.
 for (i = 0; i < numCodecs; i++)
 {
 myCodecInfo[i * 10] = "Codec Name = " + myCodecs[i].CodecName;
 myCodecInfo[(i * 10) + 1] = "Class ID = " +
 myCodecs[i].Clsid.ToString();
 myCodecInfo[(i * 10) + 2] = "DLL Name = " + myCodecs[i].DllName;
 myCodecInfo[(i * 10) + 3] = "Filename Ext. = " +
 myCodecs[i].FilenameExtension;
 myCodecInfo[(i * 10) + 4] = "Flags = " +
 myCodecs[i].Flags.ToString();
 myCodecInfo[(i * 10) + 5] = "Format Descrip. = " +
 myCodecs[i].FormatDescription;
 myCodecInfo[(i * 10) + 6] = "Format ID = " +
 myCodecs[i].FormatID.ToString();
 myCodecInfo[(i * 10) + 7] = "MimeType = " + myCodecs[i].MimeType;
 myCodecInfo[(i * 10) + 8] = "Version = " +
 myCodecs[i].Version.ToString();
 myCodecInfo[(i * 10) + 9] = " ";
 }
 int numMyCodecInfo = myCodecInfo.GetLength(0);

 // Render all of the information to the screen.
 int j = 20;
 for (i = 0; i < numMyCodecInfo; i++)
 {
 e.Graphics.DrawString(myCodecInfo[i],
 font,
 new SolidBrush(foreColor),
 20,
 j);
 j += 12;
 }
 }
 else
 e.Graphics.DrawString("No Codecs Found",
 font,
 new SolidBrush(foreColor),
 20,
 20);
}

Private Sub GetImageEncodersExample(ByVal e As PaintEventArgs)
 ' Get an array of available encoders.
 Dim myCodecs() As ImageCodecInfo
 myCodecs = ImageCodecInfo.GetImageEncoders()
 Dim numCodecs As Integer = myCodecs.GetLength(0)

 ' Set up display variables.
 Dim foreColor As Color = Color.Black
 Dim font As New Font("Arial", 8)
 Dim i As Integer = 0

 ' Check to determine whether any codecs were found.
 If numCodecs > 0 Then

 ' Set up an array to hold codec information. There are 9
 ' information elements plus 1 space for each codec, so 10 times
 ' the number of codecs found is allocated.
 Dim myCodecInfo(numCodecs * 10) As String

 ' Write all the codec information to the array.
 For i = 0 To numCodecs - 1
 myCodecInfo((i * 10)) = "Codec Name = " + myCodecs(i).CodecName
 myCodecInfo((i * 10 + 1)) = "Class ID = " + myCodecs(i).Clsid.ToString()
 myCodecInfo((i * 10 + 2)) = "DLL Name = " + myCodecs(i).DllName
 myCodecInfo((i * 10 + 3)) = "Filename Ext. = " + myCodecs(i).FilenameExtension
 myCodecInfo((i * 10 + 4)) = "Flags = " + myCodecs(i).Flags.ToString()
 myCodecInfo((i * 10 + 5)) = "Format Descrip. = " + myCodecs(i).FormatDescription
 myCodecInfo((i * 10 + 6)) = "Format ID = " + myCodecs(i).FormatID.ToString()
 myCodecInfo((i * 10 + 7)) = "MimeType = " + myCodecs(i).MimeType
 myCodecInfo((i * 10 + 8)) = "Version = " + myCodecs(i).Version.ToString()
 myCodecInfo((i * 10 + 9)) = " "
 Next i
 Dim numMyCodecInfo As Integer = myCodecInfo.GetLength(0)

 ' Render all of the information to the screen.
 Dim j As Integer = 20
 For i = 0 To numMyCodecInfo - 1
 e.Graphics.DrawString(myCodecInfo(i), _
 font, New SolidBrush(foreColor), 20, j)
 j += 12
 Next i
 Else
 e.Graphics.DrawString("No Codecs Found", _
 font, New SolidBrush(foreColor), 20, 20)
 End If

End Sub

Compiling the Code

See also

This example requires:

A Windows Forms application.

A PaintEventArgs, which is a parameter of PaintEventHandler.

How to: List Installed Decoders

Using Image Encoders and Decoders in Managed GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: List Installed Decoders
11/3/2020 • 3 minutes to read • Edit Online

Example

You may want to list the image decoders available on a computer, to determine whether your application can

read a particular image file format. The ImageCodecInfo class provides the GetImageDecoders static methods so

that you can determine which image decoders are available. GetImageDecoders returns an array of

ImageCodecInfo objects.

The following code example outputs the list of installed decoders and their property values.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-list-installed-decoders.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo.getimagedecoders
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo.getimagedecoders
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imagecodecinfo

private void GetImageDecodersExample(PaintEventArgs e)
{
 // Get an array of available decoders.
 ImageCodecInfo[] myCodecs;
 myCodecs = ImageCodecInfo.GetImageDecoders();
 int numCodecs = myCodecs.GetLength(0);

 // Set up display variables.
 Color foreColor = Color.Black;
 Font font = new Font("Arial", 8);
 int i = 0;

 // Check to determine whether any codecs were found.
 if (numCodecs > 0)
 {
 // Set up an array to hold codec information. There are 9
 // information elements plus 1 space for each codec, so 10 times
 // the number of codecs found is allocated.
 string[] myCodecInfo = new string[numCodecs * 10];

 // Write all the codec information to the array.
 for (i = 0; i < numCodecs; i++)
 {
 myCodecInfo[i * 10] = "Codec Name = " + myCodecs[i].CodecName;
 myCodecInfo[(i * 10) + 1] = "Class ID = " +
 myCodecs[i].Clsid.ToString();
 myCodecInfo[(i * 10) + 2] = "DLL Name = " + myCodecs[i].DllName;
 myCodecInfo[(i * 10) + 3] = "Filename Ext. = " +
 myCodecs[i].FilenameExtension;
 myCodecInfo[(i * 10) + 4] = "Flags = " +
 myCodecs[i].Flags.ToString();
 myCodecInfo[(i * 10) + 5] = "Format Descrip. = " +
 myCodecs[i].FormatDescription;
 myCodecInfo[(i * 10) + 6] = "Format ID = " +
 myCodecs[i].FormatID.ToString();
 myCodecInfo[(i * 10) + 7] = "MimeType = " + myCodecs[i].MimeType;
 myCodecInfo[(i * 10) + 8] = "Version = " +
 myCodecs[i].Version.ToString();
 myCodecInfo[(i * 10) + 9] = " ";
 }
 int numMyCodecInfo = myCodecInfo.GetLength(0);

 // Render all of the information to the screen.
 int j = 20;
 for (i = 0; i < numMyCodecInfo; i++)
 {
 e.Graphics.DrawString(myCodecInfo[i],
 font,
 new SolidBrush(foreColor),
 20,
 j);
 j += 12;
 }
 }
 else
 e.Graphics.DrawString("No Codecs Found",
 font,
 new SolidBrush(foreColor),
 20,
 20);
}

Private Sub GetImageDecodersExample(ByVal e As PaintEventArgs)
 ' Get an array of available decoders.
 Dim myCodecs() As ImageCodecInfo
 myCodecs = ImageCodecInfo.GetImageDecoders()
 Dim numCodecs As Integer = myCodecs.GetLength(0)

 ' Set up display variables.
 Dim foreColor As Color = Color.Black
 Dim font As New Font("Arial", 8)
 Dim i As Integer = 0

 ' Check to determine whether any codecs were found.
 If numCodecs > 0 Then
 ' Set up an array to hold codec information. There are 9
 ' information elements plus 1 space for each codec, so 10 times
 ' the number of codecs found is allocated.
 Dim myCodecInfo(numCodecs * 10) As String

 ' Write all the codec information to the array.
 For i = 0 To numCodecs - 1
 myCodecInfo((i * 10)) = "Codec Name = " + myCodecs(i).CodecName
 myCodecInfo((i * 10 + 1)) = "Class ID = " + myCodecs(i).Clsid.ToString()
 myCodecInfo((i * 10 + 2)) = "DLL Name = " + myCodecs(i).DllName
 myCodecInfo((i * 10 + 3)) = "Filename Ext. = " + myCodecs(i).FilenameExtension
 myCodecInfo((i * 10 + 4)) = "Flags = " + myCodecs(i).Flags.ToString()
 myCodecInfo((i * 10 + 5)) = "Format Descrip. = " + myCodecs(i).FormatDescription
 myCodecInfo((i * 10 + 6)) = "Format ID = " + myCodecs(i).FormatID.ToString()
 myCodecInfo((i * 10 + 7)) = "MimeType = " + myCodecs(i).MimeType
 myCodecInfo((i * 10 + 8)) = "Version = " + myCodecs(i).Version.ToString()
 myCodecInfo((i * 10 + 9)) = " "
 Next i
 Dim numMyCodecInfo As Integer = myCodecInfo.GetLength(0)

 ' Render all of the information to the screen.
 Dim j As Integer = 20
 For i = 0 To numMyCodecInfo - 1
 e.Graphics.DrawString(myCodecInfo(i), _
 font, New SolidBrush(foreColor), 20, j)
 j += 12
 Next i
 Else
 e.Graphics.DrawString("No Codecs Found", _
 font, New SolidBrush(foreColor), 20, 20)
 End If
End Sub

Compiling the Code

See also

This example requires:

A Windows Forms application.

A PaintEventArgs, which is a parameter of PaintEventHandler.

How to: List Installed Encoders

Using Image Encoders and Decoders in Managed GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Determine the Parameters Supported by
an Encoder
11/3/2020 • 2 minutes to read • Edit Online

Example

private void GetSupportedParameters(PaintEventArgs e)
{
 Bitmap bitmap1 = new Bitmap(1, 1);
 ImageCodecInfo jpgEncoder = GetEncoder(ImageFormat.Jpeg);
 EncoderParameters paramList = bitmap1.GetEncoderParameterList(jpgEncoder.Clsid);
 EncoderParameter[] encParams = paramList.Param;
 StringBuilder paramInfo = new StringBuilder();

 for (int i = 0; i < encParams.Length; i++)
 {
 paramInfo.Append("Param " + i + " holds " + encParams[i].NumberOfValues +
 " items of type " +
 encParams[i].ValueType + "\r\n" + "Guid category: " + encParams[i].Encoder.Guid + "\r\n");
 }
 e.Graphics.DrawString(paramInfo.ToString(), this.Font, Brushes.Red, 10.0F, 10.0F);
}

private ImageCodecInfo GetEncoder(ImageFormat format)
{
 ImageCodecInfo[] codecs = ImageCodecInfo.GetImageEncoders();

 foreach (ImageCodecInfo codec in codecs)
 {
 if (codec.FormatID == format.Guid)
 {
 return codec;
 }
 }

 return null;
}

You can adjust image parameters, such as quality and compression level, but you must know which parameters

are supported by a given image encoder. The Image class provides the GetEncoderParameterList method so that

you can determine which image parameters are supported for a particular encoder. You specify the encoder with

a GUID. The GetEncoderParameterList method returns an array of EncoderParameter objects.

The following example code outputs the supported parameters for the JPEG encoder. Use the list of parameter

categories and associated GUIDs in the Encoder class overview to determine the category for each parameter.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-determine-the-parameters-supported-by-an-encoder.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.getencoderparameterlist
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.getencoderparameterlist
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameter
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoder

Private Sub GetSupportedParameters(ByVal e As PaintEventArgs)
 Dim bitmap1 As New Bitmap(1, 1)
 Dim jpgEncoder As ImageCodecInfo = GetEncoder(ImageFormat.Jpeg)
 Dim paramList As EncoderParameters = _
 bitmap1.GetEncoderParameterList(jpgEncoder.Clsid)
 Dim encParams As EncoderParameter() = paramList.Param
 Dim paramInfo As New StringBuilder()

 Dim i As Integer
 For i = 0 To encParams.Length - 1
 paramInfo.Append("Param " & i & " holds " & _
 encParams(i).NumberOfValues & " items of type " & _
 encParams(i).Type.ToString() & vbCr & vbLf & "Guid category: " & _
 encParams(i).Encoder.Guid.ToString() & vbCr & vbLf)
 Next i

 e.Graphics.DrawString(paramInfo.ToString(), _
 Me.Font, Brushes.Red, 10.0F, 10.0F)
End Sub

Private Function GetEncoder(ByVal format As ImageFormat) As ImageCodecInfo

 Dim codecs As ImageCodecInfo() = ImageCodecInfo.GetImageEncoders()

 Dim codec As ImageCodecInfo
 For Each codec In codecs
 If codec.FormatID = format.Guid Then
 Return codec
 End If
 Next codec
 Return Nothing

End Function

Compiling the Code

See also

This example requires:

A Windows Forms application.

A PaintEventArgs, which is a parameter of PaintEventHandler.

How to: List Installed Encoders

Types of Bitmaps

Using Image Encoders and Decoders in Managed GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

How to: Convert a BMP image to a PNG image
11/3/2020 • 2 minutes to read • Edit Online

Example

private void SaveBmpAsPNG()
{
 Bitmap bmp1 = new Bitmap(typeof(Button), "Button.bmp");
 bmp1.Save(@"c:\button.png", ImageFormat.Png);
}

Private Sub SaveBmpAsPNG()
 Dim bmp1 As New Bitmap(GetType(Button), "Button.bmp")
 bmp1.Save("c:\button.png", ImageFormat.Png)

End Sub

Compiling the Code

See also

Oftentimes, you will want to convert from one image file format to another. You can do this conversion easily by

calling the Save method of the Image class and specifying the ImageFormat for the desired image file format.

The following example loads a BMP image from a type, and saves the image in the PNG format.

This example requires:

A Windows Forms application.

A reference to the System.Drawing.Imaging namespace.

How to: List Installed Encoders

Using Image Encoders and Decoders in Managed GDI+

Types of Bitmaps

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-convert-a-bmp-image-to-a-png-image.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.save
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.imageformat

How to: Set JPEG Compression Level
3/9/2021 • 2 minutes to read • Edit Online

Example

private void VaryQualityLevel()
 {
 // Get a bitmap. The using statement ensures objects
 // are automatically disposed from memory after use.
 using (Bitmap bmp1 = new Bitmap(@"C:\TestPhoto.jpg"))
 {
 ImageCodecInfo jpgEncoder = GetEncoder(ImageFormat.Jpeg);

 // Create an Encoder object based on the GUID
 // for the Quality parameter category.
 System.Drawing.Imaging.Encoder myEncoder =
 System.Drawing.Imaging.Encoder.Quality;

 // Create an EncoderParameters object.
 // An EncoderParameters object has an array of EncoderParameter
 // objects. In this case, there is only one
 // EncoderParameter object in the array.
 EncoderParameters myEncoderParameters = new EncoderParameters(1);

 EncoderParameter myEncoderParameter = new EncoderParameter(myEncoder, 50L);
 myEncoderParameters.Param[0] = myEncoderParameter;
 bmp1.Save(@"c:\TestPhotoQualityFifty.jpg", jpgEncoder, myEncoderParameters);

 myEncoderParameter = new EncoderParameter(myEncoder, 100L);
 myEncoderParameters.Param[0] = myEncoderParameter;
 bmp1.Save(@"C:\TestPhotoQualityHundred.jpg", jpgEncoder, myEncoderParameters);

 // Save the bitmap as a JPG file with zero quality level compression.
 myEncoderParameter = new EncoderParameter(myEncoder, 0L);
 myEncoderParameters.Param[0] = myEncoderParameter;
 bmp1.Save(@"C:\TestPhotoQualityZero.jpg", jpgEncoder, myEncoderParameters);
 }
 }

You may want to modify the parameters of an image when you save the image to disk to minimize the file size

or improve its quality. You can adjust the quality of a JPEG image by modifying its compression level. To specify

the compression level when you save a JPEG image, you must create an EncoderParameters object and pass it to

the Save method of the Image class. Initialize the EncoderParameters object so that it has an array that consists

of one EncoderParameter. When you create the EncoderParameter, specify the Quality encoder, and the desired

compression level.

The following example code creates an EncoderParameter object and saves three JPEG images. Each JPEG image

is saved with a different quality level, by modifying the long value passed to the EncoderParameter constructor.

A quality level of 0 corresponds to the greatest compression, and a quality level of 100 corresponds to the least

compression.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-set-jpeg-compression-level.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameters
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.save
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameters
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameter
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameter
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoder.quality
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameter
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.imaging.encoderparameter

Private Sub VaryQualityLevel()
 ' Get a bitmap. The Using statement ensures objects
 ' are automatically disposed from memory after use.
 Using bmp1 As New Bitmap("C:\test\TestPhoto.jpg")
 Dim jpgEncoder As ImageCodecInfo = GetEncoder(ImageFormat.Jpeg)

 ' Create an Encoder object based on the GUID
 ' for the Quality parameter category.
 Dim myEncoder As System.Drawing.Imaging.Encoder = System.Drawing.Imaging.Encoder.Quality

 ' Create an EncoderParameters object.
 ' An EncoderParameters object has an array of EncoderParameter
 ' objects. In this case, there is only one
 ' EncoderParameter object in the array.
 Dim myEncoderParameters As New EncoderParameters(1)

 Dim myEncoderParameter As New EncoderParameter(myEncoder, 50L)
 myEncoderParameters.Param(0) = myEncoderParameter
 bmp1.Save("c:\test\TestPhotoQualityFifty.jpg", jpgEncoder, myEncoderParameters)

 myEncoderParameter = New EncoderParameter(myEncoder, 100L)
 myEncoderParameters.Param(0) = myEncoderParameter
 bmp1.Save("C:\test\TestPhotoQualityHundred.jpg", jpgEncoder, myEncoderParameters)

 ' Save the bitmap as a JPG file with zero quality level compression.
 myEncoderParameter = New EncoderParameter(myEncoder, 0L)
 myEncoderParameters.Param(0) = myEncoderParameter
 bmp1.Save("C:\test\TestPhotoQualityZero.jpg", jpgEncoder, myEncoderParameters)
 End Using
End Sub

private ImageCodecInfo GetEncoder(ImageFormat format)
{
 ImageCodecInfo[] codecs = ImageCodecInfo.GetImageEncoders();
 foreach (ImageCodecInfo codec in codecs)
 {
 if (codec.FormatID == format.Guid)
 {
 return codec;
 }
 }
 return null;
}

Private Function GetEncoder(ByVal format As ImageFormat) As ImageCodecInfo

 Dim codecs As ImageCodecInfo() = ImageCodecInfo.GetImageEncoders()
 Dim codec As ImageCodecInfo
 For Each codec In codecs
 If codec.FormatID = format.Guid Then
 Return codec
 End If
 Next codec
 Return Nothing

End Function

Compiling the Code
This example requires:

A Windows Forms application.

See also

A PaintEventArgs, which is a parameter of PaintEventHandler.

An image file that is named TestPhoto.jpg and located at c:\ .

How to: Determine the Parameters Supported by an Encoder

Types of Bitmaps

Using Image Encoders and Decoders in Managed GDI+

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventhandler

Using Double Buffering
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

You can use double-buffered graphics to reduce flicker in your applications that contain complex painting

operations. The .NET Framework contains built-in support for double-buffering or you can manage and render

graphics manually.

Double Buffered Graphics

Introduces double buffering concept and outlines .NET Framework support.

How to: Reduce Graphics Flicker with Double Buffering for Forms and Controls

Demonstrates how to use the default double buffering support in the .NET Framework.

How to: Manually Manage Buffered Graphics

Shows how to manage double buffering in applications.

How to: Manually Render Buffered Graphics

Demonstrates how to render double-buffered graphics.

SetStyle Control method that enables double buffering.

BufferedGraphicsContext Provides methods for creating graphics buffers.

BufferedGraphicsManager

Provides access to the buffered graphics context for a application domain.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-double-buffering.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager

Double Buffered Graphics
11/3/2020 • 2 minutes to read • Edit Online

Default Double Buffering

Manually Managing Buffered Graphics

Manually Displaying Buffered Graphics

See also

Flicker is a common problem when programming graphics. Graphics operations that require multiple complex

painting operations can cause the rendered images to appear to flicker or have an otherwise unacceptable

appearance. To address these problems, the .NET Framework provides access to double buffering.

Double buffering uses a memory buffer to address the flicker problems associated with multiple paint

operations. When double buffering is enabled, all paint operations are first rendered to a memory buffer instead

of the drawing surface on the screen. After all paint operations are completed, the memory buffer is copied

directly to the drawing surface associated with it. Because only one graphics operation is performed on the

screen, the image flickering associated with complex painting operations is eliminated.

The easiest way to use double buffering in your applications is to use the default double buffering for forms and

controls that is provided by the .NET Framework. You can enable default double buffering for your Windows

Forms and authored Windows controls by setting the DoubleBuffered property to true or by using the SetStyle

method. For more information, see How to: Reduce Graphics Flicker with Double Buffering for Forms and

Controls.

For more advanced double buffering scenarios, such as animation or advanced memory management, you can

use the .NET Framework classes to implement your own double-buffering logic. The class responsible for

allocating and managing individual graphics buffers is the BufferedGraphicsContext class. Every application

domain has its own default BufferedGraphicsContext instance that manages all of the default double buffering

for that application. In most cases there will be only one application domain per application, so there is generally

one default BufferedGraphicsContext per application. Default BufferedGraphicsContext instances are managed

by the BufferedGraphicsManager class. You can retrieve a reference to the default BufferedGraphicsContext

instance by calling the Current. You can also create a dedicated BufferedGraphicsContext instance, which can

improve performance for graphically intensive applications. For information on how to create a

BufferedGraphicsContext instance, see How to: Manually Manage Buffered Graphics.

You can use an instance of the BufferedGraphicsContext class to create graphics buffers by calling the

BufferedGraphicsContext.Allocate, which returns an instance of the BufferedGraphics class. A BufferedGraphics

object manages a memory buffer that is associated with a rendering surface, such as a form or control.

After it is instantiated, the BufferedGraphics class manages rendering to an in-memory graphics buffer. You can

render graphics to the memory buffer through the Graphics, which exposes a Graphics object that directly

represents the memory buffer. You can paint to this Graphics object just as you would to a Graphics object that

represents a drawing surface. After all the graphics have been drawn to the buffer, you can use the

BufferedGraphics.Render to copy the contents of the buffer to the drawing surface on the screen.

For more information on using the BufferedGraphics class, see Manually Rendering Buffered Graphics. For more

information on rendering graphics, see Graphics and Drawing in Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/double-buffered-graphics.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doublebuffered
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager.current
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext.allocate
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics.render
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics

BufferedGraphics

BufferedGraphicsContext

BufferedGraphicsManager

How to: Manually Render Buffered Graphics

How to: Reduce Graphics Flicker with Double Buffering for Forms and Controls

How to: Manually Manage Buffered Graphics

Graphics and Drawing in Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager

How to: Reduce Graphics Flicker with Double
Buffering for Forms and Controls
11/3/2020 • 2 minutes to read • Edit Online

To reduce flicker

See also

Double buffering uses a memory buffer to address the flicker problems associated with multiple paint

operations. When double buffering is enabled, all paint operations are first rendered to a memory buffer instead

of the drawing surface on the screen. After all paint operations are completed, the memory buffer is copied

directly to the drawing surface associated with it. Because only one graphics operation is performed on the

screen, the image flickering associated with complex painting operations is eliminated.For most applications, the

default double buffering provided by the .NET Framework will provide the best results. Standard Windows

Forms controls are double buffered by default. You can enable default double buffering in your forms and

authored controls in two ways. You can either set the DoubleBuffered property to true , or you can call the

SetStyle method to set the OptimizedDoubleBuffer flag to true . Both methods will enable default double

buffering for your form or control and provide flicker-free graphics rendering. Calling the SetStyle method is

recommended only for custom controls for which you have written all the rendering code.

For more advanced double buffering scenarios, such as animation or advanced memory management, you can

implement your own double buffering logic. For more information, see How to: Manually Manage Buffered

Graphics.

DoubleBuffered = true;

DoubleBuffered = True

Set the DoubleBuffered property to true .

- or -

SetStyle(ControlStyles.OptimizedDoubleBuffer, true);

SetStyle(ControlStyles.OptimizedDoubleBuffer, True)

Call the SetStyle method to set the OptimizedDoubleBuffer flag to true .

DoubleBuffered

SetStyle

Double Buffered Graphics

Graphics and Drawing in Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-reduce-graphics-flicker-with-double-buffering-for-forms-and-controls.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doublebuffered
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.controlstyles#system_windows_forms_controlstyles_optimizeddoublebuffer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doublebuffered
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.controlstyles#system_windows_forms_controlstyles_optimizeddoublebuffer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doublebuffered
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle

How to: Manually Manage Buffered Graphics
11/3/2020 • 2 minutes to read • Edit Online

To obtain a reference to the default BufferedGraphicsContext

To create a dedicated BufferedGraphicsContext

For more advanced double buffering scenarios, you can use the .NET Framework classes to implement your own

double-buffering logic. The class responsible for allocating and managing individual graphics buffers is the

BufferedGraphicsContext class. Every application has its own default BufferedGraphicsContext that manages all

of the default double buffering for that application. You can retrieve a reference to this instance by calling the

Current.

BufferedGraphicsContext myContext;
myContext = BufferedGraphicsManager.Current;

Dim myContext As BufferedGraphicsContext
myContext = BufferedGraphicsManager.Current

NOTE

Set the Current property, as shown in the following code example.

You do not need to call the Dispose method on the BufferedGraphicsContext reference that you receive from

the BufferedGraphicsManager class. The BufferedGraphicsManager handles all of the memory allocation and

distribution for default BufferedGraphicsContext instances.

For graphically intensive applications such as animation, you can sometimes improve performance by

using a dedicated BufferedGraphicsContext instead of the BufferedGraphicsContext provided by the

BufferedGraphicsManager. This enables you to create and manage graphics buffers individually, without

incurring the performance overhead of managing all the other buffered graphics associated with your

application, though the memory consumed by the application will be greater.

BufferedGraphicsContext myContext;
myContext = new BufferedGraphicsContext();
// Insert code to create graphics here.
// On a non-default BufferedGraphicsContext instance, you should always
// call Dispose when finished.
myContext.Dispose();

Dim myContext As BufferedGraphicsContext
myContext = New BufferedGraphicsContext
' Insert code to create graphics here.
' On a nondefault BufferedGraphicsContext instance, you should always
' call Dispose when finished.
myContext.Dispose()

Declare and create a new instance of the BufferedGraphicsContext class, as shown in the following code

example.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-manually-manage-buffered-graphics.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager.current
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager.current
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicsmanager
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext

See also
BufferedGraphicsContext

Double Buffered Graphics

How to: Manually Render Buffered Graphics

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext

How to: Manually Render Buffered Graphics
11/3/2020 • 2 minutes to read • Edit Online

NOTE

To manually display buffered graphics

If you are managing your own buffered graphics, you will need to be able to create and render graphics buffers.

You can create instances of the BufferedGraphics class that is associated with drawing surfaces on your screen

by calling the Allocate method. This method creates a BufferedGraphics instance that is associated with a

particular rendering surface, such as a form or control. After you have created a BufferedGraphics instance, you

can draw graphics to the buffer it represents through the Graphics property. After you have performed all

graphics operations, you can copy the contents of the buffer to the screen by calling the Render method.

If you perform your own rendering, memory consumption will increase, though the increase may only be slight.

// This example assumes the existence of a form called Form1.
BufferedGraphicsContext currentContext;
BufferedGraphics myBuffer;
// Gets a reference to the current BufferedGraphicsContext
currentContext = BufferedGraphicsManager.Current;
// Creates a BufferedGraphics instance associated with Form1, and with
// dimensions the same size as the drawing surface of Form1.
myBuffer = currentContext.Allocate(this.CreateGraphics(),
 this.DisplayRectangle);

' This example assumes the existence of a form called Form1.
Dim currentContext As BufferedGraphicsContext
Dim myBuffer As BufferedGraphics
' Gets a reference to the current BufferedGraphicsContext.
currentContext = BufferedGraphicsManager.Current
' Creates a BufferedGraphics instance associated with Form1, and with
' dimensions the same size as the drawing surface of Form1.
myBuffer = currentContext.Allocate(Me.CreateGraphics, _
 Me.DisplayRectangle)

// Draws an ellipse to the graphics buffer.
myBuffer.Graphics.DrawEllipse(Pens.Blue, this.DisplayRectangle);

' Draws an ellipse to the graphics buffer.
myBuffer.Graphics.DrawEllipse(Pens.Blue, Me.DisplayRectangle)

1. Obtain a reference to an instance of the BufferedGraphicsContext class. For more information, see How

to: Manually Manage Buffered Graphics.

2. Create an instance of the BufferedGraphics class by calling the Allocate method, as shown in the

following code example.

3. Draw graphics to the graphics buffer by setting the Graphics property. For example:

4. When you have completed all of your drawing operations to the graphics buffer, call the Render method

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-manually-render-buffered-graphics.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext.allocate
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics.render
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext.allocate
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics.render

See also

// This example assumes the existence of a BufferedGraphics instance
// called myBuffer.
// Renders the contents of the buffer to the drawing surface associated
// with the buffer.
myBuffer.Render();
// Renders the contents of the buffer to the specified drawing surface.
myBuffer.Render(this.CreateGraphics());

' Renders the contents of the buffer to the drawing surface associated
' with the buffer.
myBuffer.Render()
' Renders the contents of the buffer to the specified drawing surface.
myBuffer.Render(Me.CreateGraphics)

myBuffer.Dispose();

myBuffer.Dispose()

to render the buffer, either to the drawing surface associated with that buffer, or to a specified drawing

surface, as shown in the following code example.

5. After you are finished rendering graphics, call the Dispose method on the BufferedGraphics instance to

free system resources.

BufferedGraphicsContext

BufferedGraphics

Double Buffered Graphics

How to: Manually Manage Buffered Graphics

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphicscontext
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.bufferedgraphics

Application Settings for Windows Forms
3/9/2021 • 2 minutes to read • Edit Online

In This Section

Related topics

See also

The Applications Settings feature of Windows Forms makes it easy to create, store, and maintain custom

application and user preferences on the client. With Application Settings, you can store not only application data

such as database connection strings, but also user-specific data, such as toolbar positions and most-recently

used lists.

Application Settings Overview

Discusses how to create and store settings data on behalf of your application and your users.

Application Settings Architecture

Describes how the Application Settings feature works, and explores advanced features of the architecture such

as grouped settings and settings keys.

Application Settings Attributes

Lists and describes the attributes that can be applied to an application settings wrapper class or its settings

properties.

Application Settings for Custom Controls

Discusses what must be done to give your custom controls the ability to persist application settings when

hosted in third-party applications.

How to: Create Application Settings

Demonstrates creating new application settings that are persisted between application sessions.

How to: Validate Application Settings

Demonstrates validating application settings before they are persisted.

Windows Forms Configuration Section Documents the settings to enable High DPI support in Windows Forms

Application starting with the .NET Framework 4.7.

Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/application-settings-for-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/winforms/index
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

Application Settings Overview
3/9/2021 • 4 minutes to read • Edit Online

What Are Application Settings

This article discusses how to create and store settings data on behalf of your application and your users.

The Application Settings feature of Windows Forms makes it easy to create, store, and maintain custom

application and user preferences on the client computer. With Windows Forms application settings, you can

store not only application data such as database connection strings, but also user-specific data, such as user

application preferences. Using Visual Studio or custom managed code, you can create new settings, read them

from and write them to disk, bind them to properties on your forms, and validate settings data prior to loading

and saving.

Application settings enables developers to save state in their application using very little custom code, and is a

replacement for dynamic properties in previous versions of the .NET Framework. Application settings contains

many improvements over dynamic properties, which are read-only, late-bound, and require more custom

programming. The dynamic property classes have been retained in .NET Framework 2.0, but they are just shell

classes that thinly wrap the application settings classes.

Your Windows Forms applications will often require data that's critical to running the application, but which you

don't want to include directly in the application's code. If your application uses a Web Service or a database

server, you may want to store this information in a separate file, so that you can change it in the future without

recompiling. Similarly, your applications may require storing data that is specific to the current user. Most

applications, for example, have user preferences that customize the application's appearance and behavior.

Application settings addresses both needs by providing an easy way to store both application-scoped and user-

scoped settings on the client computer. Using Visual Studio or a code editor, you define a setting for a given

property by specifying its name, data type, and scope (application or user). You can even place related settings

into named groups for easier use and readability. Once defined, these settings are persisted and read back into

memory automatically at run time. A pluggable architecture enables the persistence mechanism to be changed,

but by default, the local file system is used.

Application settings works by persisting data as XML to different configuration (.config) files, corresponding to

whether the setting is application-scoped or user-scoped. In most cases, the application-scoped settings are

read-only; because they are program information, you will typically not need to overwrite them. By contrast,

user-scoped settings can be read and written safely at run time, even if your application runs under partial trust.

For more information about partial trust, see Security in Windows Forms Overview.

Settings are stored as XML fragments in configuration files. Application-scoped settings are represented by the

<applicationSettings> element, and generally are placed in app.exe.config, where app is the name of your main

executable file. User-scoped settings are represented by the <userSettings> element and are placed in

user.config, where user is the user name of the person currently running the application. You must deploy the

app.exe.config file with your application; the settings architecture will create the user.config files on demand the

first time the application saves settings for that user. You can also define a <userSettings> block within

app.exe.config to provide default values for user-scoped settings.

Custom controls can also save their own settings by implementing the IPersistComponentSettings interface,

which exposes the SaveSettings method. The Windows Forms ToolStrip control implements this interface to save

the position of toolbars and toolbar items between application sessions. For more information about custom

controls and application settings, see Application Settings for Custom Controls.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/application-settings-overview.md
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/security-in-windows-forms-overview
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.savesettings
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip

Limitations of Application Settings

Getting Started with Application Settings

See also

You cannot use application settings in an unmanaged application that hosts the .NET Framework. Settings will

not work in such environments as Visual Studio add-ins, C++ for Microsoft Office, control hosting in Internet

Explorer, or Microsoft Outlook add-ins and projects.

You currently cannot bind to some properties in Windows Forms. The most notable example is the ClientSize

property, as binding to this property would cause unpredictable behavior at run time. You can usually work

around these issues by saving and loading these settings programmatically.

Application settings has no built-in facility for encrypting information automatically. You should never store

security-related information, such as database passwords, in clear text. If you want to store such sensitive

information, you as the application developer are responsible for making sure it is secure. If you want to store

connection strings, we recommend that you use Windows Integrated Security and not resort to hard-coding

passwords into the URL. For more information, see Code Access Security and ADO.NET.

If you use Visual Studio, you can define settings within the Windows Forms Designer using the

(ApplicationSettings) property in the Proper ties window. When you define settings this way, Visual Studio

automatically creates a custom managed wrapper class that associates each setting with a class property. Visual

Studio also takes care of binding the setting to a property on a form or control so that the control's settings are

restored automatically when its form is displayed, and saved automatically when the form is closed.

If you want more detailed control over your settings, you can define your own custom applications settings

wrapper class. This is accomplished by deriving a class from ApplicationSettingsBase, adding a property that

corresponds to each setting, and applying special attributes to these properties. For details about creating

wrapper classes, see Application Settings Architecture.

You can also use the Binding class to bind settings programmatically to properties on forms and controls.

ApplicationSettingsBase

SettingsProvider

LocalFileSettingsProvider

IPersistComponentSettings

How to: Validate Application Settings

Managing Application Settings (.NET)

How To: Read Settings at Run Time With C#

Using Application Settings and User Settings

Application Settings Architecture

Application Settings for Custom Controls

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.clientsize
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/code-access-security
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.binding
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings
https://docs.microsoft.com/en-us/visualstudio/ide/managing-application-settings-dotnet

Application Settings Architecture
3/9/2021 • 9 minutes to read • Edit Online

Defining Settings

This topic describes how the Application Settings architecture works, and explores advanced features of the

architecture, such as grouped settings and settings keys.

The application settings architecture supports defining strongly typed settings with either application or user

scope, and persisting the settings between application sessions. The architecture provides a default persistence

engine for saving settings to and loading them from the local file system. The architecture also defines interfaces

for supplying a custom persistence engine.

Interfaces are provided that enable custom components to persist their own settings when they are hosted in an

application. By using settings keys, components can keep settings for multiple instances of the component

separate.

The application settings architecture is used within both ASP.NET and Windows Forms, and it contains a number

of base classes that are shared across both environments. The most important is SettingsBase, which provides

access to settings through a collection, and provides low-level methods for loading and saving settings. Each

environment implements its own class derived from SettingsBase to provide additional settings functionality for

that environment. In a Windows Forms-based application, all application settings must be defined on a class

derived from the ApplicationSettingsBase class, which adds the following functionality to the base class:

Higher-level loading and saving operations

Support for user-scoped settings

Reverting a user's settings to the predefined defaults

Upgrading settings from a previous application version

Validating settings, either before they are changed or before they are saved

The settings can be described using a number of attributes defined within the System.Configuration namespace;

these are described in Application Settings Attributes. When you define a setting, you must apply it with either

ApplicationScopedSettingAttribute or UserScopedSettingAttribute, which describes whether the setting applies

to the entire application or just to the current user.

The following code example defines a custom settings class with a single setting, BackgroundColor .

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/application-settings-architecture.md
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.userscopedsettingattribute

using System;
using System.Configuration;
using System.Drawing;

public class MyUserSettings : ApplicationSettingsBase
{
 [UserScopedSetting()]
 [DefaultSettingValue("white")]
 public Color BackgroundColor
 {
 get
 {
 return ((Color)this["BackgroundColor"]);
 }
 set
 {
 this["BackgroundColor"] = (Color)value;
 }
 }
}

Imports System.Configuration

Public Class MyUserSettings
 Inherits ApplicationSettingsBase
 <UserScopedSetting()> _
 <DefaultSettingValue("white")> _
 Public Property BackgroundColor() As Color
 Get
 BackgroundColor = Me("BackgroundColor")
 End Get

 Set(ByVal value As Color)
 Me("BackgroundColor") = value
 End Set
 End Property
End Class

Settings Persistence
The ApplicationSettingsBase class does not itself persist or load settings; this job falls to the settings provider, a

class that derives from SettingsProvider. If a derived class of ApplicationSettingsBase does not specify a settings

provider through the SettingsProviderAttribute, then the default provider, LocalFileSettingsProvider, is used.

The configuration system that was originally released with the .NET Framework supports providing static

application configuration data through either the local computer's machine.config file or within an app.

exe.config file that you deploy with your application. The LocalFileSettingsProvider class expands this native

support in the following ways:

Application-scoped settings can be stored in either the machine.config or app. exe.config files.

Machine.config is always read-only, while app .exe.config is restricted by security considerations to read-

only for most applications.

User-scoped settings can be stored in app .exe.config files, in which case they are treated as static

defaults.

Non-default user-scoped settings are stored in a new file, user.config, where user is the user name of the

person currently executing the application. You can specify a default for a user-scoped setting with

DefaultSettingValueAttribute. Because user-scoped settings often change during application execution,

user .config is always read/write.

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsproviderattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.defaultsettingvalueattribute

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <sectionGroup name="applicationSettings" type="System.Configuration.ApplicationSettingsGroup,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >
 <section name="WindowsApplication1.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />
 </sectionGroup>
 <sectionGroup name="userSettings" type="System.Configuration.UserSettingsGroup, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >
 <section name="WindowsApplication1.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" allowExeDefinition="MachineToLocalUser" />
 </sectionGroup>
 </configSections>
 <applicationSettings>
 <WindowsApplication1.Properties.Settings>
 <setting name="Cursor" serializeAs="String">
 <value>Default</value>
 </setting>
 <setting name="DoubleBuffering" serializeAs="String">
 <value>False</value>
 </setting>
 </WindowsApplication1.Properties.Settings>
 </applicationSettings>
 <userSettings>
 <WindowsApplication1.Properties.Settings>
 <setting name="FormTitle" serializeAs="String">
 <value>Form1</value>
 </setting>
 <setting name="FormSize" serializeAs="String">
 <value>595, 536</value>
 </setting>
 </WindowsApplication1.Properties.Settings>
 </userSettings>
</configuration>

Settings Bindings

Settings Serialization

All three configuration files store settings in XML format. The top-level XML element for application-scoped

settings is <appSettings> , while <userSettings> is used for user-scoped settings. An app .exe.config file which

contains both application-scoped settings and defaults for user-scoped settings would look like this:

For a definition of the elements within the application settings section of a configuration file, see Application

Settings Schema.

Application settings uses the Windows Forms data binding architecture to provide two-way communication of

settings updates between the settings object and components. If you use Visual Studio to create application

settings and assign them to component properties, these bindings are generated automatically.

You can only bind an application setting to a component that supports the IBindableComponent interface. Also,

the component must implement a change event for a specific bound property, or notify application settings that

the property has changed through the INotifyPropertyChanged interface. If the component does not implement

IBindableComponent and you are binding through Visual Studio, the bound properties will be set the first time,

but will not update. If the component implements IBindableComponent but does not support property change

notifications, the binding will not update in the settings file when the property is changed.

Some Windows Forms components, such as ToolStripItem, do not support settings bindings.

When LocalFileSettingsProvider must save settings to disk, it performs the following actions:

https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/application-settings-schema
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.ibindablecomponent
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.ibindablecomponent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.ibindablecomponent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstripitem
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider

Settings File Locations

Application Settings and Security

Custom Settings Providers

1. Uses reflection to examine all of the properties defined on your ApplicationSettingsBase derived class,

finding those that are applied with either ApplicationScopedSettingAttribute or

UserScopedSettingAttribute.

2. Serializes the property to disk. It first attempts to call the ConvertToString or ConvertFromString on the

type's associated TypeConverter. If this does not succeed, it uses XML serialization instead.

3. Determines which settings go in which files, based on the setting's attribute.

If you implement your own settings class, you can use the SettingsSerializeAsAttribute to mark a setting for

either binary or custom serialization using the SettingsSerializeAs enumeration. For more information on

creating your own settings class in code, see How to: Create Application Settings.

The location of the app .exe.config and user.config files will differ based on how the application is installed. For a

Windows Forms-based application copied onto the local computer, app .exe.config will reside in the same

directory as the base directory of the application's main executable file, and user.config will reside in the location

specified by the Application.LocalUserAppDataPath property. For an application installed by means of ClickOnce,

both of these files will reside in the ClickOnce Data Directory underneath %InstallRoot%\Documents and

Settings\username\Local Settings.

The storage location of these files is slightly different if a user has enabled roaming profiles, which enables a

user to define different Windows and application settings when they are using other computers within a

domain. In that case, both ClickOnce applications and non-ClickOnce applications will have their app .exe.config

and user.config files stored under %InstallRoot%\Documents and Settings\username\Application Data.

For more information about how the Application Settings feature works with the new deployment technology,

see ClickOnce and Application Settings. For more information about the ClickOnce Data Directory, see Accessing

Local and Remote Data in ClickOnce Applications.

Application settings are designed to work in partial trust, a restricted environment that is the default for

Windows Forms applications hosted over the Internet or an intranet. No special permissions beyond partial

trust are needed to use application settings with the default settings provider.

When application settings are used in a ClickOnce application, the user .config file is stored in the ClickOnce

data directory. The size of the application's user .config file cannot exceed the data directory quota set by

ClickOnce. For more information, see ClickOnce and Application Settings.

In the Application Settings architecture, there is a loose coupling between the applications settings wrapper

class, derived from ApplicationSettingsBase, and the associated settings provider or providers, derived from

SettingsProvider. This association is defined only by the SettingsProviderAttribute applied to the wrapper class

or its individual properties. If a settings provider is not explicitly specified, the default provider,

LocalFileSettingsProvider, is used. As a result, this architecture supports creating and using custom settings

providers.

For example, suppose that you want to develop and use SqlSettingsProvider , a provider that will store all

settings data in a Microsoft SQL Server database. Your SettingsProvider-derived class would receive this

information in its Initialize method as a parameter of type

System.Collections.Specialized.NameValueCollection. You would then implement the GetPropertyValues method

to retrieve your settings from the data store, and SetPropertyValues to save them. Your provider can use the

SettingsPropertyCollection supplied to GetPropertyValues to determine the property's name, type, and scope, as

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.userscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.typeconverter.converttostring
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.typeconverter.convertfromstring
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.typeconverter
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsserializeasattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsserializeas
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.localuserappdatapath
https://docs.microsoft.com/en-us/visualstudio/deployment/clickonce-and-application-settings
https://docs.microsoft.com/en-us/visualstudio/deployment/accessing-local-and-remote-data-in-clickonce-applications
https://docs.microsoft.com/en-us/visualstudio/deployment/clickonce-and-application-settings
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsproviderattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.namevaluecollection
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider.getpropertyvalues
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider.setpropertyvalues
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingspropertycollection
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider.getpropertyvalues

public override string ApplicationName
{
 get
 {
 return (System.Reflection.Assembly.GetExecutingAssembly().GetName().Name);
 }
 set
 {
 // Do nothing.
 }
}

Public Overrides Property ApplicationName() As String
 Get
 ApplicationName = System.Reflection.Assembly.GetExecutingAssembly().GetName().Name
 End Get
 Set(ByVal value As String)
 ' Do nothing.
 End Set
End Property

using System;
using System.Collections.Generic;
using System.Text;
using System.Configuration;

namespace ApplicationSettingsArchitectureCS
{
 [SettingsProvider("SqlSettingsProvider")]
 class CustomSettings : ApplicationSettingsBase
 {
 // Implementation goes here.
 }
}

well as any other settings attributes defined for that property.

Your provider will need to implement one property and one method whose implementations may not be

obvious. The ApplicationName property is an abstract property of SettingsProvider; you should program it to

return the following:

Your derived class must also implement an Initialize method that takes no arguments and returns no value.

This method is not defined by SettingsProvider.

Finally, you implement IApplicationSettingsProvider on your provider to provide support for refreshing settings,

reverting settings to their defaults, and upgrading settings from one application version to another.

Once you have implemented and compiled your provider, you need to instruct your settings class to use this

provider instead of the default. You accomplish this through the SettingsProviderAttribute. If applied to an entire

settings class, the provider is used for each setting that the class defines; if applied to individual settings,

Application Settings architecture uses that provider for those settings only, and uses LocalFileSettingsProvider

for the rest. The following code example shows how to instruct the settings class to use your custom provider.

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider.applicationname
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.iapplicationsettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsproviderattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider

Imports System.Configuration

<SettingsProvider("SqlSettingsProvider")> _
Public Class CustomSettings
 Inherits ApplicationSettingsBase

 ' Implementation goes here.
End Class

IMPORTANT

See also

A provider may be called from multiple threads simultaneously, but it will always write to the same storage

location; therefore, the Application Settings architecture will only ever instantiate a single instance of your

provider class.

You should ensure that your provider is thread-safe, and only allows one thread at a time to write to the configuration

files.

Your provider does not need to support all of the settings attributes defined in the System.Configuration

namespace, though it must at a minimum support ApplicationScopedSettingAttribute and

UserScopedSettingAttribute, and should also support DefaultSettingValueAttribute. For those attributes that it

does not support, your provider should just fail without notification; it should not throw an exception. If the

settings class uses an invalid combination of attributes, however — such as applying

ApplicationScopedSettingAttribute and UserScopedSettingAttribute to the same setting — your provider should

throw an exception and cease operation.

ApplicationSettingsBase

SettingsProvider

LocalFileSettingsProvider

Application Settings Overview

Application Settings for Custom Controls

ClickOnce and Application Settings

Application Settings Schema

https://docs.microsoft.com/en-us/dotnet/api/system.configuration
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.userscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.defaultsettingvalueattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.userscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/visualstudio/deployment/clickonce-and-application-settings
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/application-settings-schema

Application Settings Attributes
11/3/2020 • 2 minutes to read • Edit Online

NOTE

AT T RIB UT E TA RGET DESC RIP T IO N

SettingsProviderAttribute Both Specifies the short name of the
settings provider to use for
persistence.

If this attribute is not supplied, the
default provider,
LocalFileSettingsProvider, is assumed.

UserScopedSettingAttribute Both Defines a property as a user-scoped
application setting.

ApplicationScopedSettingAttribute Both Defines a property as an application-
scoped application setting.

DefaultSettingValueAttribute Property Specifies a string that can be
deserialized by the provider into the
hard-coded default value for this
property.

The LocalFileSettingsProvider does not
require this attribute, and will override
any value provided by this attribute if
there is a value already persisted.

SettingsDescriptionAttribute Property Provides the descriptive test for an
individual setting, used primarily by
run-time and design-time tools.

SettingsGroupNameAttribute Class Provides an explicit name for a settings
group. If this attribute is missing,
ApplicationSettingsBase uses the
wrapper class name.

The Application Settings architecture provides many attributes that can be applied either to the applications

settings wrapper class or its individual properties. These attributes are examined at run time by the application

settings infrastructure, often specifically the settings provider, in order to tailor its functioning to the stated

needs of the custom wrapper.

The following table lists the attributes that can be applied to the application settings wrapper class, this class's

individual properties, or both. By definition, only a single scope attribute—UserScopedSettingAttr ibute or

ApplicationScopedSettingAttr ibute —must be applied to each and every settings property.

A custom settings provider, derived from the SettingsProvider class, is only required to recognize the following three

attributes: ApplicationScopedSettingAttribute, UserScopedSettingAttribute, and

DefaultSettingValueAttribute.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/application-settings-attributes.md
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsproviderattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.userscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.defaultsettingvalueattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsdescriptionattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsgroupnameattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase

SettingsGroupDescriptionAttribute Class Provides the descriptive test for a
settings group, used primarily by run-
time and design-time tools.

SettingsManageabilityAttribute Both Specifies zero or more manageability
services that should be provided to
the settings group or property. The
available services are described by the
SettingsManageability enumeration.

SpecialSettingAttribute Property Indicates that a setting belongs to a
special, predefined category, such as a
connection string, that suggests
special processing by the settings
provider. The predefined categories for
this attribute are defined by the
SpecialSetting enumeration.

SettingsSerializeAsAttribute Both Specifies a preferred serialization
mechanism for a settings group or
property. The available serialization
mechanisms are defined by the
SettingsSerializeAs enumeration.

NoSettingsVersionUpgradeAttribute Property Specifies that a settings provider
should disable all application upgrade
functionality for the marked property.

AT T RIB UT E TA RGET DESC RIP T IO N

See also

Class indicates that the attribute can be applied only to an application settings wrapper class. Property indicates

that the attribute can be applied only settings properties. Both indicates that the attribute can be applied at

either level.

ApplicationSettingsBase

SettingsProvider

Application Settings Architecture

How to: Create Application Settings

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsgroupdescriptionattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsmanageabilityattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsmanageability
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.specialsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.specialsetting
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsserializeasattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsserializeas
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.nosettingsversionupgradeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.settingsprovider

Application Settings for Custom Controls
11/3/2020 • 2 minutes to read • Edit Online

Application Settings and Custom Controls

Settings Keys and Shared Settings

<userSettings>
 <CustomControl1>
 <setting name="Text" serializedAs="string">
 <value>Hello, World</value>
 </setting>
 </CustomControl1>
</userSettings>

You must complete certain tasks to give your custom controls the ability to persist application settings when the

controls are hosted in third-party applications.

Most of the documentation about the Application Settings feature is written under the assumption that you are

creating a standalone application. However, if you are creating a control that other developers will host in their

applications, you need to take a few additional steps for your control to persist its settings properly.

For your control to properly persist its settings, it must encapsulate the process by creating its own dedicated

applications settings wrapper class, derived from ApplicationSettingsBase. Additionally, the main control class

must implement the IPersistComponentSettings. The interface contains several properties as well as two

methods, LoadComponentSettings and SaveComponentSettings. If you add your control to a form using the

Windows Forms Designer in Visual Studio, Windows Forms will call LoadComponentSettings automatically

when the control is initialized; you must call SaveComponentSettings yourself in the Dispose method of your

control.

In addition, you should implement the following in order for application settings for custom controls to work

properly in design-time environments such as Visual Studio:

1. A custom application settings class with a constructor that takes an IComponent as a single parameter.

Use this class to save and load all of your application settings. When you create a new instance of this

class, pass your custom control using the constructor.

2. Create this custom settings class after the control has been created and placed on a form, such as in the

form's Load event handler.

For instructions on creating a custom settings class, see How to: Create Application Settings.

Some controls can be used multiple times within the same form. Most of the time, you will want these controls

to persist their own individual settings. With the SettingsKey property on IPersistComponentSettings, you can

supply a unique string that acts to disambiguate multiple versions of a control on a form.

The simplest way to implement SettingsKey is to use the Name property of the control for the SettingsKey.

When you load or save the control's settings, you pass the value of SettingsKey on to the SettingsKey property

of the ApplicationSettingsBase class. Application Settings uses this unique key when it persists the user's

settings to XML. The following code example shows how a <userSettings> section may look for an instance of a

custom control named CustomControl1 that saves a setting for its Text property.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/application-settings-for-custom-controls.md
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.loadcomponentsettings
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.savecomponentsettings
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.loadcomponentsettings
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.savecomponentsettings
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.load
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.settingskey
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.settingskey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.name
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.settingskey
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings.settingskey
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingskey
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase

See also

Any instances of a control that do not supply a value for SettingsKey will share the same settings.

ApplicationSettingsBase

IPersistComponentSettings

Application Settings Architecture

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingskey
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.ipersistcomponentsettings

Using Application Settings and User Settings
11/3/2020 • 2 minutes to read • Edit Online

In This Section

See also

Starting with the .NET Framework 2.0, you can create and access values that are persisted between application

execution sessions. These values are called settings. Settings can represent user preferences, or valuable

information the application needs to use. For example, you might create a series of settings that store user

preferences for the color scheme of an application. Or you might store the connection string that specifies a

database that your application uses. Settings allow you to both persist information that is critical to the

application outside the code, and to create profiles that store the preferences of individual users.

The topics in this section describe how to use settings at design time and run time.

How To: Create a New Setting at Design Time

Explains how to use Visual Studio to create a new setting for an application.

How To: Change the Value of an Existing Setting at Design Time

Describes how to use Visual Studio to change the value of an existing setting.

How To: Change the Value of a Setting Between Application Sessions

Details how to change the value of a setting in a compiled application between application sessions.

How To: Read Settings at Run Time With C#

Describes how to use code to read settings with C#.

How To: Write User Settings at Run Time with C#

Explains how to use code to write and save the values of user settings with C#.

How To: Add Multiple Sets of Settings To Your Application in C#

Details how to add multiple sets of settings to an application with C#.

Application Settings for Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-application-settings-and-user-settings.md

How To: Create a new setting at design time
11/3/2020 • 2 minutes to read • Edit Online

Create a new setting at design time in C#

Create a new setting at design time in Visual Basic

See also

You can create a new setting at design time by using the Settings designer in Visual Studio. The Settings

designer is a grid-style interface that allows you to create new settings and specify properties for those settings.

You must specify Name, Value, Type and Scope for your new settings. Once a setting is created, it is accessible in

code.

1. Open Visual Studio.

2. In Solution Explorer , expand the Proper ties node of your project.

3. Double-click the .settings file in which you want to add a new setting. The default name for this file is

Settings.settings.

4. In the Settings designer, set the Name, Value, Type, and Scope for your setting. Each row represents a

single setting.

1. Open Visual Studio.

2. In Solution Explorer , right-click your project node and choose Proper ties .

3. In the Proper ties page, select the Settings tab.

4. In the Settings designer, set the Name, Value, Type, and Scope for your setting. Each row represents a

single setting.

Using Application Settings and User Settings

Application Settings Overview

How To: Change the Value of an Existing Setting at Design Time

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-a-new-setting-at-design-time.md

How To: Change the Value of an Existing Setting at
Design Time
11/3/2020 • 2 minutes to read • Edit Online

To Change the Value of an Existing Setting at Design Time in C#

To Change the Value of an Existing Setting at Design Time in Visual Basic

See also

You can use Visual Studio to edit the values of existing settings in your project.

1. In Solution Explorer , expand the Proper ties node of your project.

2. Double-click the .settings file in which you want to add a new setting. The default name for this file is

Settings.settings.

3. In the Settings designer, find the setting for which you want to change the value and type the new value

in the Value column.

1. In Solution Explorer , right-click your project node and choose Proper ties .

2. In the Proper ties page, select the Settings tab.

3. In the Settings designer, find the setting for which you want to change the value and type the new value

in the Value column.

Using Application Settings and User Settings

How To: Create a New Setting at Design Time

Application Settings Overview

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-change-the-value-of-an-existing-setting-at-design-time.md

How To: Change the Value of a Setting Between
Application Sessions
11/3/2020 • 2 minutes to read • Edit Online

To Change the Value of a Setting Between Application Sessions

See also

At times, you might want to change the value of a setting between application sessions after the application has

been compiled and deployed. For example, you might want to change a connection string to point to the correct

database location. Since design-time tools are not available after the application has been compiled and

deployed, you must change the setting value manually in the file.

<setting name="Setting1" serializeAs="String" >
 <value>My Setting Value</value>
</setting>

1. Using Microsoft Notepad or some other text or XML editor, open the .config file associated with your

application.

2. Locate the entry for the setting you want to change. It should look similar to the example presented

below.

3. Type a new value for your setting and save the file.

Using Application Settings and User Settings

Application Settings Overview

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-change-the-value-of-a-setting-between-application-sessions.md

How To: Read Settings at Run Time With C#
11/3/2020 • 2 minutes to read • Edit Online

To Read Settings at Run Time with C#

this.BackColor = Properties.Settings.Default.myColor;

See also

You can read both Application-scoped and User-scoped settings at run time via the Properties object. The

Properties object exposes all of the default settings for the project via the Properties.Settings.Default member in

the default namespace of the project they are defined in.

Access the appropriate setting via the Properties.Settings.Default member. The following example shows how to

assign a setting named myColor to a BackColor property. It requires you to have previously created a Settings

file containing a setting named myColor of type System.Drawing.Color . For information about creating a

Settings file, see How To: Create a New Setting at Design Time.

Using Application Settings and User Settings

How To: Write User Settings at Run Time with C#

Application Settings Overview

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-read-settings-at-run-time-with-csharp.md

How To: Write User Settings at Run Time with C#
11/3/2020 • 2 minutes to read • Edit Online

How To: Write and Persist User Settings at Run Time with C#

See also

Settings that are application-scoped are read-only, and can only be changed at design time or by altering the

.config file in between application sessions. Settings that are user-scoped, however, can be written at run time

just as you would change any property value. The new value persists for the duration of the application session.

You can persist the changes to the settings between application sessions by calling the Save method.

Properties.Settings.Default.myColor = Color.AliceBlue;

Properties.Settings.Default.Save();

1. Access the setting and assign it a new value as shown in this example:

2. If you want to persist the changes to the settings between application sessions, call the Save method as

shown in this example:

User settings are saved in a file within a subfolder of the user ’s local hidden application data folder.

Using Application Settings and User Settings

How To: Read Settings at Run Time With C#

Application Settings Overview

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-write-user-settings-at-run-time-with-csharp.md

How To: Add Multiple Sets of Settings To Your
Application in C#
11/3/2020 • 2 minutes to read • Edit Online

Add an Additional Set of Settings

See also

In some cases, you might want to have multiple sets of settings in an application. For example, if you are

developing an application where a particular group of settings is expected to change frequently, it might be wise

to separate them all into a single file so that the file can be replaced wholesale, leaving other settings unaffected.

Visual Studio allows you to add multiple sets of settings to your project. Additional sets of settings can be

accessed via the Properties.Settings object.

1. In Visual Studio, from the Project menu, choose Add New Item.

The Add New Item dialog box opens.

2. In the Add New Item dialog box, select Settings File, enter a name for the file, and click Add to add a

new settings file to your solution.

3. In Solution Explorer , drag the new Settings file into the Proper ties folder. This allows your new

settings to be available in code.

4. Add and use settings in this file as you would any other settings file. You can access this group of settings

via the Properties.Settings object.

Using Application Settings and User Settings

Application Settings Overview

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-add-multiple-sets-of-settings-to-your-application-in-csharp.md

How to: Create Application Settings
3/9/2021 • 2 minutes to read • Edit Online

To create new Application Settings programmatically

Using managed code, you can create new application settings and bind them to properties on your form or your

form's controls, so that these settings are loaded and saved automatically at run time.

In the following procedure, you manually create a wrapper class that derives from ApplicationSettingsBase. To

this class you add a publicly accessible property for each application setting that you want to expose.

You can also perform this procedure using minimal code in the Visual Studio designer. Also see How to: Create

Application Settings Using the Designer.

using System;
using System.Configuration;
using System.Drawing;

public class MyUserSettings : ApplicationSettingsBase
{
 [UserScopedSetting()]
 [DefaultSettingValue("white")]
 public Color BackgroundColor
 {
 get
 {
 return ((Color)this["BackgroundColor"]);
 }
 set
 {
 this["BackgroundColor"] = (Color)value;
 }
 }
}

1. Add a new class to your project, and rename it. For this procedure, we will call this class MyUserSettings .

Change the class definition so that the class derives from ApplicationSettingsBase.

2. Define a property on this wrapper class for each application setting you require, and apply that property

with either the ApplicationScopedSettingAttribute or UserScopedSettingAttribute, depending on the

scope of the setting. For more information about settings scope, see Application Settings Overview. By

now, your code should look like this:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-application-settings.md
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wabtadw6(v=vs.100)
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationscopedsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.userscopedsettingattribute

.NET Framework Security

Imports System.Configuration

Public Class MyUserSettings
 Inherits ApplicationSettingsBase
 <UserScopedSetting()> _
 <DefaultSettingValue("white")> _
 Public Property BackgroundColor() As Color
 Get
 BackgroundColor = Me("BackgroundColor")
 End Get

 Set(ByVal value As Color)
 Me("BackgroundColor") = value
 End Set
 End Property
End Class

MyUserSettings mus;

private void Form1_Load(object sender, EventArgs e)
{
 mus = new MyUserSettings();
 mus.BackgroundColor = Color.AliceBlue;
 this.DataBindings.Add(new Binding("BackColor", mus, "BackgroundColor"));
}

Dim Mus As MyUserSettings

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Mus = New MyUserSettings()
 Mus.BackgroundColor = Color.AliceBlue
 Me.DataBindings.Add(New Binding("BackColor", Mus, "BackgroundColor"))
End Sub

//Make sure to hook up this event handler in the constructor!
//this.FormClosing += new FormClosingEventHandler(Form1_FormClosing);
 void Form1_FormClosing(object sender, FormClosingEventArgs e)
 {
 mus.Save();
 }

Private Sub Form1_FormClosing(ByVal sender As Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing
 Mus.Save()
End Sub

3. Create an instance of this wrapper class in your application. It will commonly be a private member of the

main form. Now that you have defined your class, you need to bind it to a property; in this case, the

BackColor property of your form. You can accomplish this in your form's Load event handler.

4. If you provide a way to change settings at run time, you will need to save the user's current settings to

disk when your form closes, or else these changes will be lost.

You have now successfully created a new application setting and bound it to the specified property.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.backcolor

See also

The default settings provider, LocalFileSettingsProvider, persists information to configuration files as plain text.

This limits security to the file access security provided by the operating system for the current user. Because of

this, care must be taken with the information stored in configuration files. For example, one common use for

application settings is to store connection strings that point to the application's data store. However, because of

security concerns, such strings should not include passwords. For more information about connection strings,

see SpecialSetting.

SpecialSettingAttribute

LocalFileSettingsProvider

Application Settings Overview

How to: Validate Application Settings

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.specialsetting
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.specialsettingattribute
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.localfilesettingsprovider

How to: Validate Application Settings
3/9/2021 • 4 minutes to read • Edit Online

EVEN T O C C URREN C E A N D USE

SettingsLoaded Occurs after the initial loading of a settings property group.

Use this event to validate initial values for the entire
property group before they are used within the application.

SettingChanging Occurs before the value of a single settings property is
changed.

Use this event to validate a single property before it is
changed. It can provide immediate feedback to users
regarding their actions and choices.

PropertyChanged Occurs after the value of a single settings property is
changed.

Use this event to validate a single property after it is
changed. This event is rarely used for validation unless a
lengthy, asynchronous validation process is required.

SettingsSaving Occurs before the settings property group is stored.

Use this event to validate values for the entire property
group before they are persisted to disk.

This topic demonstrates how to validate application settings before they are persisted.

Because application settings are strongly typed, you have some confidence that users cannot assign data of an

incorrect type to a given setting. However, a user still may attempt to assign a value to a setting that falls outside

of acceptable bounds—for example, supplying a birth date that occurs in the future. ApplicationSettingsBase, the

parent class of all application settings classes, exposes four events to enable such bounds checking. Handling

these events puts all of your validation code in a single location, rather than scattering it throughout your

project.

The event you use depends upon when you need to validate your settings, as described in the following table.

Typically, you will not use all of these events within the same application for validation purposes. For example, it

is often possible to fulfill all validation requirements by handling only the SettingChanging event.

An event handler generally performs one of the following actions when it detects an invalid value:

Automatically supplies a value known to be correct, such as the default value.

Re-queries the user of server code for information.

For events raised before their associated actions, such as SettingChanging and SettingsSaving, uses the

CancelEventArgs argument to cancel the operation.

For more information about event handling, see Event Handlers Overview.

The following procedures show how to test for a valid birth date using either the SettingChanging or the

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-validate-application-settings.md
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingsloaded
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingchanging
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.propertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingssaving
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingchanging
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingchanging
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingssaving
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/event-handlers-overview-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingchanging

To obtain the application settings object

To validate Application Settings when a setting is changing

SettingsSaving event. The procedures were written under the assumption that you have already created your

application settings; in this example, we will perform bounds checking on a setting named DateOfBirth . For

more information about creating settings, see How to: Create Application Settings.

Obtain a reference to the application settings object (the wrapper instance) by completing one of the

following bulleted items:

Properties.Settings.Default

MySettings.Default

MyCustomSettings settings = new MyCustomSettings();

Dim Settings as New MyCustomSettings()

If you created your settings using the Visual Studio Application Settings dialog box in the

Proper ty Editor , you can retrieve the default settings object generated for your language

through the following expression.

-or-

If you are a Visual Basic developer and you created your application settings using the Project

Designer, you can retrieve your settings by using the My.Settings Object.

-or-

If you created your settings by deriving from ApplicationSettingsBase directly, you need to

instantiate your class manually.

The following procedures were written under the assumption that the application settings object was obtained

by completing the last bulleted item in this procedure.

public void Form1_Load(Object sender, EventArgs e)
{
 settings.SettingChanging += new SettingChangingEventHandler(MyCustomSettings_SettingChanging);
}

Public Sub Form1_Load(sender as Object, e as EventArgs)
 AddHandler settings.SettingChanging, AddressOf MyCustomSettings_SettingChanging
End Sub

1. If you are a C# developer, in your form or control's Load event, add an event handler for the

SettingChanging event.

-or-

If you are a Visual Basic developer, you should declare the Settings variable using the WithEvents

keyword.

2. Define the event handler, and write the code inside of it to perform bounds checking on the birth date.

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingssaving
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/objects/my-settings-object
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingchanging

To validate Application Settings when a Save occurs

See also

private void MyCustomSettings_SettingChanging(Object sender, SettingChangingEventArgs e)
{
 if (e.SettingName.Equals("DateOfBirth"))
 {
 var newDate = (DateTime)e.NewValue;
 if (newDate > DateTime.Now)
 {
 e.Cancel = true;
 // Inform the user.
 }
 }
}

Private Sub MyCustomSettings_SettingChanging(sender as Object, e as SettingChangingEventArgs) Handles
Settings.SettingChanging
 If (e.SettingName.Equals("DateOfBirth")) Then
 Dim NewDate as Date = CType(e.NewValue, Date)
 If (NewDate > Date.Now) Then
 e.Cancel = True
 ' Inform the user.
 End If
 End If
End Sub

public void Form1_Load(Object sender, EventArgs e)
{
 settings.SettingsSaving += new SettingsSavingEventHandler(MyCustomSettings_SettingsSaving);
}

Public Sub Form1_Load(Sender as Object, e as EventArgs)
 AddHandler settings.SettingsSaving, AddressOf MyCustomSettings_SettingsSaving
End Sub

private void MyCustomSettings_SettingsSaving(Object sender, SettingsSavingEventArgs e)
{
 if (this["DateOfBirth"] > Date.Now) {
 e.Cancel = true;
 }
}

Private Sub MyCustomSettings_SettingsSaving(Sender as Object, e as SettingsSavingEventArgs)
 If (Me["DateOfBirth"] > Date.Now) Then
 e.Cancel = True
 End If
End Sub

1. In your form or control's Load event, add an event handler for the SettingsSaving event.

2. Define the event handler, and write the code inside of it to perform bounds checking on the birth date.

Creating Event Handlers in Windows Forms

How to: Create Application Settings

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase.settingssaving
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/creating-event-handlers-in-windows-forms

Windows Forms Print Support
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Related Sections

Printing in Windows Forms consists primarily of using the PrintDocument Component component to enable the

user to print, and the PrintPreviewDialog Control control, PrintDialog Component and PageSetupDialog

Component components to provide a familiar graphical interface to users accustomed to the Windows

operating system.

Typically, you create a new instance of the PrintDocument component, set the properties that describe what to

print using the PrinterSettings and PageSettings classes, and call the Print method to actually print the

document.

During the course of printing from a Windows-based application, the PrintDocument component will show an

abort print dialog box to alert users to the fact that printing is occurring and to allow the print job to be

canceled.

How to: Create Standard Windows Forms Print Jobs

Explains how to use the PrintDocument component to print from a Windows Form.

How to: Capture User Input from a PrintDialog at Run Time

Explains how to modify selected print options programmatically using the PrintDialog component.

How to: Choose the Printers Attached to a User's Computer in Windows Forms

Describes changing the printer to print to using the PrintDialog component at run time.

How to: Print Graphics in Windows Forms

Describes sending graphics to the printer.

How to: Print a Multi-Page Text File in Windows Forms

Describes sending text to the printer.

How to: Complete Windows Forms Print Jobs

Explains how to alert users to the completion of a print job.

How to: Print a Windows Form

Shows how to print a copy of the current form.

How to: Print in Windows Forms Using Print Preview

Shows how to use a PrintPreviewDialog for printing a document.

PrintDocument Component

Explains usage of the PrintDocument component.

PrintDialog Component

Explains usage of the PrintDialog component.

PrintPreviewDialog Control

Explains usage of the PrintPreviewDialog control.

PageSetupDialog Component

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/windows-forms-print-support.md
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/printdocument-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/printpreviewdialog-control-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/printdialog-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/pagesetupdialog-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printersettings
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.pagesettings
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.print
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/printdocument-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/printdialog-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/printpreviewdialog-control-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/pagesetupdialog-component-windows-forms

Explains usage of the PageSetupDialog component.

System.Drawing.Printing

Describes the classes in the System.Drawing.Printing namespace.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.pagesetupdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing

How to: Create Standard Windows Forms Print Jobs
11/3/2020 • 2 minutes to read • Edit Online

To create a print job

The foundation of printing in Windows Forms is the PrintDocument component—more specifically, the

PrintPage event. By writing code to handle the PrintPage event, you can specify what to print and how to print it.

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs) Handles PrintDocument1.PrintPage
 e.Graphics.FillRectangle(Brushes.Red, New Rectangle(500, 500, 500, 500))
End Sub

private void printDocument1_PrintPage(object sender,
System.Drawing.Printing.PrintPageEventArgs e)
{
 e.Graphics.FillRectangle(Brushes.Red,
 new Rectangle(500, 500, 500, 500));
}

private:
 void printDocument1_PrintPage(System::Object ^ sender,
 System::Drawing::Printing::PrintPageEventArgs ^ e)
 {
 e->Graphics->FillRectangle(Brushes::Red,
 Rectangle(500, 500, 500, 500));
 }

this.printDocument1.PrintPage += new
 System.Drawing.Printing.PrintPageEventHandler
 (this.printDocument1_PrintPage);

printDocument1->PrintPage += gcnew
 System::Drawing::Printing::PrintPageEventHandler
 (this, &Form1::printDocument1_PrintPage);

1. Add a PrintDocument component to your form.

2. Write code to handle the PrintPage event.

You will have to code your own printing logic. Additionally, you will have to specify the material to be

printed.

In the following code example, a sample graphic in the shape of a red rectangle is created in the PrintPage

event handler to act as material to be printed.

(Visual C# and Visual C++) Place the following code in the form's constructor to register the event

handler.

You may also want to write code for the BeginPrint and EndPrint events, perhaps including an integer

representing the total number of pages to print that is decremented as each page prints.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-standard-windows-forms-print-jobs.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.beginprint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.endprint

See also

NOTE
You can add a PrintDialog component to your form to provide a clean and efficient user interface (UI) to your

users. Setting the Document property of the PrintDialog component enables you to set properties related to the

print document you are working with on your form. For more information about the PrintDialog component, see

PrintDialog Component.

For more information about the specifics of Windows Forms print jobs, including how to create a print

job programmatically, see PrintPageEventArgs.

PrintDocument

Windows Forms Print Support

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog.document
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/printdialog-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument

How to: Capture User Input from a PrintDialog at
Run Time
11/3/2020 • 2 minutes to read • Edit Online

To change print options programmatically

See also

While you can set options related to printing at design time, you will sometimes want to change these options at

run time, most likely because of choices made by the user. You can capture user input for printing a document

using the PrintDialog and the PrintDocument components.

PrintDialog1.Document = PrintDocument1

printDialog1.Document = PrintDocument1;

printDialog1->Document = PrintDocument1;

PrintDialog1.ShowDialog()

printDialog1.ShowDialog();

printDialog1->ShowDialog();

1. Add a PrintDialog and a PrintDocument component to your form.

2. Set the Document property of the PrintDialog to the PrintDocument added to the form.

3. Display the PrintDialog component by using the ShowDialog method.

4. The user's printing choices from the dialog will be copied to the PrinterSettings property of the

PrintDocument component.

How to: Print a Multi-Page Text File in Windows Forms

Windows Forms Print Support

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-capture-user-input-from-a-printdialog-at-run-time.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog.document
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.commondialog.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printersettings
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument

How to: Choose the Printers Attached to a User's
Computer in Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

To choose a printer and then print a file

Often, users want to choose a printer other than the default printer to print to. You can enable users to choose a

printer from among those currently installed by using the PrintDialog component. Through the PrintDialog

component, the DialogResult of the PrintDialog component is captured and used to select the printer.

In the following procedure, a text file is selected to be printed to the default printer. The PrintDialog class is then

instantiated.

Private Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles Button1.Click
 Dim PrintDialog1 As New PrintDialog()
 PrintDialog1.Document = PrintDocument1
 Dim result As DialogResult = PrintDialog1.ShowDialog()

 If (result = DialogResult.OK) Then
 PrintDocument1.Print()
 End If

End Sub

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs) Handles PrintDocument1.PrintPage
 e.Graphics.FillRectangle(Brushes.Red, New Rectangle(500, 500, 500, 500))
End Sub

private void button1_Click(object sender, System.EventArgs e)
{
 PrintDialog printDialog1 = new PrintDialog();
 printDialog1.Document = printDocument1;
 DialogResult result = printDialog1.ShowDialog();
 if (result == DialogResult.OK)
 {
 printDocument1.Print();
 }
}

private void printDocument1_PrintPage(object sender,
System.Drawing.Printing.PrintPageEventArgs e)
{
 e.Graphics.FillRectangle(Brushes.Red,
 new Rectangle(500, 500, 500, 500));
}

1. Select the printer to be used using the PrintDialog component.

In the following code example, there are two events being handled. In the first, a Button control's Click

event, the PrintDialog class is instantiated and the printer selected by the user is captured in the

DialogResult property.

In the second event, the PrintPage event of the PrintDocument component, a sample document is printed

to the printer specified.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-choose-the-printers-attached-to-user-computer-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument

See also

private:
 void button1_Click(System::Object ^ sender,
 System::EventArgs ^ e)
 {
 PrintDialog ^ printDialog1 = gcnew PrintDialog();
 printDialog1->Document = printDocument1;
 System::Windows::Forms::DialogResult result =
 printDialog1->ShowDialog();
 if (result == DialogResult::OK)
 {
 printDocument1->Print();
 }
 }
private:
 void printDocument1_PrintPage(System::Object ^ sender,
 System::Drawing::Printing::PrintPageEventArgs ^ e)
 {
 e->Graphics->FillRectangle(Brushes::Red,
 Rectangle(500, 500, 500, 500));
 }

this.printDocument1.PrintPage += new
 System.Drawing.Printing.PrintPageEventHandler
 (this.printDocument1_PrintPage);
this.button1.Click += new System.EventHandler(this.button1_Click);

this->printDocument1->PrintPage += gcnew
 System::Drawing::Printing::PrintPageEventHandler
 (this, &Form1::printDocument1_PrintPage);
this->button1->Click += gcnew
 System::EventHandler(this, &Form1::button1_Click);

(Visual C# and Visual C++) Place the following code in the form's constructor to register the event

handler.

Windows Forms Print Support

How to: Print Graphics in Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

To print graphics

See also

Frequently, you will want to print graphics in your Windows-based application. The Graphics class provides

methods for drawing objects to a device, such as a screen or printer.

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs) Handles PrintDocument1.PrintPage
 e.Graphics.FillEllipse(Brushes.Blue, New Rectangle(100, 150, 250, 250))
End Sub

private void printDocument1_PrintPage(object sender,
System.Drawing.Printing.PrintPageEventArgs e)
{
 e.Graphics.FillRectangle(Brushes.Blue,
 new Rectangle(100, 150, 250, 250));
}

private:
 void printDocument1_PrintPage(System::Object ^ sender,
 System::Drawing::Printing::PrintPageEventArgs ^ e)
 {
 e->Graphics->FillRectangle(Brushes::Blue,
 Rectangle(100, 150, 250, 250));
 }

this.printDocument1.PrintPage += new
 System.Drawing.Printing.PrintPageEventHandler
 (this.printDocument1_PrintPage);

this->printDocument1->PrintPage += gcnew
 System::Drawing::Printing::PrintPageEventHandler
 (this, &Form1::printDocument1_PrintPage);

1. Add a PrintDocument component to your form.

2. In the PrintPage event handler, use the Graphics property of the PrintPageEventArgs class to instruct the

printer on what kind of graphics to print.

The following code example shows an event handler used to create a blue ellipse within a bounding

rectangle. The rectangle has the following location and dimensions: beginning at 100, 150 with a width of

250 and a height of 250.

(Visual C# and Visual C++) Place the following code in the form's constructor to register the event

handler.

Graphics

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-print-graphics-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics

Brush

Windows Forms Print Support

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush

How to: Print a Multi-Page Text File in Windows
Forms
3/9/2021 • 5 minutes to read • Edit Online

NOTE

To print text

It is very common for Windows-based applications to print text. The Graphics class provides methods for

drawing objects (graphics or text) to a device, such as a screen or printer.

The DrawText methods of TextRenderer are not supported for printing. You should always use the DrawString methods of

Graphics, as shown in the following code example, to draw text for printing purposes.

private PrintDocument printDocument1 = new PrintDocument();
private string stringToPrint;

Private printDocument1 As New PrintDocument()
Private stringToPrint As String

string docName = "testPage.txt";
string docPath = @"c:\";
printDocument1.DocumentName = docName;
using (FileStream stream = new FileStream(docPath + docName, FileMode.Open))
using (StreamReader reader = new StreamReader(stream))
{
 stringToPrint = reader.ReadToEnd();
}

Dim docName As String = "testPage.txt"
Dim docPath As String = "c:\"
printDocument1.DocumentName = docName
Dim stream As New FileStream(docPath + docName, FileMode.Open)
Try
 Dim reader As New StreamReader(stream)
 Try
 stringToPrint = reader.ReadToEnd()
 Finally
 reader.Dispose()
 End Try
Finally
 stream.Dispose()
End Try

1. Add a PrintDocument component and a string to your form.

2. If printing a document, set the DocumentName property to the document you wish to print, and open

and read the documents contents to the string you added previously.

3. In the PrintPage event handler, use the Graphics property of the PrintPageEventArgs class and the

document contents to calculate line length and lines per page. After each page is drawn, check to see if it

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-print-a-multi-page-text-file-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer.drawtext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.documentname
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs

Example

private void printDocument1_PrintPage(object sender, PrintPageEventArgs e)
{
 int charactersOnPage = 0;
 int linesPerPage = 0;

 // Sets the value of charactersOnPage to the number of characters
 // of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, this.Font,
 e.MarginBounds.Size, StringFormat.GenericTypographic,
 out charactersOnPage, out linesPerPage);

 // Draws the string within the bounds of the page
 e.Graphics.DrawString(stringToPrint, this.Font, Brushes.Black,
 e.MarginBounds, StringFormat.GenericTypographic);

 // Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage);

 // Check to see if more pages are to be printed.
 e.HasMorePages = (stringToPrint.Length > 0);
}

Private Sub printDocument1_PrintPage(ByVal sender As Object, _
 ByVal e As PrintPageEventArgs)

 Dim charactersOnPage As Integer = 0
 Dim linesPerPage As Integer = 0

 ' Sets the value of charactersOnPage to the number of characters
 ' of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, Me.Font, e.MarginBounds.Size, _
 StringFormat.GenericTypographic, charactersOnPage, linesPerPage)

 ' Draws the string within the bounds of the page
 e.Graphics.DrawString(stringToPrint, Me.Font, Brushes.Black, _
 e.MarginBounds, StringFormat.GenericTypographic)

 ' Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage)

 ' Check to see if more pages are to be printed.
 e.HasMorePages = stringToPrint.Length > 0

End Sub

printDocument1.Print();

printDocument1.Print()

is the last page, and set the HasMorePages property of the PrintPageEventArgs accordingly. The PrintPage

event is raised until HasMorePages is false . Also, make sure the PrintPage event is associated with its

event-handling method.

In the following code example, the event handler is used to print the contents of the "testPage.txt" file in

the same font as is used on the form.

4. Call the Print method to raise the PrintPage event.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs.hasmorepages
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs.hasmorepages
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.print
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage

using System;
using System.Drawing;
using System.IO;
using System.Drawing.Printing;
using System.Windows.Forms;

namespace PrintApp
{
 public class Form1 : Form
 {
 private Button printButton;
 private PrintDocument printDocument1 = new PrintDocument();
 private string stringToPrint;
 public Form1()
 {
 this.printButton = new System.Windows.Forms.Button();
 this.printButton.Location = new System.Drawing.Point(12, 51);
 this.printButton.Size = new System.Drawing.Size(75, 23);
 this.printButton.Text = "Print";
 this.printButton.Click += new System.EventHandler(this.printButton_Click);
 this.ClientSize = new System.Drawing.Size(292, 266);
 this.Controls.Add(this.printButton);

 // Associate the PrintPage event handler with the PrintPage event.
 printDocument1.PrintPage +=
 new PrintPageEventHandler(printDocument1_PrintPage);
 }

 private void ReadFile()
 {
 string docName = "testPage.txt";
 string docPath = @"c:\";
 printDocument1.DocumentName = docName;
 using (FileStream stream = new FileStream(docPath + docName, FileMode.Open))
 using (StreamReader reader = new StreamReader(stream))
 {
 stringToPrint = reader.ReadToEnd();
 }
 }

 private void printDocument1_PrintPage(object sender, PrintPageEventArgs e)
 {
 int charactersOnPage = 0;
 int linesPerPage = 0;

 // Sets the value of charactersOnPage to the number of characters
 // of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, this.Font,
 e.MarginBounds.Size, StringFormat.GenericTypographic,
 out charactersOnPage, out linesPerPage);

 // Draws the string within the bounds of the page
 e.Graphics.DrawString(stringToPrint, this.Font, Brushes.Black,
 e.MarginBounds, StringFormat.GenericTypographic);

 // Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage);

 // Check to see if more pages are to be printed.
 e.HasMorePages = (stringToPrint.Length > 0);
 }

 private void printButton_Click(object sender, EventArgs e)
 {
 ReadFile();
 printDocument1.Print();
 }

 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

Imports System.Drawing
Imports System.IO
Imports System.Drawing.Printing
Imports System.Windows.Forms

Public Class Form1
 Inherits Form
 Private printButton As Button

 Private printDocument1 As New PrintDocument()
 Private stringToPrint As String

 Public Sub New()
 Me.printButton = New System.Windows.Forms.Button()
 Me.printButton.Location = New System.Drawing.Point(12, 51)
 Me.printButton.Size = New System.Drawing.Size(75, 23)
 Me.printButton.Text = "Print"
 Me.ClientSize = New System.Drawing.Size(292, 266)
 End Sub

 Private Sub ReadFile()
 Dim docName As String = "testPage.txt"
 Dim docPath As String = "c:\"
 printDocument1.DocumentName = docName
 Dim stream As New FileStream(docPath + docName, FileMode.Open)
 Try
 Dim reader As New StreamReader(stream)
 Try
 stringToPrint = reader.ReadToEnd()
 Finally
 reader.Dispose()
 End Try
 Finally
 stream.Dispose()
 End Try
 End Sub

 Private Sub printDocument1_PrintPage(ByVal sender As Object, _
 ByVal e As PrintPageEventArgs)

 Dim charactersOnPage As Integer = 0
 Dim linesPerPage As Integer = 0

 ' Sets the value of charactersOnPage to the number of characters
 ' of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, Me.Font, e.MarginBounds.Size, _
 StringFormat.GenericTypographic, charactersOnPage, linesPerPage)

 ' Draws the string within the bounds of the page
 e.Graphics.DrawString(stringToPrint, Me.Font, Brushes.Black, _
 e.MarginBounds, StringFormat.GenericTypographic)

 ' Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage)

 ' Check to see if more pages are to be printed.
 e.HasMorePages = stringToPrint.Length > 0

 End Sub

 Private Sub printButton_Click(ByVal sender As Object, ByVal e As EventArgs)
 ReadFile()
 printDocument1.Print()
 End Sub

 <STAThread()> _
 Shared Sub Main()
 Application.EnableVisualStyles()
 Application.SetCompatibleTextRenderingDefault(False)
 Application.Run(New Form1())
 End Sub
End Class

Compiling the Code

See also

This example requires:

A text file named testPage.txt containing the text to print, located in the root of drive C:\. Edit the code to

print a different file.

References to the System, System.Windows.Forms, System.Drawing assemblies.

For information about building this example from the command line for Visual Basic or Visual C#, see

Building from the Command Line or Command-line Building With csc.exe. You can also build this

example in Visual Studio by pasting the code into a new project.

Graphics

Brush

Windows Forms Print Support

https://docs.microsoft.com/en-us/dotnet/visual-basic/reference/command-line-compiler/building-from-the-command-line
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-building-with-csc-exe
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush

How to: Complete Windows Forms Print Jobs
11/3/2020 • 2 minutes to read • Edit Online

To complete a print job

Frequently, word processors and other applications that involve printing will provide the option to display a

message to users that a print job is complete. You can provide this functionality in your Windows Forms by

handling the EndPrint event of the PrintDocument component.

The following procedure requires that you have created a Windows-based application with a PrintDocument

component on it, which is the standard way of enabling printing from a Windows-based application. For more

information about printing from Windows Forms using the PrintDocument component, see How to: Create

Standard Windows Forms Print Jobs.

PrintDocument1.DocumentName = "MyTextFile"

printDocument1.DocumentName = "MyTextFile";

printDocument1->DocumentName = "MyTextFile";

Private Sub PrintDocument1_EndPrint(ByVal sender As Object, ByVal e As
System.Drawing.Printing.PrintEventArgs) Handles PrintDocument1.EndPrint
 MessageBox.Show(PrintDocument1.DocumentName + " has finished printing.")
End Sub

private void printDocument1_EndPrint(object sender,
System.Drawing.Printing.PrintEventArgs e)
{
 MessageBox.Show(printDocument1.DocumentName +
 " has finished printing.");
}

private:
 void printDocument1_EndPrint(System::Object ^ sender,
 System::Drawing::Printing::PrintEventArgs ^ e)
 {
 MessageBox::Show(String::Concat(printDocument1->DocumentName,
 " has finished printing."));
 }

1. Set the DocumentName property of the PrintDocument component.

2. Write code to handle the EndPrint event.

In the following code example, a message box is displayed, indicating that the document has finished

printing.

(Visual C# and Visual C++) Place the following code in the form's constructor to register the event

handler.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-complete-windows-forms-print-jobs.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.endprint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.documentname
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.endprint

See also

this.printDocument1.EndPrint += new
 System.Drawing.Printing.PrintEventHandler
 (this.printDocument1_EndPrint);

this->printDocument1->EndPrint += gcnew
 System::Drawing::Printing::PrintEventHandler
 (this, &Form1::printDocument1_EndPrint);

PrintDocument

Windows Forms Print Support

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument

How to: Print a Windows Form
11/3/2020 • 2 minutes to read • Edit Online

Example

using System;
using System.Windows.Forms;
using System.Drawing;
using System.Drawing.Printing;

public class Form1 :
 Form
{
 private Button printButton = new Button();
 private PrintDocument printDocument1 = new PrintDocument();

 public Form1()
 {
 printButton.Text = "Print Form";
 printButton.Click += new EventHandler(printButton_Click);
 printDocument1.PrintPage += new PrintPageEventHandler(printDocument1_PrintPage);
 this.Controls.Add(printButton);
 }

 void printButton_Click(object sender, EventArgs e)
 {
 CaptureScreen();
 printDocument1.Print();
 }

 Bitmap memoryImage;

 private void CaptureScreen()
 {
 Graphics myGraphics = this.CreateGraphics();
 Size s = this.Size;
 memoryImage = new Bitmap(s.Width, s.Height, myGraphics);
 Graphics memoryGraphics = Graphics.FromImage(memoryImage);
 memoryGraphics.CopyFromScreen(this.Location.X, this.Location.Y, 0, 0, s);
 }

 private void printDocument1_PrintPage(System.Object sender,
 System.Drawing.Printing.PrintPageEventArgs e)
 {
 e.Graphics.DrawImage(memoryImage, 0, 0);
 }

 public static void Main()
 {
 Application.Run(new Form1());
 }
}

As part of the development process, you typically will want to print a copy of your Windows Form. The following

code example shows how to print a copy of the current form by using the CopyFromScreen method.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-print-a-windows-form.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.copyfromscreen

Imports System.Windows.Forms
Imports System.Drawing
Imports System.Drawing.Printing

Public Class Form1
 Inherits Form
 Private WithEvents printButton As New Button
 Private WithEvents printDocument1 As New PrintDocument

 Public Sub New()
 printButton.Text = "Print Form"
 Me.Controls.Add(printButton)
 End Sub

 Dim memoryImage As Bitmap

 Private Sub CaptureScreen()
 Dim myGraphics As Graphics = Me.CreateGraphics()
 Dim s As Size = Me.Size
 memoryImage = New Bitmap(s.Width, s.Height, myGraphics)
 Dim memoryGraphics As Graphics = Graphics.FromImage(memoryImage)
 memoryGraphics.CopyFromScreen(Me.Location.X, Me.Location.Y, 0, 0, s)
 End Sub

 Private Sub printDocument1_PrintPage(ByVal sender As System.Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) Handles _
 printDocument1.PrintPage
 e.Graphics.DrawImage(memoryImage, 0, 0)
 End Sub

 Private Sub printButton_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles printButton.Click
 CaptureScreen()
 printDocument1.Print()
 End Sub

 Public Shared Sub Main()
 Application.Run(New Form1())
 End Sub
End Class

Robust Programming

.NET Framework Security

See also

The following conditions may cause an exception:

You do not have permission to access the printer.

There is no printer installed.

In order to run this code example, you must have permission to access the printer you use with your computer.

PrintDocument

How to: Render Images with GDI+

How to: Print Graphics in Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument

How to: Print in Windows Forms Using Print
Preview
11/3/2020 • 7 minutes to read • Edit Online

To preview a text document with a PrintPreviewDialog control

It is very common in Windows Forms programming to offer print preview in addition to printing services. An

easy way to add print preview services to your application is to use a PrintPreviewDialog control in combination

with the PrintPage event-handling logic for printing a file.

private PrintPreviewDialog printPreviewDialog1 = new PrintPreviewDialog();
private PrintDocument printDocument1 = new PrintDocument();

// Declare a string to hold the entire document contents.
private string documentContents;

// Declare a variable to hold the portion of the document that
// is not printed.
private string stringToPrint;

Private printPreviewDialog1 As New PrintPreviewDialog()
Private WithEvents printDocument1 As New PrintDocument()

' Declare a string to hold the entire document contents.
Private documentContents As String

' Declare a variable to hold the portion of the document that
' is not printed.
Private stringToPrint As String

private void ReadDocument()
{
 string docName = "testPage.txt";
 string docPath = @"c:\";
 printDocument1.DocumentName = docName;
 using (FileStream stream = new FileStream(docPath + docName, FileMode.Open))
 using (StreamReader reader = new StreamReader(stream))
 {
 documentContents = reader.ReadToEnd();
 }
 stringToPrint = documentContents;
}

1. Add a PrintPreviewDialog, PrintDocument, and two strings to your form.

2. Set the DocumentName property to the document you wish to print, and open and read the document's

contents to the string you added previously.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-print-in-windows-forms-using-print-preview.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.documentname

Private Sub ReadDocument()
 Dim docName As String = "testPage.txt"
 Dim docPath As String = "c:\"
 printDocument1.DocumentName = docName
 Dim stream As New FileStream(docPath + docName, FileMode.Open)
 Try
 Dim reader As New StreamReader(stream)
 Try
 documentContents = reader.ReadToEnd()
 Finally
 reader.Dispose()
 End Try
 Finally
 stream.Dispose()
 End Try
 stringToPrint = documentContents

End Sub

NOTE

void printDocument1_PrintPage(object sender, PrintPageEventArgs e)
{
 int charactersOnPage = 0;
 int linesPerPage = 0;

 // Sets the value of charactersOnPage to the number of characters
 // of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, this.Font,
 e.MarginBounds.Size, StringFormat.GenericTypographic,
 out charactersOnPage, out linesPerPage);

 // Draws the string within the bounds of the page.
 e.Graphics.DrawString(stringToPrint, this.Font, Brushes.Black,
 e.MarginBounds, StringFormat.GenericTypographic);

 // Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage);

 // Check to see if more pages are to be printed.
 e.HasMorePages = (stringToPrint.Length > 0);

 // If there are no more pages, reset the string to be printed.
 if (!e.HasMorePages)
 stringToPrint = documentContents;
}

3. As you would for printing the document, in the PrintPage event handler, use the Graphics property of the

PrintPageEventArgs class and the file contents to calculate lines per page and render the document's

contents. After each page is drawn, check to see if it is the last page, and set the HasMorePages property

of the PrintPageEventArgs accordingly. The PrintPage event is raised until HasMorePages is false . When

the document has finished rendering, reset the string to be rendered. Also, make sure the PrintPage event

is associated with its event-handling method.

You may have already completed steps 2 and 3 if you have implemented printing in your application.

In the following code example, the event handler is used to print the "testPage.txt" file in the same font

used on the form.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs.hasmorepages
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printpageeventargs.hasmorepages
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage

Sub printDocument1_PrintPage(ByVal sender As Object, _
 ByVal e As PrintPageEventArgs) Handles printDocument1.PrintPage

 Dim charactersOnPage As Integer = 0
 Dim linesPerPage As Integer = 0

 ' Sets the value of charactersOnPage to the number of characters
 ' of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, Me.Font, e.MarginBounds.Size, _
 StringFormat.GenericTypographic, charactersOnPage, linesPerPage)

 ' Draws the string within the bounds of the page.
 e.Graphics.DrawString(stringToPrint, Me.Font, Brushes.Black, _
 e.MarginBounds, StringFormat.GenericTypographic)

 ' Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage)

 ' Check to see if more pages are to be printed.
 e.HasMorePages = stringToPrint.Length > 0

 ' If there are no more pages, reset the string to be printed.
 If Not e.HasMorePages Then
 stringToPrint = documentContents
 End If

End Sub

printPreviewDialog1.Document = printDocument1;

printPreviewDialog1.Document = printDocument1

private void printPreviewButton_Click(object sender, EventArgs e)
{
 ReadDocument();
 printPreviewDialog1.Document = printDocument1;
printPreviewDialog1.ShowDialog();
}

4. Set the Document property of the PrintPreviewDialog control to the PrintDocument component on the

form.

5. Call the ShowDialog method on the PrintPreviewDialog control. You would typically call ShowDialog

from the Click event-handling method of a button. Calling ShowDialog raises the PrintPage event and

renders the output to the PrintPreviewDialog control. When the user clicks the print icon on the dialog,

the PrintPage event is raised again, sending the output to the printer instead of the preview dialog. This is

why the string is reset at the end of the rendering process in step 3.

The following code example shows the Click event-handling method for a button on the form. This event-

handling method calls the methods to read the document and show the print preview dialog.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog.document
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.commondialog.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.commondialog.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.commondialog.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument.printpage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click

Example

using System;
using System.Drawing;
using System.IO;
using System.Drawing.Printing;
using System.Windows.Forms;

namespace PrintPreviewApp
{
 public partial class Form1 : Form
 {
 private Button printPreviewButton;

 private PrintPreviewDialog printPreviewDialog1 = new PrintPreviewDialog();
 private PrintDocument printDocument1 = new PrintDocument();

 // Declare a string to hold the entire document contents.
 private string documentContents;

 // Declare a variable to hold the portion of the document that
 // is not printed.
 private string stringToPrint;

 public Form1()
 {
 this.printPreviewButton = new System.Windows.Forms.Button();
 this.printPreviewButton.Location = new System.Drawing.Point(12, 12);
 this.printPreviewButton.Size = new System.Drawing.Size(125, 23);
 this.printPreviewButton.Text = "Print Preview";
 this.printPreviewButton.Click += new System.EventHandler(this.printPreviewButton_Click);
 this.ClientSize = new System.Drawing.Size(292, 266);
 this.Controls.Add(this.printPreviewButton);
 printDocument1.PrintPage +=
 new PrintPageEventHandler(printDocument1_PrintPage);
 }
 private void ReadDocument()
 {
 string docName = "testPage.txt";
 string docPath = @"c:\";
 printDocument1.DocumentName = docName;
 using (FileStream stream = new FileStream(docPath + docName, FileMode.Open))
 using (StreamReader reader = new StreamReader(stream))
 {
 documentContents = reader.ReadToEnd();
 }
 stringToPrint = documentContents;
 }

 void printDocument1_PrintPage(object sender, PrintPageEventArgs e)
 {
 int charactersOnPage = 0;
 int linesPerPage = 0;

 // Sets the value of charactersOnPage to the number of characters
 // of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, this.Font,

Private Sub printPreviewButton_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles printPreviewButton.Click

 ReadDocument()
 printPreviewDialog1.Document = printDocument1
 printPreviewDialog1.ShowDialog()
End Sub

 e.MarginBounds.Size, StringFormat.GenericTypographic,
 out charactersOnPage, out linesPerPage);

 // Draws the string within the bounds of the page.
 e.Graphics.DrawString(stringToPrint, this.Font, Brushes.Black,
 e.MarginBounds, StringFormat.GenericTypographic);

 // Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage);

 // Check to see if more pages are to be printed.
 e.HasMorePages = (stringToPrint.Length > 0);

 // If there are no more pages, reset the string to be printed.
 if (!e.HasMorePages)
 stringToPrint = documentContents;
 }
 private void printPreviewButton_Click(object sender, EventArgs e)
 {
 ReadDocument();
 printPreviewDialog1.Document = printDocument1;
 printPreviewDialog1.ShowDialog();
 }

 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

Imports System.Drawing
Imports System.IO
Imports System.Drawing.Printing
Imports System.Windows.Forms

Class Form1
 Inherits Form

 Private WithEvents printPreviewButton As Button

 Private printPreviewDialog1 As New PrintPreviewDialog()
 Private WithEvents printDocument1 As New PrintDocument()

 ' Declare a string to hold the entire document contents.
 Private documentContents As String

 ' Declare a variable to hold the portion of the document that
 ' is not printed.
 Private stringToPrint As String

 Public Sub New()
 Me.printPreviewButton = New System.Windows.Forms.Button()
 Me.printPreviewButton.Location = New System.Drawing.Point(12, 12)
 Me.printPreviewButton.Size = New System.Drawing.Size(125, 23)
 Me.printPreviewButton.Text = "Print Preview"
 Me.ClientSize = New System.Drawing.Size(292, 266)
 Me.Controls.Add(Me.printPreviewButton)

 End Sub

 Private Sub ReadDocument()

 Dim docName As String = "testPage.txt"
 Dim docPath As String = "c:\"
 printDocument1.DocumentName = docName
 Dim stream As New FileStream(docPath + docName, FileMode.Open)
 Try
 Dim reader As New StreamReader(stream)
 Try
 documentContents = reader.ReadToEnd()
 Finally
 reader.Dispose()
 End Try
 Finally
 stream.Dispose()
 End Try
 stringToPrint = documentContents

 End Sub

 Sub printDocument1_PrintPage(ByVal sender As Object, _
 ByVal e As PrintPageEventArgs) Handles printDocument1.PrintPage

 Dim charactersOnPage As Integer = 0
 Dim linesPerPage As Integer = 0

 ' Sets the value of charactersOnPage to the number of characters
 ' of stringToPrint that will fit within the bounds of the page.
 e.Graphics.MeasureString(stringToPrint, Me.Font, e.MarginBounds.Size, _
 StringFormat.GenericTypographic, charactersOnPage, linesPerPage)

 ' Draws the string within the bounds of the page.
 e.Graphics.DrawString(stringToPrint, Me.Font, Brushes.Black, _
 e.MarginBounds, StringFormat.GenericTypographic)

 ' Remove the portion of the string that has been printed.
 stringToPrint = stringToPrint.Substring(charactersOnPage)

 ' Check to see if more pages are to be printed.
 e.HasMorePages = stringToPrint.Length > 0

 ' If there are no more pages, reset the string to be printed.
 If Not e.HasMorePages Then
 stringToPrint = documentContents
 End If

 End Sub

 Private Sub printPreviewButton_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles printPreviewButton.Click

 ReadDocument()
 printPreviewDialog1.Document = printDocument1
 printPreviewDialog1.ShowDialog()
 End Sub

 <STAThread()> _
 Shared Sub Main()
 Application.EnableVisualStyles()
 Application.SetCompatibleTextRenderingDefault(False)
 Application.Run(New Form1())

 End Sub
End Class

Compiling the Code
This example requires:

See also

References to the System, System.Windows.Forms, System.Drawing assemblies.

How to: Print a Multi-Page Text File in Windows Forms

Windows Forms Print Support

More Secure Printing in Windows Forms

https://docs.microsoft.com/en-us/dotnet/desktop/winforms/more-secure-printing-in-windows-forms

Drag-and-Drop Operations and Clipboard Support
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Related Sections

You can enable user drag-and-drop operations within a Windows-based application by handling a series of

events, most notably the DragEnter, DragLeave, and DragDrop events.

You can also implement user cut/copy/paste support and user data transfer to the Clipboard within your

Windows-based applications by using simple method calls.

Walkthrough: Performing a Drag-and-Drop Operation in Windows Forms

Explains how to start a drag-and-drop operation.

How to: Perform Drag-and-Drop Operations Between Applications

Illustrates how to accomplish drag-and-drop operations across applications.

How to: Add Data to the Clipboard

Describes a way to programmatically insert information on the Clipboard.

How to: Retrieve Data from the Clipboard

Describes how to access the data stored on the Clipboard.

Drag-and-Drop Functionality in Windows Forms

Describes the methods, events, and classes used to implement drag-and-drop behavior.

QueryContinueDrag

Describes the intricacies of the event that asks permission to continue the drag operation.

DoDragDrop

Describes the intricacies of the method that is central to beginning a drag operation.

Clipboard

Also see How to: Send Data to the Active MDI Child.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/drag-and-drop-operations-and-clipboard-support.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragleave
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragdrop
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/drag-and-drop-functionality-in-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.querycontinuedrag
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dodragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard

Walkthrough: Performing a Drag-and-Drop
Operation in Windows Forms
11/3/2020 • 3 minutes to read • Edit Online

Dragging Data

NOTE

To start a drag operation

To perform drag-and-drop operations within Windows-based applications you must handle a series of events,

most notably the DragEnter, DragLeave, and DragDrop events. By working with the information available in the

event arguments of these events, you can easily facilitate drag-and-drop operations.

All drag-and-drop operations begin with dragging. The functionality to enable data to be collected when

dragging begins is implemented in the DoDragDrop method.

In the following example, the MouseDown event is used to start the drag operation because it is the most

intuitive (most drag-and-drop actions begin with the mouse button being depressed). However, remember that

any event could be used to initiate a drag-and-drop procedure.

Certain controls have custom drag-specific events. The ListView and TreeView controls, for example, have an ItemDrag

event.

Private Sub Button1_MouseDown(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs)
Handles Button1.MouseDown
 Button1.DoDragDrop(Button1.Text, DragDropEffects.Copy Or DragDropEffects.Move)
End Sub

private void button1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)
{
 button1.DoDragDrop(button1.Text, DragDropEffects.Copy |
 DragDropEffects.Move);
}

NOTE

1. In the MouseDown event for the control where the drag will begin, use the DoDragDrop method to set the

data to be dragged and the allowed effect dragging will have. For more information, see Data and

AllowedEffect.

The following example shows how to initiate a drag operation. The control where the drag begins is a

Button control, the data being dragged is the string representing the Text property of the Button control,

and the allowed effects are either copying or moving.

Any data can be used as a parameter in the DoDragDrop method; in the example above, the Text property of the

Button control was used (rather than hard-coding a value or retrieving data from a dataset) because the property

was related to the location being dragged from (the Button control). Keep this in mind as you incorporate drag-

and-drop operations into your Windows-based applications.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/walkthrough-performing-a-drag-and-drop-operation-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragleave
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dodragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview.itemdrag
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.data
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.allowedeffect
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

Dropping Data

To perform a drop

While a drag operation is in effect, you can handle the QueryContinueDrag event, which "asks permission" of

the system to continue the drag operation. When handling this method, it is also the appropriate point for you

to call methods that will have an effect on the drag operation, such as expanding a TreeNode in a TreeView

control when the cursor hovers over it.

Once you have begun dragging data from a location on a Windows Form or control, you will naturally want to

drop it somewhere. The cursor will change when it crosses an area of a form or control that is correctly

configured for dropping data. Any area within a Windows Form or control can be made to accept dropped data

by setting the AllowDrop property and handling the DragEnter and DragDrop events.

Private Sub TextBox1_DragEnter(ByVal sender As Object, ByVal e As System.Windows.Forms.DragEventArgs)
Handles TextBox1.DragEnter
 If (e.Data.GetDataPresent(DataFormats.Text)) Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If
End Sub

private void textBox1_DragEnter(object sender,
System.Windows.Forms.DragEventArgs e)
{
 if (e.Data.GetDataPresent(DataFormats.Text))
 e.Effect = DragDropEffects.Copy;
 else
 e.Effect = DragDropEffects.None;
}

NOTE

Private Sub TextBox1_DragDrop(ByVal sender As Object, ByVal e As System.Windows.Forms.DragEventArgs)
Handles TextBox1.DragDrop
 TextBox1.Text = e.Data.GetData(DataFormats.Text).ToString
End Sub

1. Set the AllowDrop property to true.

2. In the DragEnter event for the control where the drop will occur, ensure that the data being dragged is of

an acceptable type (in this case, Text). The code then sets the effect that will happen when the drop occurs

to a value in the DragDropEffects enumeration. For more information, see Effect.

You can define your own DataFormats by specifying your own object as the Object parameter of the SetData

method. Be sure, when doing this, that the object specified is serializable. For more information, see ISerializable.

3. In the DragDrop event for the control where the drop will occur, use the GetData method to retrieve the

data being dragged. For more information, see Data.

In the example below, a TextBox control is the control being dragged to (where the drop will occur). The

code sets the Text property of the TextBox control equal to the data being dragged.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.querycontinuedrag
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treenode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.allowdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.allowdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dragdropeffects
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.effect
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataformats
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataobject.setdata
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataobject.getdata
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.xml.dataobject.data
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox

See also

private void textBox1_DragDrop(object sender,
System.Windows.Forms.DragEventArgs e)
{
 textBox1.Text = e.Data.GetData(DataFormats.Text).ToString();
}

NOTE
Additionally, you can work with the KeyState property, so that, depending on keys depressed during the drag-

and-drop operation, certain effects occur (for example, it is standard to copy the dragged data when the CTRL key

is pressed).

How to: Add Data to the Clipboard

How to: Retrieve Data from the Clipboard

Drag-and-Drop Operations and Clipboard Support

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.keystate

How to: Perform Drag-and-Drop Operations
Between Applications
11/3/2020 • 2 minutes to read • Edit Online

To perform a drag-and-drop procedure between applications

See also

Performing drag-and-drop operations between applications is no different than enabling this action within an

application, as long as both applications involved behave according to the "contract" established between the

AllowedEffect and Effect properties.

In the following procedure, you will use a Windows-based application you create and the WordPad word

processor that is included with the Windows operating system to perform drag-and-drop operations between

applications. WordPad has a certain set of allowed effects for text being dragged and dropped; the Windows-

based application you will write code for will work with these effects so that drag-and-drop operations may be

completed successfully.

1. Create a new Windows Forms application.

2. Add a TextBox control to your form.

3. Configure the TextBox control to receive dropped data.

For more information, see Walkthrough: Performing a Drag-and-Drop Operation in Windows Forms.

4. Run your Windows-based application, and while the application is running, run WordPad.

WordPad is a text editor installed by Windows that allows drag-and-drop operations. It is accessible by

pressing the Star t button, selecting Run, and then typing WordPad into the text box of the Run dialog

box and clicking OK.

5. Once WordPad is open, type a string of text into it.

6. Using the mouse, select the text, and then drag the selected text over to the TextBox control in your

Windows-based application.

Observe that when you mouse over the TextBox control (and, consequently, raise the DragEnter event),

the cursor changes, and you can drop the selected text into the TextBox control.

Additionally, you can configure your TextBox control to allow text strings to be dragged and dropped into

WordPad. For more information, see Walkthrough: Performing a Drag-and-Drop Operation in Windows

Forms.

How to: Add Data to the Clipboard

How to: Retrieve Data from the Clipboard

Drag-and-Drop Operations and Clipboard Support

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-perform-drag-and-drop-operations-between-applications.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.allowedeffect
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.effect
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox

How to: Add Data to the Clipboard
11/3/2020 • 5 minutes to read • Edit Online

NOTE

To add data to the Clipboard in a single, common format

The Clipboard class provides methods that you can use to interact with the Windows operating system

Clipboard feature. Many applications use the Clipboard as a temporary repository for data. For example, word

processors use the Clipboard during cut-and-paste operations. The Clipboard is also useful for transferring data

from one application to another.

When you add data to the Clipboard, you can indicate the data format so that other applications can recognize

the data if they can use that format. You can also add data to the Clipboard in multiple different formats to

increase the number of other applications that can potentially use the data.

A Clipboard format is a string that identifies the format so that an application that uses that format can retrieve

the associated data. The DataFormats class provides predefined format names for your use. You can also use

your own format names or use the type of an object as its format.

To add data to the Clipboard in one or multiple formats, use the SetDataObject method. You can pass any object

to this method, but to add data in multiple formats, you must first add the data to a separate object designed to

work with multiple formats. Typically, you will add your data to a DataObject, but you can use any type that

implements the IDataObject interface.

In .NET Framework 2.0, you can add data directly to the Clipboard by using new methods designed to make

basic Clipboard tasks easier. Use these methods when you work with data in a single, common format such as

text.

All Windows-based applications share the Clipboard. Therefore, the contents are subject to change when you switch to

another application.

The Clipboard class can only be used in threads set to single thread apartment (STA) mode. To use this class, ensure that

your Main method is marked with the STAThreadAttribute attribute.

An object must be serializable for it to be put on the Clipboard. To make a type serializable, mark it with the

SerializableAttribute attribute. If you pass a non-serializable object to a Clipboard method, the method will fail without

throwing an exception. For more information about serialization, see System.Runtime.Serialization.

1. Use the SetAudio, SetFileDropList, SetImage, or SetText method. These methods are available only in .NET

Framework 2.0.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-add-data-to-the-clipboard.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataformats
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setdataobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.idataobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard
https://docs.microsoft.com/en-us/dotnet/api/system.stathreadattribute
https://docs.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setaudio
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setfiledroplist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setimage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.settext

// Demonstrates SetAudio, ContainsAudio, and GetAudioStream.
public System.IO.Stream SwapClipboardAudio(
 System.IO.Stream replacementAudioStream)
{
 System.IO.Stream returnAudioStream = null;
 if (Clipboard.ContainsAudio())
 {
 returnAudioStream = Clipboard.GetAudioStream();
 Clipboard.SetAudio(replacementAudioStream);
 }
 return returnAudioStream;
}

// Demonstrates SetFileDropList, ContainsFileDroList, and GetFileDropList
public System.Collections.Specialized.StringCollection
 SwapClipboardFileDropList(
 System.Collections.Specialized.StringCollection replacementList)
{
 System.Collections.Specialized.StringCollection returnList = null;
 if (Clipboard.ContainsFileDropList())
 {
 returnList = Clipboard.GetFileDropList();
 Clipboard.SetFileDropList(replacementList);
 }
 return returnList;
}

// Demonstrates SetImage, ContainsImage, and GetImage.
public System.Drawing.Image SwapClipboardImage(
 System.Drawing.Image replacementImage)
{
 System.Drawing.Image returnImage = null;
 if (Clipboard.ContainsImage())
 {
 returnImage = Clipboard.GetImage();
 Clipboard.SetImage(replacementImage);
 }
 return returnImage;
}

// Demonstrates SetText, ContainsText, and GetText.
public String SwapClipboardHtmlText(String replacementHtmlText)
{
 String returnHtmlText = null;
 if (Clipboard.ContainsText(TextDataFormat.Html))
 {
 returnHtmlText = Clipboard.GetText(TextDataFormat.Html);
 Clipboard.SetText(replacementHtmlText, TextDataFormat.Html);
 }
 return returnHtmlText;
}

To add data to the Clipboard in a custom format

' Demonstrates SetAudio, ContainsAudio, and GetAudioStream.
Public Function SwapClipboardAudio(_
 ByVal replacementAudioStream As System.IO.Stream) _
 As System.IO.Stream

 Dim returnAudioStream As System.IO.Stream = Nothing

 If (Clipboard.ContainsAudio()) Then
 returnAudioStream = Clipboard.GetAudioStream()
 Clipboard.SetAudio(replacementAudioStream)
 End If

 Return returnAudioStream

End Function

' Demonstrates SetFileDropList, ContainsFileDroList, and GetFileDropList
Public Function SwapClipboardFileDropList(ByVal replacementList _
 As System.Collections.Specialized.StringCollection) _
 As System.Collections.Specialized.StringCollection

 Dim returnList As System.Collections.Specialized.StringCollection _
 = Nothing

 If Clipboard.ContainsFileDropList() Then

 returnList = Clipboard.GetFileDropList()
 Clipboard.SetFileDropList(replacementList)
 End If

 Return returnList

End Function

' Demonstrates SetImage, ContainsImage, and GetImage.
Public Function SwapClipboardImage(_
 ByVal replacementImage As System.Drawing.Image) _
 As System.Drawing.Image

 Dim returnImage As System.Drawing.Image = Nothing

 If Clipboard.ContainsImage() Then
 returnImage = Clipboard.GetImage()
 Clipboard.SetImage(replacementImage)
 End If

 Return returnImage
End Function

' Demonstrates SetText, ContainsText, and GetText.
Public Function SwapClipboardHtmlText(_
 ByVal replacementHtmlText As String) As String

 Dim returnHtmlText As String = Nothing

 If (Clipboard.ContainsText(TextDataFormat.Html)) Then
 returnHtmlText = Clipboard.GetText(TextDataFormat.Html)
 Clipboard.SetText(replacementHtmlText, TextDataFormat.Html)
 End If

 Return returnHtmlText

End Function

1. Use the SetData method with a custom format name. This method is available only in .NET Framework

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setdata

// Demonstrates SetData, ContainsData, and GetData
// using a custom format name and a business object.
public Customer TestCustomFormat
{
 get
 {
 Clipboard.SetData("CustomerFormat", new Customer("Customer Name"));
 if (Clipboard.ContainsData("CustomerFormat"))
 {
 return Clipboard.GetData("CustomerFormat") as Customer;
 }
 return null;
 }
}

' Demonstrates SetData, ContainsData, and GetData
' using a custom format name and a business object.
Public ReadOnly Property TestCustomFormat() As Customer
 Get
 Clipboard.SetData("CustomerFormat", New Customer("Customer Name"))

 If Clipboard.ContainsData("CustomerFormat") Then
 Return CType(Clipboard.GetData("CustomerFormat"), Customer)
 End If

 Return Nothing
 End Get
End Property

[Serializable]
public class Customer
{
 private string nameValue = string.Empty;
 public Customer(String name)
 {
 nameValue = name;
 }
 public string Name
 {
 get { return nameValue; }
 set { nameValue = value; }
 }
}

2.0.

You can also use predefined format names with the SetData method. For more information, see

DataFormats.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setdata
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataformats

To add data to the Clipboard in multiple formats

<Serializable()> Public Class Customer

 Private nameValue As String = String.Empty

 Public Sub New(ByVal name As String)
 nameValue = name
 End Sub

 Public Property Name() As String
 Get
 Return nameValue
 End Get
 Set(ByVal value As String)
 nameValue = value
 End Set
 End Property

End Class

// Demonstrates how to use a DataObject to add
// data to the Clipboard in multiple formats.
public void TestClipboardMultipleFormats()
{
 DataObject data = new DataObject();

 // Add a Customer object using the type as the format.
 data.SetData(new Customer("Customer as Customer object"));

 // Add a ListViewItem object using a custom format name.
 data.SetData("CustomFormat",
 new ListViewItem("Customer as ListViewItem"));

 Clipboard.SetDataObject(data);
 DataObject retrievedData = (DataObject)Clipboard.GetDataObject();

 if (retrievedData.GetDataPresent("CustomFormat"))
 {
 ListViewItem item =
 retrievedData.GetData("CustomFormat") as ListViewItem;
 if (item != null)
 {
 MessageBox.Show(item.Text);
 }
 }

 if (retrievedData.GetDataPresent(typeof(Customer)))
 {
 Customer customer =
 retrievedData.GetData(typeof(Customer)) as Customer;
 if (customer != null)
 {
 MessageBox.Show(customer.Name);
 }
 }
}

1. Use the Clipboard.SetDataObject method and pass in a DataObject that contains your data. You must use

this method to add data to the Clipboard on versions earlier than .NET Framework 2.0.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setdataobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataobject

' Demonstrates how to use a DataObject to add
' data to the Clipboard in multiple formats.
Public Sub TestClipboardMultipleFormats()

 Dim data As New DataObject()

 ' Add a Customer object using the type as the format.
 data.SetData(New Customer("Customer as Customer object"))

 ' Add a ListViewItem object using a custom format name.
 data.SetData("CustomFormat", _
 New ListViewItem("Customer as ListViewItem"))

 Clipboard.SetDataObject(data)
 Dim retrievedData As DataObject = _
 CType(Clipboard.GetDataObject(), DataObject)

 If (retrievedData.GetDataPresent("CustomFormat")) Then

 Dim item As ListViewItem = _
 TryCast(retrievedData.GetData("CustomFormat"), ListViewItem)

 If item IsNot Nothing Then
 MessageBox.Show(item.Text)
 End If

 End If

 If retrievedData.GetDataPresent(GetType(Customer)) Then

 Dim customer As Customer = _
 CType(retrievedData.GetData(GetType(Customer)), Customer)

 If customer IsNot Nothing Then

 MessageBox.Show(customer.Name)
 End If

 End If

End Sub

[Serializable]
public class Customer
{
 private string nameValue = string.Empty;
 public Customer(String name)
 {
 nameValue = name;
 }
 public string Name
 {
 get { return nameValue; }
 set { nameValue = value; }
 }
}

See also

<Serializable()> Public Class Customer

 Private nameValue As String = String.Empty

 Public Sub New(ByVal name As String)
 nameValue = name
 End Sub

 Public Property Name() As String
 Get
 Return nameValue
 End Get
 Set(ByVal value As String)
 nameValue = value
 End Set
 End Property

End Class

Drag-and-Drop Operations and Clipboard Support

How to: Retrieve Data from the Clipboard

How to: Retrieve Data from the Clipboard
11/3/2020 • 5 minutes to read • Edit Online

NOTE

To retrieve data from the Clipboard in a single, common format

The Clipboard class provides methods that you can use to interact with the Windows operating system

Clipboard feature. Many applications use the Clipboard as a temporary repository for data. For example, word

processors use the Clipboard during cut-and-paste operations. The Clipboard is also useful for transferring

information from one application to another.

Some applications store data on the Clipboard in multiple formats to increase the number of other applications

that can potentially use the data. A Clipboard format is a string that identifies the format. An application that

uses the identified format can retrieve the associated data on the Clipboard. The DataFormats class provides

predefined format names for your use. You can also use your own format names or use an object's type as its

format. For information about adding data to the Clipboard, see How to: Add Data to the Clipboard.

To determine whether the Clipboard contains data in a particular format, use one of the Contains Format

methods or the GetData method. To retrieve data from the Clipboard, use one of the Get Format methods or the

GetData method. These methods are new in .NET Framework 2.0.

To access data from the Clipboard by using versions earlier than .NET Framework 2.0, use the

Clipboard.GetDataObject method and call the methods of the returned IDataObject. To determine whether a

particular format is available in the returned object, for example, call the GetDataPresent method.

All Windows-based applications share the system Clipboard. Therefore, the contents are subject to change when you

switch to another application.

The Clipboard class can only be used in threads set to single thread apartment (STA) mode. To use this class, ensure that

your Main method is marked with the STAThreadAttribute attribute.

1. Use the GetAudioStream, GetFileDropList, GetImage, or GetText method. Optionally, use the

corresponding Contains Format methods first to determine whether data is available in a particular

format. These methods are available only in .NET Framework 2.0.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-retrieve-data-from-the-clipboard.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataformats
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getdata
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getdata
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getdataobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.idataobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.idataobject.getdatapresent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard
https://docs.microsoft.com/en-us/dotnet/api/system.stathreadattribute
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getaudiostream
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getfiledroplist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getimage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.gettext

// Demonstrates SetAudio, ContainsAudio, and GetAudioStream.
public System.IO.Stream SwapClipboardAudio(
 System.IO.Stream replacementAudioStream)
{
 System.IO.Stream returnAudioStream = null;
 if (Clipboard.ContainsAudio())
 {
 returnAudioStream = Clipboard.GetAudioStream();
 Clipboard.SetAudio(replacementAudioStream);
 }
 return returnAudioStream;
}

// Demonstrates SetFileDropList, ContainsFileDroList, and GetFileDropList
public System.Collections.Specialized.StringCollection
 SwapClipboardFileDropList(
 System.Collections.Specialized.StringCollection replacementList)
{
 System.Collections.Specialized.StringCollection returnList = null;
 if (Clipboard.ContainsFileDropList())
 {
 returnList = Clipboard.GetFileDropList();
 Clipboard.SetFileDropList(replacementList);
 }
 return returnList;
}

// Demonstrates SetImage, ContainsImage, and GetImage.
public System.Drawing.Image SwapClipboardImage(
 System.Drawing.Image replacementImage)
{
 System.Drawing.Image returnImage = null;
 if (Clipboard.ContainsImage())
 {
 returnImage = Clipboard.GetImage();
 Clipboard.SetImage(replacementImage);
 }
 return returnImage;
}

// Demonstrates SetText, ContainsText, and GetText.
public String SwapClipboardHtmlText(String replacementHtmlText)
{
 String returnHtmlText = null;
 if (Clipboard.ContainsText(TextDataFormat.Html))
 {
 returnHtmlText = Clipboard.GetText(TextDataFormat.Html);
 Clipboard.SetText(replacementHtmlText, TextDataFormat.Html);
 }
 return returnHtmlText;
}

To retrieve data from the Clipboard in a custom format

' Demonstrates SetAudio, ContainsAudio, and GetAudioStream.
Public Function SwapClipboardAudio(_
 ByVal replacementAudioStream As System.IO.Stream) _
 As System.IO.Stream

 Dim returnAudioStream As System.IO.Stream = Nothing

 If (Clipboard.ContainsAudio()) Then
 returnAudioStream = Clipboard.GetAudioStream()
 Clipboard.SetAudio(replacementAudioStream)
 End If

 Return returnAudioStream

End Function

' Demonstrates SetFileDropList, ContainsFileDroList, and GetFileDropList
Public Function SwapClipboardFileDropList(ByVal replacementList _
 As System.Collections.Specialized.StringCollection) _
 As System.Collections.Specialized.StringCollection

 Dim returnList As System.Collections.Specialized.StringCollection _
 = Nothing

 If Clipboard.ContainsFileDropList() Then

 returnList = Clipboard.GetFileDropList()
 Clipboard.SetFileDropList(replacementList)
 End If

 Return returnList

End Function

' Demonstrates SetImage, ContainsImage, and GetImage.
Public Function SwapClipboardImage(_
 ByVal replacementImage As System.Drawing.Image) _
 As System.Drawing.Image

 Dim returnImage As System.Drawing.Image = Nothing

 If Clipboard.ContainsImage() Then
 returnImage = Clipboard.GetImage()
 Clipboard.SetImage(replacementImage)
 End If

 Return returnImage
End Function

' Demonstrates SetText, ContainsText, and GetText.
Public Function SwapClipboardHtmlText(_
 ByVal replacementHtmlText As String) As String

 Dim returnHtmlText As String = Nothing

 If (Clipboard.ContainsText(TextDataFormat.Html)) Then
 returnHtmlText = Clipboard.GetText(TextDataFormat.Html)
 Clipboard.SetText(replacementHtmlText, TextDataFormat.Html)
 End If

 Return returnHtmlText

End Function

1. Use the GetData method with a custom format name. This method is available only in .NET Framework

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getdata

// Demonstrates SetData, ContainsData, and GetData
// using a custom format name and a business object.
public Customer TestCustomFormat
{
 get
 {
 Clipboard.SetData("CustomerFormat", new Customer("Customer Name"));
 if (Clipboard.ContainsData("CustomerFormat"))
 {
 return Clipboard.GetData("CustomerFormat") as Customer;
 }
 return null;
 }
}

' Demonstrates SetData, ContainsData, and GetData
' using a custom format name and a business object.
Public ReadOnly Property TestCustomFormat() As Customer
 Get
 Clipboard.SetData("CustomerFormat", New Customer("Customer Name"))

 If Clipboard.ContainsData("CustomerFormat") Then
 Return CType(Clipboard.GetData("CustomerFormat"), Customer)
 End If

 Return Nothing
 End Get
End Property

[Serializable]
public class Customer
{
 private string nameValue = string.Empty;
 public Customer(String name)
 {
 nameValue = name;
 }
 public string Name
 {
 get { return nameValue; }
 set { nameValue = value; }
 }
}

2.0.

You can also use predefined format names with the SetData method. For more information, see

DataFormats.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.setdata
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dataformats

To retrieve data from the Clipboard in multiple formats

<Serializable()> Public Class Customer

 Private nameValue As String = String.Empty

 Public Sub New(ByVal name As String)
 nameValue = name
 End Sub

 Public Property Name() As String
 Get
 Return nameValue
 End Get
 Set(ByVal value As String)
 nameValue = value
 End Set
 End Property

End Class

// Demonstrates how to use a DataObject to add
// data to the Clipboard in multiple formats.
public void TestClipboardMultipleFormats()
{
 DataObject data = new DataObject();

 // Add a Customer object using the type as the format.
 data.SetData(new Customer("Customer as Customer object"));

 // Add a ListViewItem object using a custom format name.
 data.SetData("CustomFormat",
 new ListViewItem("Customer as ListViewItem"));

 Clipboard.SetDataObject(data);
 DataObject retrievedData = (DataObject)Clipboard.GetDataObject();

 if (retrievedData.GetDataPresent("CustomFormat"))
 {
 ListViewItem item =
 retrievedData.GetData("CustomFormat") as ListViewItem;
 if (item != null)
 {
 MessageBox.Show(item.Text);
 }
 }

 if (retrievedData.GetDataPresent(typeof(Customer)))
 {
 Customer customer =
 retrievedData.GetData(typeof(Customer)) as Customer;
 if (customer != null)
 {
 MessageBox.Show(customer.Name);
 }
 }
}

1. Use the GetDataObject method. You must use this method to retrieve data from the Clipboard on

versions earlier than .NET Framework 2.0.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.clipboard.getdataobject

' Demonstrates how to use a DataObject to add
' data to the Clipboard in multiple formats.
Public Sub TestClipboardMultipleFormats()

 Dim data As New DataObject()

 ' Add a Customer object using the type as the format.
 data.SetData(New Customer("Customer as Customer object"))

 ' Add a ListViewItem object using a custom format name.
 data.SetData("CustomFormat", _
 New ListViewItem("Customer as ListViewItem"))

 Clipboard.SetDataObject(data)
 Dim retrievedData As DataObject = _
 CType(Clipboard.GetDataObject(), DataObject)

 If (retrievedData.GetDataPresent("CustomFormat")) Then

 Dim item As ListViewItem = _
 TryCast(retrievedData.GetData("CustomFormat"), ListViewItem)

 If item IsNot Nothing Then
 MessageBox.Show(item.Text)
 End If

 End If

 If retrievedData.GetDataPresent(GetType(Customer)) Then

 Dim customer As Customer = _
 CType(retrievedData.GetData(GetType(Customer)), Customer)

 If customer IsNot Nothing Then

 MessageBox.Show(customer.Name)
 End If

 End If

End Sub

[Serializable]
public class Customer
{
 private string nameValue = string.Empty;
 public Customer(String name)
 {
 nameValue = name;
 }
 public string Name
 {
 get { return nameValue; }
 set { nameValue = value; }
 }
}

See also

<Serializable()> Public Class Customer

 Private nameValue As String = String.Empty

 Public Sub New(ByVal name As String)
 nameValue = name
 End Sub

 Public Property Name() As String
 Get
 Return nameValue
 End Get
 Set(ByVal value As String)
 nameValue = value
 End Set
 End Property

End Class

Drag-and-Drop Operations and Clipboard Support

How to: Add Data to the Clipboard

Networking in Windows Forms Applications
3/9/2021 • 2 minutes to read • Edit Online

Reference

Related Sections

The .NET Framework provides classes for displaying Web pages, downloading Web content, interacting with file

transfer protocol (FTP) sites, and consuming Web Services, making it easy to build network functionality into

your application. The following resources will help you understand the networking technologies of the .NET

Framework and how you can integrate them into Windows Forms.

System.Net

The root namespace for classes in the .NET Framework that handle network connectivity.

WebClient

A convenient class for retrieving Web or HTTP-based content programmatically.

FtpWebRequest

A class for retrieving and sending files with FTP.

WebBrowser

A managed wrapper class for the WebBrowser control that is included with Windows.

Network Programming in the .NET Framework

An introduction to networking in the .NET Framework.

Windows Forms Data Binding

Describes how to display database content in your application, either from a local data store or a database

located on a network.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/networking-in-windows-forms-applications.md
https://docs.microsoft.com/en-us/dotnet/api/system.net
https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.ftpwebrequest
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.webbrowser
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/index
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/windows-forms-data-binding

Globalizing Windows Forms applications
3/9/2021 • 2 minutes to read • Edit Online

In this section

Related sections

Globalization is the process of designing and developing a software product that functions for multiple cultures.

International Fonts in Windows Forms and Controls

Explains when and how to select fonts for display of international characters on Windows Forms.

Bi-Directional Support for Windows Forms Applications

Explains how to create Windows-based applications that support bi-directional (right-to-left) languages.

Display of Asian Characters with the ImeMode Property

Introduces the ImeMode property, which is used to control the type of input a Windows Form or control accepts.

Globalizing and localizing .NET applications

Walkthrough: Downloading Satellite Assemblies on Demand with the ClickOnce Deployment API Using

the Designer

Localizing ClickOnce Applications

Walkthrough: Downloading Satellite Assemblies on Demand with the ClickOnce Deployment API

How to: Set the Culture and UI Culture for Windows Forms Globalization

How to: Create Mirrored Windows Forms and Controls

How to: Support Localization on Windows Forms Using AutoSize and the TableLayoutPanel Control

Walkthrough: Localizing Windows Forms

Walkthrough: Creating a Layout That Adjusts Proportion for Localization

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/globalizing-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/index
https://docs.microsoft.com/en-us/visualstudio/deployment/walkthrough-downloading-satellite-assemblies-on-demand-with-the-clickonce-deployment-api-using-the-designer
https://docs.microsoft.com/en-us/visualstudio/deployment/localizing-clickonce-applications
https://docs.microsoft.com/en-us/visualstudio/deployment/walkthrough-downloading-satellite-assemblies-on-demand-with-the-clickonce-deployment-api
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/b28bx3bh(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/xwbz5ws0(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1zkt8b33(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y99d1cd3(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/7k9fa71y(v=vs.100)

International fonts in Windows Forms and controls
11/3/2020 • 2 minutes to read • Edit Online

Using font fallback

Private Sub MakeBold()
 ' Change the TextBox to a bold version of the form font
 TextBox1.Font = New Font(Me.Font, FontStyle.Bold)
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
 ' Clicking this button makes the TextBox bold
 MakeBold()
End Sub

Private Sub Form1_FontChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles
MyBase.FontChanged
 ' If the TextBox is already bold and the form's font changes,
 ' change the TextBox to a bold version of the new form font
 If (TextBox1.Font.Style = FontStyle.Bold) Then
 MakeBold()
 End If
End Sub

In International applications, the recommended method of selecting fonts is to use font fallback wherever

possible. Font fallback means that the system determines what script the character belongs to.

To take advantage of this feature, don't set the Font property for your form or any other element. The application

will automatically use the default system font, which differs from one localized language of the operating

system to another. When the application runs, the system will automatically provide the correct font for the

culture selected in the operating system.

There's an exception to the rule of not setting the font, which is for changing the font style. This might be

important for an application in which the user clicks a button to make text in a text box appear in boldface. To do

that, you would write a function to change the text box's font style to bold, based on whatever the form's font is.

It's important to call this function in two places: in the button's Click event handler and in the FontChanged event

handler. If the function is called only in the Click event handler and some other piece of code changes the font

family of the entire form, the text box doesn't change with the rest of the form.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/international-fonts-in-windows-forms-and-controls.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.fontchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click

private void button1_Click(object sender, System.EventArgs e)
{
 // Clicking this button makes the TextBox bold
 MakeBold();
}

private void MakeBold()
{
 // Change the TextBox to a bold version of the form's font
 textBox1.Font = new Font(this.Font, FontStyle.Bold);
}

private void Form1_FontChanged(object sender, System.EventArgs e)
{
 // If the TextBox is already bold and the form's font changes,
 // change the TextBox to a bold version of the new form font
 if (textBox1.Font.Style == FontStyle.Bold)
 {
 MakeBold();
 }
}

TextBox1.Font = New System.Drawing.Font(Me.Font, TextBox1.Font.Style)

textBox1.Font = new System.Drawing.Font(this.Font, textBox1.Font.Style);

See also

However, when you localize your application, the bold font may display poorly for certain languages. If this is a

concern, you want the localizers to have the option of switching the font from bold to regular text. Since

localizers are typically not developers and don't have access to source code, only to resource files, this option

needs to be set in the resource files. To do this, you would set the Bold property to true . This results in the font

setting being written out to the resource files, where localizers can edit it. You then write code after the

InitializeComponent method to reset the font based on whatever the form's font is, but using the font style

specified in the resource file.

Using Fonts and Text

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.bold

Bi-Directional Support for Windows Forms
Applications
3/9/2021 • 6 minutes to read • Edit Online

Culture Support

RightToLeft and RightToLeftLayout Properties

C O N T RO L / C O M P O N EN T
EF F EC T O F R IGH T TO L EF T
P RO P ERT Y

EF F EC T O F
RIGH T TO L EF T L AY O UT
P RO P ERT Y REQ UIRES M IRRO RIN G?

Button Sets the RTL reading order.
Reverses TextAlign,
ImageAlign, and
TextImageRelation

No effect No

CheckBox The check box is displayed
on the right side of the text

No effect No

CheckedListBox All the check boxes are
displayed on the right side
of the text

No effect No

ColorDialog Not affected; depends on
the language of the
operating system

No effect No

ComboBox Items in combo box control
are right-aligned

No effect No

You can use Visual Studio to create Windows-based applications that support bi-directional (right-to-left)

languages such as Arabic and Hebrew. This includes standard forms, dialog boxes, MDI forms, and all the

controls you can work with in these forms—that is, all the objects in the Control namespace.

Culture and UI culture settings determine how an application works with dates, times, currency, and other

information. Support for culture and UI culture is the same for bi-directional languages as it is for any other

languages. For more information, see Culture-specific classes for global Windows forms and web forms.

The base Control class, from which forms derive, includes a RightToLeft property that you can set to change the

reading order of a form and its controls. If you set the form's RightToLeft property, by default controls on the

form inherit this setting. However, you can also set the RightToLeft property individually on most controls. Also

see How to: Display Right-to-Left Text in Windows Forms for Globalization.

The effect of the RightToLeft property can differ from one control to another. In some controls the property only

sets the reading order, as in the Button, TreeView and ToolTip controls. In other controls, the RightToLeft property

changes both reading order and layout. This includes the RadioButton, ComboBox and CheckBox controls. Other

controls require that the RightToLeftLayout property be applied to mirror its layout from right to left. The

following table provides details on how the RightToLeft and RightToLeftLayout properties affect individual

Windows Forms controls.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/bi-directional-support-for-windows-forms-applications.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/visualstudio/ide/globalizing-and-localizing-applications
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/7d3337xw(v=vs.100)
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.righttoleftlayout
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.righttoleftlayout
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.buttonbase.textalign
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.buttonbase.imagealign
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.buttonbase.textimagerelation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.colordialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox

ContextMenu Appears right-aligned with
RTL reading order

No effect No

DataGrid Appears right-aligned with
RTL reading order

No effect No

DataGridView Affects both RTL reading
order and control layout

No effect No

DateTimePicker Not affected; depends on
the language of the
operating system

Mirrors the control Yes

DomainUpDown Left-aligns the up and down
buttons

No effect No

ErrorProvider Not supported No effect No

FontDialog Depends on the language
of the operating system

No effect No

Form Sets RTL reading order, and
reverses scrollbars

Mirrors the form Yes

GroupBox The caption is displayed
right aligned. Child controls
may inherit this property.

Use a TableLayoutPanel
within the control for right-
to-left mirroring support

No

HScrollBar Starts with the scroll box
(thumb) right-aligned

No effect No

ImageList Not required No effect No

Label Displayed right-aligned.
Reverses TextAlign and
ImageAlign

No effect No

LinkLabel Displayed right-aligned.
Reverses TextAlign and
ImageAlign

No effect No

ListBox Items are right-aligned No effect No

ListView Sets the reading order to
RTL; elements stay left-
aligned

Mirrors the control Yes

MainMenu Displayed right-aligned with
RTL reading order at run
time (not at design time)

No effect No

C O N T RO L / C O M P O N EN T
EF F EC T O F R IGH T TO L EF T
P RO P ERT Y

EF F EC T O F
RIGH T TO L EF T L AY O UT
P RO P ERT Y REQ UIRES M IRRO RIN G?

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.contextmenu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagrid
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datetimepicker
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.domainupdown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.errorprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.fontdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.hscrollbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imagelist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.textalign
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.imagealign
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.linklabel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.textalign
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.imagealign
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mainmenu

MaskedTextBox Displays text from right to
left.

No effect No

MonthCalendar Not affected; depends on
the language of the
operating system

Mirrors the control Yes

NotifyIcon Not supported Not supported No

NumericUpDown Up and down buttons are
left-aligned

No effect No

OpenFileDialog On right-to-left operating
systems, setting the
containing form's
RightToLeft property to
RightToLeft.Yes localizes the
dialog

No effect No

PageSetupDialog Not affected; depends on
the language of the
operating system

No effect No

Panel Child controls may inherit
this property

Use TableLayoutPanel within
the control for right to left
support

Yes

PictureBox Not supported No effect No

PrintDialog Not affected; depends on
the language of the
operating system

No effect No

PrintDocument The vertical scroll bar
become left-aligned and the
horizontal scroll bar starts
from the left

No effect No

PrintPreviewDialog Not supported Not supported No

ProgressBar Not affect by this property Mirrors the control Yes

RadioButton The radio button is
displayed on the right side
of the text

No effect No

RichTextBox Control elements that
include text are displayed
from right to left with RTL
reading order

No effect No

C O N T RO L / C O M P O N EN T
EF F EC T O F R IGH T TO L EF T
P RO P ERT Y

EF F EC T O F
RIGH T TO L EF T L AY O UT
P RO P ERT Y REQ UIRES M IRRO RIN G?

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.maskedtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.monthcalendar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.notifyicon
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.numericupdown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.openfiledialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft#system_windows_forms_control_righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.righttoleft#system_windows_forms_righttoleft_yes
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.pagesetupdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.picturebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.printing.printdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.printpreviewdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox

SaveFileDialog Not affected; depends on
the language of the
operating system

No effect No

SplitContainer Panel layout is reversed;
vertical scrollbar appears on
the left; horizontal scrollbar
starts from the right

Use a TableLayoutPanel to
mirror order of child
controls

No

Splitter Not supported No effect No

StatusBar Not supported; use
StatusStrip instead

No effect; use StatusStrip
instead

No

TabControl Not affected by this
property

Mirrors the control Yes

TextBox Displays text from right to
left with RTL reading order

No effect No

Timer Not required Not required No

ToolBar Not affected by this
property; use ToolStrip
instead

No effect; use ToolStrip
instead

Yes

ToolTip Sets the RTL reading order No effect No

TrackBar The scroll or track starts
from the right; when
Orientation is vertical, ticks
occur from the right

No effect No

TreeView Sets the RTL reading order
only

Mirrors the control Yes

UserControl Vertical scrollbar appears on
the left; horizontal scrollbar
has thumb on the right

No direct support; use a
TableLayoutPanel

No

VScrollBar Displayed on the left side
instead of right side of
scrollable controls

No effect No

C O N T RO L / C O M P O N EN T
EF F EC T O F R IGH T TO L EF T
P RO P ERT Y

EF F EC T O F
RIGH T TO L EF T L AY O UT
P RO P ERT Y REQ UIRES M IRRO RIN G?

Encoding

GDI+

Windows Forms support Unicode, so you can include any character set when you create your bi-directional

applications. However, not all Windows Forms controls support Unicode on all platforms.

You can use GDI+ to draw text with right-to-left reading order. The DrawString method, which is used to draw

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.savefiledialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.statusstrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.statusstrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.timer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.trackbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.trackbar.orientation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.vscrollbar
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawstring

Common Dialog Boxes

RightToLeft, Scrollbars, and ScrollableControl

Mirroring

text, supports a StringFormat parameter that you can set to the DirectionRightToLeft member of the

StringFormatFlags enumeration in order to reverse the point of origin for the text.

System tools such as the File Open dialog box are under the control of Windows. They inherit language

elements from the operating system. If you are using a version of Windows with the correct language settings,

these dialog boxes will work correctly with bi-directional languages.

Similarly, message boxes go through the operating system and support bi-directional text. The captions on

message box buttons are based on the current language setting. By default, message boxes do not use right-to-

left reading order, but you can specify a parameter to change the reading order when the message boxes are

displayed.

There is currently a limitation in Windows Forms that prevents all classes derived from ScrollableControl from

acting properly when both RightToLeft is enabled and AutoScroll is set to Yes. For example, let's say that you

place a control such as Panel—or a container class derived from Panel (such as FlowLayoutPanel or

TableLayoutPanel)—on your form. If you set AutoScroll on the container to Yes and then set the Anchor property

on one or more of the controls inside of the container to Right, then no scrollbar ever appears. The class derived

from ScrollableControl acts as if AutoScroll were set to No.

Currently, the only workaround is to nest the ScrollableControl inside another ScrollableControl. For instance, if

you need TableLayoutPanel to work in this situation, you can place it inside of a Panel control and set AutoScroll

on the Panel to Yes.

Mirroring refers to reversing the layout of UI elements so that they flow from right to left. In a mirrored

Windows Form, for example, the Minimize, Maximize, and Close buttons appear left-most on the title bar, not

right-most.

Setting a form or control's RightToLeft property to true reverses the reading order of elements on a form, but

this setting does not reverse the layout to be right-to-left— that is, it does not cause mirroring. For example,

setting this property does not move the Minimize, Maximize, and Close buttons in the form's title bar to the

left side of the form. Similarly, some controls, such as the TreeView control, require mirroring in order to change

their display to be appropriate for Arabic or Hebrew. You can mirror these controls by settings the

RightToLeftLayout property.

You can create mirrored versions of the following controls:

ListView

Panel

StatusBar

TabControl

TabPage

ToolBar

TreeView

Some controls are sealed. Therefore, you cannot derive a new control from them. These include the ImageList

and ProgressBar controls.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformatflags#system_drawing_stringformatflags_directionrighttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.stringformatflags
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol.autoscroll
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.righttoleft#system_windows_forms_righttoleft_yes
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol.autoscroll
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.righttoleft#system_windows_forms_righttoleft_yes
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.anchorstyles#system_windows_forms_anchorstyles_right
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol.autoscroll
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.righttoleft#system_windows_forms_righttoleft_no
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollablecontrol.autoscroll
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.righttoleft#system_windows_forms_righttoleft_yes
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.righttoleft
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.righttoleftlayout
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.columnheader.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabpage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imagelist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.progressbar

See also
Bidirectional Support for ASP.NET Web Applications

https://docs.microsoft.com/en-us/previous-versions/aspnet/6eedwbtt(v=vs.100)

Display of Asian Characters with the ImeMode
Property
11/3/2020 • 2 minutes to read • Edit Online

See also

The ImeMode property is used by forms and controls to force a specific mode for an input method editor (IME).

The IME is an essential component for writing Chinese, Japanese, and Korean scripts, since these writing systems

have more characters than can be encoded for a regular keyboard. For example, you may want to allow only

ASCII characters in a particular text box. In such a case you can set the ImeMode property to ImeMode and users

will only be able to enter ASCII characters for that particular text box. The default value of the ImeMode property

is ImeMode, so if you set the property for a form, all controls on the form will inherit that setting. For more

information, see ImeMode) and ImeMode.

Globalizing Windows Forms applications

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/display-of-asian-characters-with-the-imemode-property.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.imemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.imemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.imemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.imemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imemode

Windows Forms and Unmanaged Applications
3/9/2021 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

Windows Forms applications and controls can interoperate with unmanaged applications, with some caveats.

The following sections describe the scenarios and configurations that Windows Forms applications and controls

support and those that they do not support.

Windows Forms and Unmanaged Applications Overview

Offers general information about how to use and implement Windows Forms controls that work with

unmanaged applications.

How to: Support COM Interop by Displaying a Windows Form with the ShowDialog Method

Provides a code example that shows how to use the Form.ShowDialog method to run a Windows Form in an

unmanaged application.

How to: Support COM Interop by Displaying Each Windows Form on Its Own Thread

Provides a code example that shows how to run a Windows Form on its own thread.

Also see Walkthrough: Supporting COM Interop by Displaying Each Windows Form on Its Own Thread.

Form.ShowDialog

Used to create a separate thread for a Windows Form.

Application.Run

Starts a message loop for a thread.

Invoke

Marshals calls from an unmanaged application to a form.

Exposing .NET Framework Components to COM

Offers general information about how to use .NET Framework types in unmanaged applications.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/windows-forms-and-unmanaged-applications.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms233639(v=vs.100)
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.run
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invoke
https://docs.microsoft.com/en-us/dotnet/framework/interop/exposing-dotnet-components-to-co

Windows Forms and Unmanaged Applications
Overview
3/9/2021 • 3 minutes to read • Edit Online

Windows Forms Controls and ActiveX Applications

W IN DO W S F O RM S VERSIO N SUP P O RT

.NET Framework version 1.0 Internet Explorer 5.01 and later versions

.NET Framework version 1.1 and later Internet Explorer 5.01 and later versions

Microsoft Foundation Classes (MFC) 7.0 and later

Hosting Windows Forms components as ActiveX controls

Windows Forms in COM client applications

Windows Forms applications and controls can interoperate with unmanaged applications, with some caveats.

The following sections describe the scenarios and configurations that Windows Forms applications and controls

support and those that they do not support.

With the exception of Microsoft Internet Explorer and Microsoft Foundation Classes (MFC), Windows Forms

controls are not supported in applications designed to host ActiveX controls. Other applications and

development tools that are capable of hosting ActiveX controls, including the ActiveX test containers from

versions of Visual Studio that are earlier than Visual Studio .NET 2003, are not supported hosts for Windows

Forms controls.

These constraints also apply to the use of Windows Forms controls through Component Object Model COM

interop. The use of a Windows Forms control through a COM callable wrapper (CCW) is supported only in

Internet Explorer. For more information about COM interop, see

COM Interop.

The following table shows the available ActiveX hosting support for Windows Forms controls.

In the .NET Framework 1.1, support was extended to include MFC 7.0 and later versions. This support includes

any container that is fully compatible with the MFC 7.0 and later ActiveX control container.

However, registration of Windows Forms controls as ActiveX controls is not supported. Also, calling the

com.ms.win32.Ole32.CoCreateInstance method for Windows Forms controls is not supported. Only managed

activation of Windows Forms controls is supported. Once you create a Windows Forms control, you can host it

in an MFC application just as with an ActiveX control.

To use Windows Forms controls in your unmanaged application, you must either host the CLR using the

unmanaged CLR hosting APIs or use the C++ interop features. Using the C++ interop features is the

recommended solution.

When you open a Windows Form from a COM client application, such as a Visual Basic 6.0 application or an

MFC application, the form may behave unexpectedly. For example, when you press the TAB key, the focus does

not change from one control to another control. When you press the ENTER key while a command button has

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/windows-forms-and-unmanaged-applications-overview.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/index

Resolving Interoperability Issues

See also

focus, the button's Click event is not raised. You may also experience unexpected behavior for keystrokes or

mouse activity.

This behavior occurs because the unmanaged application does not implement the message loop support that

Windows Forms requires to work correctly. The message loop provided by the COM client application is

fundamentally different from the Windows Forms message loop.

An application's message loop is an internal program loop that retrieves messages from a thread's message

queue, translates them, and then sends them to the application to be handled. The message loop for a Windows

Form does not have the same architecture as message loops that earlier applications, such as Visual Basic 6.0

applications and MFC applications, provide. The window messages that are posted to the message loop may be

handled differently than the Windows Form expects. Therefore, unexpected behavior may occur. Some keystroke

combinations may not work, some mouse activity may not work, or some events may not be raised as expected.

You can resolve these problems by displaying the form on a .NET Framework message loop, which is created by

using the Application.Run method.

To make a Windows Form work correctly from a COM client application, you must run it on a Windows Forms

message loop. To do this, use one of the following approaches:

Use the Form.ShowDialog method to display the Windows Form. For more information, see How to:

Support COM Interop by Displaying a Windows Form with the ShowDialog Method.

Display each Windows Form on a new thread. For more information, see How to: Support COM Interop

by Displaying Each Windows Form on Its Own Thread.

Windows Forms and Unmanaged Applications

COM Interop

COM Interoperability in .NET Framework Applications

COM Interoperability Samples

Aximp.exe (Windows Forms ActiveX Control Importer)

Exposing .NET Framework Components to COM

Packaging an Assembly for COM

Registering Assemblies with COM

How to: Support COM Interop by Displaying a Windows Form with the ShowDialog Method

How to: Support COM Interop by Displaying Each Windows Form on Its Own Thread

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.run
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/index
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/com-interoperability-in-net-framework-applications
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/cxcz83xf(v=vs.90)
https://docs.microsoft.com/en-us/dotnet/framework/tools/aximp-exe-windows-forms-activex-control-importer
https://docs.microsoft.com/en-us/dotnet/framework/interop/exposing-dotnet-components-to-co
https://docs.microsoft.com/en-us/dotnet/framework/interop/packaging-an-assembly-for-co
https://docs.microsoft.com/en-us/dotnet/framework/interop/registering-assemblies-with-co

How to: Support COM interop by displaying each
Windows Form on its own thread
3/9/2021 • 5 minutes to read • Edit Online

Example

You can resolve COM interoperability problems by displaying your form on a .NET Framework message loop,

which you can create by using the Application.Run method.

To make a Windows Form work correctly from a COM client application, you must run the form on a Windows

Forms message loop. To do this, use one of the following approaches:

Use the Form.ShowDialog method to display the Windows Form. For more information, see How to:

Support COM Interop by Displaying a Windows Form with the ShowDialog Method.

Display each Windows Form on a separate thread.

There is extensive support for this feature in Visual Studio.

Also see Walkthrough: Supporting COM Interop by Displaying Each Windows Form on Its Own Thread.

The following code example demonstrates how to display the form on a separate thread and call the

Application.Run method to start a Windows Forms message pump on that thread. To use this approach, you

must marshal any calls to the form from the unmanaged application by using the Invoke method.

This approach requires that each instance of a form runs on its own thread by using its own message loop. You

cannot have more than one message loop running per thread. Therefore, you cannot change the client

application's message loop. However, you can modify the .NET Framework component to start a new thread that

uses its own message loop.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-support-com-interop-by-displaying-each-windows-form-on-its-own-thread.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.run
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms233639(v=vs.100)
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.run
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invoke

Imports System.Windows.Forms
Imports System.Runtime.InteropServices

<ComClass(COMForm.ClassId, COMForm.InterfaceId, COMForm.EventsId)> _
Public Class COMForm

#Region "COM GUIDs"
 ' These GUIDs provide the COM identity for this class
 ' and its COM interfaces. If you change them, existing
 ' clients will no longer be able to access the class.
 Public Const ClassId As String = "1b49fe33-7c93-41ae-9dc7-8ac4d823286a"
 Public Const InterfaceId As String = "11651e1f-6db0-4c9e-b644-dcb79e6de2f6"
 Public Const EventsId As String = "7e61f977-b39d-47a6-8f34-f743c65ae3a3"
#End Region

 ' A creatable COM class must have a Public Sub New()
 ' with no parameters, otherwise, the class will not be
 ' registered in the COM registry and cannot be created
 ' via CreateObject.
 Public Sub New()
 MyBase.New()
 End Sub

 Private WithEvents frmManager As FormManager

 Public Sub ShowForm1()
 ' Call the StartForm method by using a new instance
 ' of the Form1 class.
 StartForm(New Form1)
 End Sub

 Private Sub StartForm(ByVal frm As Form)

 ' This procedure is used to show all forms
 ' that the client application requests. When the first form
 ' is displayed, this code will create a new message
 ' loop that runs on a new thread. The new form will
 ' be treated as the main form.

 ' Later forms will be shown on the same message loop.
 If IsNothing(frmManager) Then
 frmManager = New FormManager(frm)
 Else
 frmManager.ShowForm(frm)
 End If
 End Sub

 Private Sub frmManager_MessageLoopExit() _
 Handles frmManager.MessageLoopExit

 'Release the reference to the frmManager object.
 frmManager = Nothing

 End Sub

End Class

Imports System.Runtime.InteropServices
Imports System.Threading
Imports System.Windows.Forms

<ComVisible(False)> _
Friend Class FormManager
 ' This class is used so that you can generically pass any
 ' form that you want to the delegate.

 Private WithEvents appContext As ApplicationContext
 Private Delegate Sub FormShowDelegate(ByVal form As Form)
 Event MessageLoopExit()

 Public Sub New(ByVal MainForm As Form)
 Dim t As Thread
 If IsNothing(appContext) Then
 appContext = New ApplicationContext(MainForm)
 t = New Thread(AddressOf StartMessageLoop)
 t.IsBackground = True
 t.SetApartmentState(ApartmentState.STA)
 t.Start()
 End If
 End Sub

 Private Sub StartMessageLoop()
 ' Call the Application.Run method to run the form on its own message loop.
 Application.Run(appContext)
 End Sub

 Public Sub ShowForm(ByVal form As Form)

 Dim formShow As FormShowDelegate

 ' Start the main form first. Otherwise, focus will stay on the
 ' calling form.
 appContext.MainForm.Activate()

 ' Create a new instance of the FormShowDelegate method, and
 ' then invoke the delegate off the MainForm object.
 formShow = New FormShowDelegate(_
 AddressOf ShowFormOnMainForm_MessageLoop)

 appContext.MainForm.Invoke(formShow, New Object() {form})
 End Sub

 Private Sub ShowFormOnMainForm_MessageLoop(ByVal form As Form)
 form.Show()
 End Sub

 Private Sub ac_ThreadExit(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles appContext.ThreadExit
 appContext.MainForm.Dispose()
 appContext.MainForm = Nothing
 appContext.Dispose()
 appContext = Nothing
 RaiseEvent MessageLoopExit()
 End Sub
End Class

Imports System.Windows.Forms

Public Class Form1
 Inherits System.Windows.Forms.Form

 Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 MessageBox.Show("Clicked button")
 End Sub

 'Form overrides dispose to clean up the component list.
 <System.Diagnostics.DebuggerNonUserCode()> _
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 Me.TextBox1 = New System.Windows.Forms.TextBox
 Me.TextBox2 = New System.Windows.Forms.TextBox
 Me.TextBox3 = New System.Windows.Forms.TextBox
 Me.Button1 = New System.Windows.Forms.Button
 Me.SuspendLayout()
 '
 'TextBox1
 '
 Me.TextBox1.Location = New System.Drawing.Point(12, 12)
 Me.TextBox1.Name = "TextBox1"
 Me.TextBox1.Size = New System.Drawing.Size(100, 20)
 Me.TextBox1.TabIndex = 0
 '
 'TextBox2
 '
 Me.TextBox2.Location = New System.Drawing.Point(12, 38)
 Me.TextBox2.Name = "TextBox2"
 Me.TextBox2.Size = New System.Drawing.Size(100, 20)
 Me.TextBox2.TabIndex = 1
 '
 'TextBox3
 '
 Me.TextBox3.Location = New System.Drawing.Point(12, 66)
 Me.TextBox3.Name = "TextBox3"
 Me.TextBox3.Size = New System.Drawing.Size(100, 20)
 Me.TextBox3.TabIndex = 2
 '
 'Button1
 '
 Me.Button1.Location = New System.Drawing.Point(12, 92)
 Me.Button1.Name = "Button1"
 Me.Button1.Size = New System.Drawing.Size(75, 23)
 Me.Button1.TabIndex = 3
 Me.Button1.Text = "Command"
 Me.Button1.UseVisualStyleBackColor = True
 '
 'Form1
 '
 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)
 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
 Me.ClientSize = New System.Drawing.Size(132, 146)
 Me.Controls.Add(Me.Button1)
 Me.Controls.Add(Me.TextBox3)
 Me.Controls.Add(Me.TextBox2)
 Me.Controls.Add(Me.TextBox1)

 Me.Name = "Form1"
 Me.Text = "Form1"
 Me.ResumeLayout(False)
 Me.PerformLayout()

 End Sub
 Friend WithEvents TextBox1 As System.Windows.Forms.TextBox
 Friend WithEvents TextBox2 As System.Windows.Forms.TextBox
 Friend WithEvents TextBox3 As System.Windows.Forms.TextBox
 Friend WithEvents Button1 As System.Windows.Forms.Button

End Class

Compile the code

See also

Compile the COMForm , Form1 , and FormManager types into an assembly called COMWinform.dll . Register the

assembly for COM interop by using one of the methods described in Packaging an Assembly for COM. You can

now use the assembly and its corresponding type library (.tlb) file in unmanaged applications. For example, you

can use the type library as a reference in a Visual Basic 6.0 executable project.

Exposing .NET Framework Components to COM

Packaging an Assembly for COM

Registering Assemblies with COM

How to: Support COM Interop by Displaying a Windows Form with the ShowDialog Method

Windows Forms and Unmanaged Applications Overview

https://docs.microsoft.com/en-us/dotnet/framework/interop/packaging-an-assembly-for-co
https://docs.microsoft.com/en-us/dotnet/framework/interop/exposing-dotnet-components-to-co
https://docs.microsoft.com/en-us/dotnet/framework/interop/packaging-an-assembly-for-co
https://docs.microsoft.com/en-us/dotnet/framework/interop/registering-assemblies-with-co

How to: Support COM Interop by Displaying a
Windows Form with the ShowDialog Method
3/9/2021 • 2 minutes to read • Edit Online

Procedure

To support COM interop by displaying a windows form with the ShowDialog method

See also

You can resolve Component Object Model (COM) interoperability problems by displaying your Windows Form

on a .NET Framework message loop, which is created by using the Application.Run method.

To make a form work correctly from a COM client application, you must run it on a Windows Forms message

loop. To do this, use one of the following approaches:

Use the Form.ShowDialog method to display the Windows Form;

Display each Windows Form on a separate thread. For more information, see How to: Support COM

Interop by Displaying Each Windows Form on Its Own Thread.

Using the Form.ShowDialog method can be the easiest way to display a form on a .NET Framework message

loop because, of all the approaches, it requires the least code to implement.

The Form.ShowDialog method suspends the unmanaged application's message loop and displays the form as a

dialog box. Because the host application's message loop has been suspended, the Form.ShowDialog method

creates a new .NET Framework message loop to process the form's messages.

The disadvantage of using the Form.ShowDialog method is that the form will be opened as a modal dialog box.

This behavior blocks any user interface (UI) in the calling application while the Windows Form is open. When the

user exits the form, the .NET Framework message loop closes and the earlier application's message loop starts

running again.

You can create a class library in Windows Forms which has a method to show the form, and then build the class

library for COM interop. You can use this DLL file from Visual Basic 6.0 or Microsoft Foundation Classes (MFC),

and from either of these environments you can call the Form.ShowDialog method to display the form.

Replace all calls to the Form.Show method with calls to the Form.ShowDialog method in your .NET

Framework component.

Exposing .NET Framework Components to COM

How to: Support COM Interop by Displaying Each Windows Form on Its Own Thread

Windows Forms and Unmanaged Applications

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/com-interop-by-displaying-a-windows-form-shadow.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.run
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/framework/interop/exposing-dotnet-components-to-co

System Information and Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

Dim User As String = Windows.Forms.SystemInformation.UserName
Dim Domain As String = Windows.Forms.SystemInformation.UserDomainName

MessageBox.Show("Good morning " & User & ". You are connected to " _
& Domain)

string User = SystemInformation.UserName;
string Domain = SystemInformation.UserDomainName;

MessageBox.Show("Good morning " + User + ". You are connected to "
+ Domain);

See also

Sometimes it is necessary to gather information about the computer that your application is running on in order

to make decisions in your code. For example, you might have a function that is only applicable when connected

to a particular network domain; in this case you would need a way to determine the domain and disable the

function if the domain is not present.

Windows Forms applications can use the SystemInformation class to determine a number of things about a

computer at run time. The following example demonstrates using the SystemInformation class to retrieve the

UserName and UserDomainName:

All members of the SystemInformation class are read-only; you cannot modify a user's settings. There are over

100 members of the class, returning information on everything from the number of monitors attached to the

computer (MonitorCount) to the spacing of icons in Windows Explorer (IconHorizontalSpacing and

IconVerticalSpacing).

Some of the more useful members of the SystemInformation class include ComputerName, DbcsEnabled,

PowerStatus, and TerminalServerSession.

SystemInformation

Power Management in Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/system-information-and-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.username
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.userdomainname
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.monitorcount
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.iconhorizontalspacing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.iconverticalspacing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.computername
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.dbcsenabled
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.powerstatus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.terminalserversession
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation

Power Management in Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

public Form1()
{
 InitializeComponent();
 SystemEvents.PowerModeChanged += new PowerModeChangedEventHandler(SystemEvents_PowerModeChanged);
}

void SystemEvents_PowerModeChanged(object sender, PowerModeChangedEventArgs e)
{
 switch (SystemInformation.PowerStatus.BatteryChargeStatus)
 {
 case System.Windows.Forms.BatteryChargeStatus.Low:
 MessageBox.Show("Battery is running low.", "Low Battery", MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);
 break;
 case System.Windows.Forms.BatteryChargeStatus.Critical:
 MessageBox.Show("Battery is critcally low.", "Critical Battery", MessageBoxButtons.OK,
MessageBoxIcon.Stop);
 break;
 default:
 // Battery is okay.
 break;
 }
}

Public Sub New()
 InitializeComponent()
 AddHandler Microsoft.Win32.SystemEvents.PowerModeChanged, AddressOf PowerModeChanged
End Sub

Private Sub PowerModeChanged(ByVal Sender As System.Object, ByVal e As
Microsoft.Win32.PowerModeChangedEventArgs)
 Select Case SystemInformation.PowerStatus.BatteryChargeStatus
 Case BatteryChargeStatus.Low
 MessageBox.Show("Battery is running low.", "Low Battery", MessageBoxButtons.OK, _
 System.Windows.Forms.MessageBoxIcon.Exclamation)
 Case BatteryChargeStatus.Critical
 MessageBox.Show("Battery is critically low.", "Critical Battery", MessageBoxButtons.OK, _
 System.Windows.Forms.MessageBoxIcon.Stop)
 Case Else
 ' Battery is okay.
 Exit Select
 End Select
End Sub

Your Windows Forms applications can take advantage of the power management features in the Windows

operating system. Your applications can monitor the power status of a computer and take action when a status

change occurs. For example, if your application is running on a portable computer, you might want to disable

certain features in your application when the computer's battery charge falls under a certain level.

The .NET Framework provides a PowerModeChanged event that occurs whenever there is a change in power

status, such as when a user suspends or resumes the operating system, or when the AC power status or battery

status changes. The PowerStatus property of the SystemInformation class can be used to query for the current

status, as shown in the following code example.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/power-management-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.systemevents.powermodechanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.powerstatus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation

if (SystemInformation.PowerStatus.BatteryChargeStatus == System.Windows.Forms.BatteryChargeStatus.Critical)
{
 Application.SetSuspendState(PowerState.Hibernate, false, false);
}

If SystemInformation.PowerStatus.BatteryChargeStatus = System.Windows.Forms.BatteryChargeStatus.Critical
Then
 Application.SetSuspendState(PowerState.Hibernate, False, False)
End If

See also

Besides the BatteryChargeStatus enumerations, the PowerStatus property also contains enumerations for

determining battery capacity (BatteryFullLifetime) and battery charge percentage (BatteryLifePercent,

BatteryLifeRemaining).

You can use the SetSuspendState method of the Application to put a computer into hibernation or suspend

mode. If the force argument is set to false , the operating system will broadcast an event to all applications

requesting permission to suspend. If the disableWakeEvent argument is set to true , the operating system

disables all wake events.

The following code example demonstrates how to put a computer into hibernation.

PowerModeChanged

PowerStatus

SetSuspendState

SessionSwitch

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.batterychargestatus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.powerstatus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.powerstatus.batteryfulllifetime
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.powerstatus.batterylifepercent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.powerstatus.batteryliferemaining
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.setsuspendstate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.systemevents.powermodechanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.powerstatus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.application.setsuspendstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.systemevents.sessionswitch

Help Systems in Windows Forms Applications
11/3/2020 • 2 minutes to read • Edit Online

Different Types of Help

See also

One of the most important courtesies you, as a developer of applications, can furnish your users with is a

competent Help system. This is where they will turn when they become confused or disoriented. Providing a

Help system in a Windows-based application is easily done by using the HelpProvider Component.

The Windows Forms HelpProvider component is used to associate an HTML Help 1.x Help file (either a .chm file,

produced with the HTML Help Workshop, or an .htm file) with your Windows-based application. The

HelpProvider component can be used to provide context-sensitive Help for controls on Windows Forms or

specific controls. Additionally, the HelpProvider component can open a Help file to specific areas, such as the

main page of a table of contents, an index, or a search function. For general information about the HelpProvider

component, see HelpProvider Component Overview. For information on how to use the HelpProvider

component to show pop-up Help on Windows Forms, see How to: Display Pop-up Help. For information on

using the ToolTip component to show control-specific Help, see Control Help Using ToolTips.

You can generate HTML Help 1.x files with the HTML Help Workshop. For more information on HTML Help, see

the "HTML Help Workshop" or the other "HTML Help" topics in MSDN.

Integrating User Help in Windows Forms

HelpProvider Component

ToolTip Component

Windows Forms Overview

Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/help-systems-in-windows-forms-applications.md
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/helpprovider-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/helpprovider-component-overview-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tooltip
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/helpprovider-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/tooltip-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/windows-forms-overview
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

Windows Forms Visual Inheritance
3/9/2021 • 2 minutes to read • Edit Online

In This Section

Related Sections

Occasionally, you may decide that a project calls for a form similar to one that you have created in a previous

project. Or, you may want to create a basic form with settings such as a watermark or certain control layout that

you will then use again within a project, with each iteration containing modifications to the original form

template. Form inheritance enables you to create a base form and then inherit from it and make modifications

while preserving whatever original settings you need.

You can create derived-class forms programmatically or by using the Visual Inheritance picker.

How to: Inherit Windows Forms

Gives directions for creating inherited forms in code.

How to: Inherit Forms Using the Inheritance Picker Dialog Box

Gives directions for creating inherited forms with the Inheritance Picker.

Effects of Modifying a Base Form's Appearance

Gives directions for changing a base form's controls and their properties.

Walkthrough: Demonstrating Visual Inheritance

Describes how to create a base Windows Form and compile it into a class library. You will import this class

library into another project, and create a new form that inherits from the base form.

How to: Use the Modifiers and GenerateMember Properties

Gives directions for using the GenerateMember and Modifiers properties, which are relevant when the Windows

Forms Designer generates a member variable for a component.

Inheritance basics (Visual Basic)

Describes how to define Visual Basic classes that serve as the basis for other classes.

class

Describes the C# approach of classes, in which single inheritance is allowed.

Troubleshooting Inherited Event Handlers in Visual Basic

Lists common issues that arise with event handlers in inherited components

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/windows-forms-visual-inheritance.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/troubleshooting-inherited-event-handlers

How to: Inherit Windows Forms
3/9/2021 • 2 minutes to read • Edit Online

NOTE

Inherit a form programmatically

See also

Creating new Windows Forms by inheriting from base forms is a handy way to duplicate your best efforts

without going through the process of entirely recreating a form every time you require it.

For more information about inheriting forms at design time using the Inheritance Picker dialog box and how

to visually distinguish between security levels of inherited controls, see How to: Inherit Forms Using the

Inheritance Picker Dialog Box.

In order to inherit from a form, the file or namespace containing that form must have been built into an executable file or

DLL. To build the project, choose Build from the Build menu. Also, a reference to the namespace must be added to the

class inheriting the form.

Public Class Form2
 Inherits Namespace1.Form1

public class Form2 : Namespace1.Form1

1. In your class, add a reference to the namespace containing the form you wish to inherit from.

2. In the class definition, add a reference to the form to inherit from. The reference should include the

namespace that contains the form, followed by a period, then the name of the base form itself.

When inheriting forms, keep in mind that issues may arise with regard to event handlers being called twice,

because each event is being handled by both the base class and the inherited class. For more information on

how to avoid this problem, see Troubleshooting Inherited Event Handlers in Visual Basic.

Inherits Statement

Imports Statement (.NET Namespace and Type)

using

Effects of Modifying a Base Form's Appearance

Windows Forms Visual Inheritance

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-inherit-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/troubleshooting-inherited-event-handlers
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/inherits-statement
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/imports-statement-net-namespace-and-type
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using

How to: Inherit Forms Using the Inheritance Picker
3/9/2021 • 3 minutes to read • Edit Online

NOTE

Create a Windows Form by using the Inheritance Picker

The easiest way to inherit a form or other object is to use the Inheritance Picker dialog box. With it, you can

take advantage of code or user interfaces (UI) you have already created in other solutions.

In order to inherit from a form with the Inheritance Picker dialog box, the project containing that form must have been

built into an executable file or DLL. To build the project, choose Build Solution from the Build menu.

SEC URIT Y L EVEL O F C O N T RO L
AVA IL A B L E IN T ERA C T IO N T H RO UGH DESIGN ER A N D
C O DE EDITO R W IT H IN H ERIT ED F O RM

Public Standard border with sizing handles: control may be
sized and moved. The control can be accessed internally
by the class which declares it and externally by other
classes.

Protected Standard border with sizing handles: control may be
sized and moved. Can be accessed internally by the class
that declares it and any class that inherits from the
parent class, but cannot be accessed by external classes.

1. In Visual Studio, from the Project menu, choose Add Windows Form.

The Add New Item dialog box opens.

2. Search the Inherited Form template either from the searchbox or by clicking on the Windows Forms

category, select it, and name it in the Name box. Click the Add button to proceed.

The Inheritance Picker dialog box opens. If the current project already contains forms, they are

displayed in the Inheritance Picker dialog box.

3. To inherit from a form in another assembly, click the Browse button.

4. Within the Select a file which contains a component to inherit from dialog box, navigate to the

project containing the form or module you desire.

5. Click the name of the .exe or .dll file to select it and click the Open button.

This returns you to the Inheritance Picker dialog box, where the component is now listed, along with

the project in which it is located.

6. Select the component.

In Solution Explorer , the component is added to your project. If it has a UI, controls that are part of the

inherited form will be marked with a glyph (), and, when selected, have a border indicating the level of

security that the control has on the superclassed form. The behaviors that correspond to the different

security levels are listed in the table below.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-inherit-forms-using-the-inheritance-picker-dialog-box.md

See also

Protected Internal (Protected Friend in Visual Basic) Standard border with sizing handles: control may be
sized and moved. Can be accessed internally by the class
that declares it, by any class that inherits from the parent
class, and by other members of the assembly that
contains it.

Internal (Friend in Visual Basic) Standard border with no sizing handles, shown on the
form, properties visible in Proper ties window. However,
all aspects of the control will be considered read-only.
You cannot move or size the control, or change its
properties. If the control is a container of other controls,
like a group box, new controls cannot be added and
existing controls cannot be removed, even if those
controls were public. The control can only be accessed by
other members of the assembly that contains it.

Private Standard border with no sizing handles, shown on the
form, properties visible in Proper ties window. However,
all aspects of the control will be considered read-only.
You cannot move or size the control, or change its
properties. If the control is a container of other controls,
like a group box, new controls cannot be added and
existing controls cannot be removed, even if those
controls were public. The control can only be accessed by
the class that declares it.

SEC URIT Y L EVEL O F C O N T RO L
AVA IL A B L E IN T ERA C T IO N T H RO UGH DESIGN ER A N D
C O DE EDITO R W IT H IN H ERIT ED F O RM

NOTE

For information about how to alter a base form's appearance, see Effects of Modifying a Base Form's

Appearance.

When you combine inherited controls and components with standard controls and components on Windows

Forms, you might encounter conflicts with the z-ordering. You can correct this by modifying the z-order, which is

done by clicking in the Format menu, pointing to Order , and then clicking Bring To Front or Send To Back.

For more information about the z-order of controls, see How to: Layer Objects on Windows Forms.

Inherits Statement

using

Effects of Modifying a Base Form's Appearance

Windows Forms Visual Inheritance

https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-layer-objects-on-windows-forms
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/inherits-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using

Effects of modifying a base form's appearance
3/9/2021 • 2 minutes to read • Edit Online

See also

During application development, you may often need to change the appearance of the base form from which

other forms in the project (or in other projects) are inheriting.

At design time, changes to the base form's appearance (be it the setting of properties or the addition and

subtraction of controls) are reflected on inherited forms when the project containing the base form is built. It is

not sufficient for you to simply save the changes to the base form. To build a project, choose Build from the

Build menu.

Modifications made to the base form at run time have no affect on inherited forms that are already instantiated.

base

How to: Inherit Windows Forms

Windows Forms Visual Inheritance

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/effects-of-modifying-base-form-appearance.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base

Walkthrough: Demonstrating Visual Inheritance
11/3/2020 • 4 minutes to read • Edit Online

C a u t i o n

Create a class library project containing a base form

Add a button that inheritors of the base form can modify

Visual inheritance enables you to see the controls on the base form and to add new controls. In this walkthrough

you will create a base form and compile it into a class library. You will import this class library into another

project and create a new form that inherits from the base form. During this walkthrough, you will learn how to:

Create a class library project containing a base form.

Add a button with properties that derived classes of the base form can modify.

Add a button that cannot be modified by inheritors of the base form.

Create a project containing a form that inherits from BaseForm .

Ultimately, this walkthrough will demonstrate the difference between private and protected controls on an

inherited form.

Not all controls support visual inheritance from a base form. The following controls do not support the scenario

described in this walkthrough:

WebBrowser

ToolStrip

ToolStripPanel

TableLayoutPanel

FlowLayoutPanel

DataGridView

These controls in the inherited form are always read-only regardless of the modifiers you use (private ,

protected , or public).

1. In Visual Studio, from the File menu, choose New > Project to open the New Project dialog box.

2. Create a Windows Forms application named BaseFormLibrary .

3. To create a class library instead of a standard Windows Forms application, in Solution Explorer , right-

click the BaseFormLibrar y project node and then select Proper ties .

4. In the properties for the project, change the Output type from Windows Application to Class

L ibrar y .

5. From the File menu, choose Save All to save the project and files to the default location.

The next two procedures add buttons to the base form. To demonstrate visual inheritance, you will give the

buttons different access levels by setting their Modifiers properties.

1. Open Form1 in the designer.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/walkthrough-demonstrating-visual-inheritance.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.webbrowser
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrippanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview

Add a button that cannot be modified by inheritors of the base form

Create a project containing a form that inherits from the base form

Add an inherited form

MessageBox.Show("Hello, World!")

MessageBox.Show("Hello, World!");

2. On the All Windows Forms tab of the Toolbox, double-click Button to add a button to the form. Use

the mouse to position and resize the button.

3. In the Properties window, set the following properties of the button:

Set the Text property to Say Hello.

Set the (Name) property to btnProtected.

Set the Modifiers property to Protected. This makes it possible for forms that inherit from

Form1 to modify the properties of btnProtected.

4. Double-click the Say Hello button to add an event handler for the Click event.

5. Add the following line of code to the event handler :

MessageBox.Show("Goodbye!")

MessageBox.Show("Goodbye!");

1. Switch to design view by clicking the Form1.vb [Design], Form1.cs [Design], or Form1.jsl [Design]

tab above the code editor, or by pressing F7.

2. Add a second button and set its properties as follows:

Set the Text property to Say Goodbye.

Set the (Name) property to btnPrivate.

Set the Modifiers property to Pr ivate. This makes it impossible for forms that inherit from

Form1 to modify the properties of btnPrivate.

3. Double-click the Say Goodbye button to add an event handler for the Click event. Place the following

line of code in the event procedure:

4. From the Build menu, choose Build BaseForm Librar y to build the class library.

Once the library is built, you can create a new project that inherits from the form you just created.

1. From the File menu, choose Add and then New Project to open the Add New Project dialog box.

2. Create a Windows Forms application named InheritanceTest .

1. In Solution Explorer , right-click the InheritanceTest project, select Add, and then select New Item.

2. In the Add New Item dialog box, select the Windows Forms category (if you have a list of categories)

Next steps

See also

and then select the Inherited Form template.

3. Leave the default name of Form2 and then click Add.

4. In the Inheritance Picker dialog box, select Form1 from the BaseFormLibrar y project as the form to

inherit from and click OK.

This creates a form in the InheritanceTest project that derives from the form in BaseFormLibrar y .

5. Open the inherited form (Form2) in the designer by double-clicking it, if it is not already open.

In the designer, the inherited buttons have a symbol () in their upper corner, indicating they are

inherited.

6. Select the Say Hello button and observe the resize handles. Because this button is protected, the

inheritors can move it, resize it, change its caption, and make other modifications.

7. Select the private Say Goodbye button, and notice that it does not have resize handles. Additionally, in

the Proper ties window, the properties of this button are grayed to indicate they cannot be modified.

8. If you are using Visual C#:

a. In Solution Explorer , right-click Form1 in the InheritanceTest project and then choose Delete.

In the message box that appears, click OK to confirm the deletion.

b. Open the Program.cs file and change the line Application.Run(new Form1()); to

Application.Run(new Form2()); .

9. In Solution Explorer , right-click the InheritanceTest project and select Set As Star tup Project .

10. In Solution Explorer , right-click the InheritanceTest project and select Proper ties .

11. In the InheritanceTest property pages, set the Star tup object to be the inherited form (Form2).

12. Press F5 to run the application, and observe the behavior of the inherited form.

Inheritance for user controls works in much the same way. Open a new class library project and add a user

control. Place constituent controls on it and compile the project. Open another new class library project and add

a reference to the compiled class library. Also, try adding an inherited control (through the Add New Items

dialog box) to the project and using the Inheritance Picker . Add a user control, and change the Inherits (:

in Visual C#) statement. For more information, see How to: Inherit Windows Forms.

How to: Inherit Windows Forms

Windows Forms Visual Inheritance

Windows Forms

https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

How to: Use the Modifiers and GenerateMember
Properties
11/3/2020 • 2 minutes to read • Edit Online

Specify whether a component is a member of the form

When you place a component on a Windows Form, two properties are provided by the design environment:

GenerateMember and Modifiers . The GenerateMember property specifies when the Windows Forms Designer

generates a member variable for a component. The Modifiers property is the access modifier assigned to that

member variable. If the value of the GenerateMember property is false , the value of the Modifiers property

has no effect.

B UT TO N N A M E GEN ERAT EM EM B ER VA L UE M O DIF IERS VA L UE

button1 true private

button2 true protected

button3 false No change

private void InitializeComponent()
{
 // button3 is declared in a local scope, because
 // its GenerateMember property is false.
 System.Windows.Forms.Button button3;
 this.button1 = new System.Windows.Forms.Button();
 this.button2 = new System.Windows.Forms.Button();
 button3 = new System.Windows.Forms.Button();

1. In Visual Studio, in the Windows Forms Designer, open your form.

2. Open the Toolbox, and on the form, place three Button controls.

3. Set the GenerateMember and Modifiers properties for each Button control according to the following

table.

4. Build the solution.

5. In Solution Explorer , click the Show All Files button.

6. Open the Form1 node, and in the Code Editor ,open the Form1.Designer.vb or Form1.Designer.cs

file. This file contains the code emitted by the Windows Forms Designer.

7. Find the declarations for the three buttons. The following code example shows the differences specified

by the GenerateMember and Modifiers properties.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-use-the-modifiers-and-generatemember-properties.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

NOTE

See also

Private Sub InitializeComponent()

 ' button3 is declared in a local scope, because
 ' its GenerateMember property is false.
 Dim button3 As System.Windows.Forms.Button
 Me.button1 = New System.Windows.Forms.Button()
 Me.button2 = New System.Windows.Forms.Button()
 button3 = New System.Windows.Forms.Button()

// The Modifiers property for button1 is "private".
private Button button1;

// The Modifiers property for button2 is "protected".
protected Button button2;

// button3 is not a member, because
// its GenerateMember property is false.

 ' The Modifiers property for button1 is "Private".
 Private button1 As Button

 ' The Modifiers property for button2 is "Protected".
 Protected button2 As Button

' button3 is not a member, because
' its GenerateMember property is false.

By default, the Windows Forms Designer assigns the private (Friend in Visual Basic) modifier to container controls

like Panel. If your base UserControl or Form has a container control, it will not accept new children in inherited controls

and forms. The solution is to change the modifier of the base container control to protected or public .

Button

Windows Forms Visual Inheritance

Walkthrough: Demonstrating Visual Inheritance

How to: Inherit Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

Multiple-Document Interface (MDI) Applications
11/3/2020 • 2 minutes to read • Edit Online

NOTE

In This Section

Multiple-document interface (MDI) applications enable you to display multiple documents at the same time,

with each document displayed in its own window. MDI applications often have a Window menu item with

submenus for switching between windows or documents.

There are some behavior differences between MDI forms and single-document interface (SDI) windows in Windows

Forms. The Opacity property does not affect the appearance of MDI child forms. Additionally, the CenterToParent

method does not affect the behavior of MDI child forms.

How to: Create MDI Parent Forms

Gives directions for creating the container for the multiple documents within an MDI application.

How to: Create MDI Child Forms

Gives directions for creating one or more windows that operate within an MDI parent form.

How to: Determine the Active MDI Child

Gives directions for verifying the child window that has focus (and sending its contents to the Clipboard).

How to: Send Data to the Active MDI Child

Gives directions for transporting information to the active child window.

How to: Arrange MDI Child Forms

Gives directions for tiling, cascading, or arranging the child windows of an MDI application.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/multiple-document-interface-mdi-applications.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.centertoparent

How to: Create MDI Parent Forms
11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

Create an MDI parent form at design time

See also

This topic uses the MainMenu control, which has been replaced by the MenuStrip control. The MainMenu control is

retained for both backward compatibility and future use, if you choose. For information about creating a MDI parent

Form by using a MenuStrip, see How to: Create an MDI Window List with MenuStrip.

The foundation of a Multiple-Document Interface (MDI) application is the MDI parent form. This is the form that

contains the MDI child windows, which are the sub-windows wherein the user interacts with the MDI

application. Creating an MDI parent form is easy, both in the Windows Forms Designer and programmatically.

NOTE

1. Create a Windows Application project in Visual Studio.

2. In the Proper ties window, set the IsMdiContainer property to true.

This designates the form as an MDI container for child windows.

While setting properties in the Proper ties window, you can also set the WindowState property to Maximized,

if you like, as it is easiest to manipulate MDI child windows when the parent form is maximized. Additionally, be

aware that the edge of the MDI parent form will pick up the system color (set in the Windows System Control

Panel), rather than the back color you set using the Control.BackColor property.

3. From the Toolbox, drag a MenuStr ip control to the form. Create a top-level menu item with the Text

property set to &File with submenu items called &New and &Close. Also create a top-level menu item

called &Window .

The first menu will create and hide menu items at run time, and the second menu will keep track of the

open MDI child windows. At this point, you have created an MDI parent window.

4. Press F5 to run the application. For information about creating MDI child windows that operate within

the MDI parent form, see How to: Create MDI Child Forms.

Multiple-Document Interface (MDI) Applications

How to: Create MDI Child Forms

How to: Determine the Active MDI Child

How to: Send Data to the Active MDI Child

How to: Arrange MDI Child Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-mdi-parent-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mainmenu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menustrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mainmenu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menustrip
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-create-an-mdi-window-list-with-menustrip-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.ismdicontainer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.backcolor

How to: Create MDI child forms
11/3/2020 • 4 minutes to read • Edit Online

Create MDI child forms

MDI child forms are an essential element of Multiple-Document Interface (MDI) applications, as these forms are

the center of user interaction.

In the following procedure, you'll use Visual Studio to create an MDI child form that displays a RichTextBox

control, similar to most word-processing applications. By substituting the System.Windows.Forms control with

other controls, such as the DataGridView control, or a mixture of controls, you can create MDI child windows

(and, by extension, MDI applications) with diverse possibilities.

NOTE

1. Create a new Windows Forms application project in Visual Studio. In the Proper ties window for the

form, set its IsMdiContainer property to true and its WindowsState property to Maximized .

This designates the form as an MDI container for child windows.

2. From the Toolbox , drag a MenuStrip control to the form. Set its Text property to File.

3. Click the ellipsis (…) next to the Items property, and click Add to add two child tool strip menu items. Set

the Text property for these items to New and Window .

4. In Solution Explorer , right-click the project, and then select Add > New Item.

5. In the Add New Item dialog box, select Windows Form (in Visual Basic or in Visual C#) or Windows

Forms Application (.NET) (in Visual C++) from the Templates pane. In the Name box, name the form

Form2 . Select Open to add the form to the project.

The MDI child form you created in this step is a standard Windows Form. As such, it has an Opacity property,

which enables you to control the transparency of the form. However, the Opacity property was designed for top-

level windows. Do not use it with MDI child forms, as painting problems can occur.

This form will be the template for your MDI child forms.

The Windows Forms Designer opens, displaying Form2 .

6. From the Toolbox, drag a RichTextBox control to the form.

7. In the Proper ties window, set the Anchor property to Top, Left and the Dock property to Fill .

This causes the RichTextBox control to completely fill the area of the MDI child form, even when the form

is resized.

8. Double click the New menu item to create a Click event handler for it.

9. Insert code similar to the following to create a new MDI child form when the user clicks the New menu

item.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-create-mdi-child-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.ismdicontainer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menustrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.opacity
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.opacity
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click

NOTE

Protected Sub MDIChildNew_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem2.Click
 Dim NewMDIChild As New Form2()
 'Set the Parent Form of the Child window.
 NewMDIChild.MdiParent = Me
 'Display the new form.
 NewMDIChild.Show()
End Sub

protected void MDIChildNew_Click(object sender, System.EventArgs e){
 Form2 newMDIChild = new Form2();
 // Set the Parent Form of the Child window.
 newMDIChild.MdiParent = this;
 // Display the new form.
 newMDIChild.Show();
}

private:
 void menuItem2_Click(System::Object ^ sender,
 System::EventArgs ^ e)
 {
 Form2^ newMDIChild = gcnew Form2();
 // Set the Parent Form of the Child window.
 newMDIChild->MdiParent = this;
 // Display the new form.
 newMDIChild->Show();
 }

#include "Form2.h"

In the following example, the event handler handles the Click event for MenuItem2 . Be aware that, depending on

the specifics of your application architecture, your New menu item may not be MenuItem2 .

In C++, add the following #include directive at the top of Form1.h:

10. In the drop-down list at the top of the Proper ties window, select the menu strip that corresponds to the

File menu strip and set the MdiWindowListItem property to the Window ToolStripMenuItem.

This enables the Window menu to maintain a list of open MDI child windows with a check mark next to

the active child window.

11. Press F5 to run the application. By selecting New from the File menu, you can create new MDI child

forms, which are kept track of in the Window menu item.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menustrip.mdiwindowlistitem
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstripmenuitem

See also

NOTE
When an MDI child form has a MainMenu component (with, usually, a menu structure of menu items) and it is

opened within an MDI parent form that has a MainMenu component (with, usually, a menu structure of menu

items), the menu items will merge automatically if you have set the MergeType property (and optionally, the

MergeOrder property). Set the MergeType property of both MainMenu components and all of the menu items of

the child form to MergeItems. Additionally, set the MergeOrder property so that the menu items from both

menus appear in the desired order. Moreover, keep in mind that when you close an MDI parent form, each of the

MDI child forms raises a Closing event before the Closing event for the MDI parent is raised. Canceling an MDI

child's Closing event will not prevent the MDI parent's Closing event from being raised; however, the

CancelEventArgs argument for the MDI parent's Closing event will now be set to true . You can force the MDI

parent and all MDI child forms to close by setting the CancelEventArgs argument to false .

Multiple-Document Interface (MDI) Applications

How to: Create MDI Parent Forms

How to: Determine the Active MDI Child

How to: Send Data to the Active MDI Child

How to: Arrange MDI Child Forms

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mainmenu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mainmenu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menuitem.mergetype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menuitem.mergeorder
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menuitem.mergetype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mainmenu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menumerge#system_windows_forms_menumerge_mergeitems
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menuitem.mergeorder
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.closing
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.closing
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs

How to: Determine the Active MDI Child
11/3/2020 • 2 minutes to read • Edit Online

To determine the active MDI child (to copy its text to the Clipboard)

On occasion, you will want to provide a command that operates on the control that has focus on the currently

active child form. For example, suppose you want to copy selected text from the child form's text box to the

Clipboard. You would create a procedure that copies selected text to the Clipboard using the Click event of the

Copy menu item on the standard Edit menu.

Because an MDI application can have many instances of the same child form, the procedure needs to know

which form to use. To specify the correct form, use the ActiveMdiChild property, which returns the child form

that has the focus or that was most recently active.

When you have several controls on a form, you also need to specify which control is active. Like the

ActiveMdiChild property, the ActiveControl property returns the control with the focus on the active child form.

The procedure below illustrates a copy procedure that can be called from a child form menu, a menu on the MDI

form, or a toolbar button.

NOTE

Public Sub mniCopy_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles mniCopy.Click

 ' Determine the active child form.
 Dim activeChild As Form = Me.ActiveMDIChild

 ' If there is an active child form, find the active control, which
 ' in this example should be a RichTextBox.
 If (Not activeChild Is Nothing) Then
 Dim theBox As RichTextBox = _
 TryCast(activeChild.ActiveControl, RichTextBox)

 If (Not theBox Is Nothing) Then
 'Put selected text on Clipboard.
 Clipboard.SetDataObject(theBox.SelectedText)
 Else
 MessageBox.Show("You need to select a RichTextBox.")
 End If
 End If
End Sub

1. Within a method, copy the text of the active control of the active child form to the Clipboard.

This example assumes there is an MDI parent form (Form1) that has one or more MDI child windows containing

a RichTextBox control. For more information, see Creating MDI Parent Forms.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-determine-the-active-mdi-child.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.activemdichild
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.activemdichild
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.activecontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox

See also

protected void mniCopy_Click (object sender, System.EventArgs e)
{
 // Determine the active child form.
 Form activeChild = this.ActiveMdiChild;

 // If there is an active child form, find the active control, which
 // in this example should be a RichTextBox.
 if (activeChild != null)
 {
 try
 {
 RichTextBox theBox = (RichTextBox)activeChild.ActiveControl;
 if (theBox != null)
 {
 // Put the selected text on the Clipboard.
 Clipboard.SetDataObject(theBox.SelectedText);

 }
 }
 catch
 {
 MessageBox.Show("You need to select a RichTextBox.");
 }
 }
}

Multiple-Document Interface (MDI) Applications

How to: Create MDI Parent Forms

How to: Create MDI Child Forms

How to: Send Data to the Active MDI Child

How to: Arrange MDI Child Forms

How to: Send Data to the Active MDI Child
11/3/2020 • 2 minutes to read • Edit Online

NOTE

To send data to the active MDI child window from the Clipboard

Often, within the context of Multiple-Document Interface (MDI) Applications, you will need to send data to the

active child window, such as when the user pastes data from the Clipboard into an MDI application.

For information about verifying which child window has focus and sending its contents to the Clipboard, see Determining

the Active MDI Child.

NOTE

Public Sub mniPaste_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles mniPaste.Click

 ' Determine the active child form.
 Dim activeChild As Form = Me.ParentForm.ActiveMDIChild

 ' If there is an active child form, find the active control, which
 ' in this example should be a RichTextBox.
 If (Not activeChild Is Nothing) Then
 Try
 Dim theBox As RichTextBox = Ctype(activeChild.ActiveControl, RichTextBox)
 If (Not theBox Is Nothing) Then
 ' Create a new instance of the DataObject interface.
 Dim data As IDataObject = Clipboard.GetDataObject()
 ' If the data is text, then set the text of the
 ' RichTextBox to the text in the clipboard.
 If (data.GetDataPresent(DataFormats.Text)) Then
 theBox.SelectedText = data.GetData(DataFormats.Text).ToString()
 End If
 End If
 Catch
 MessageBox.Show("You need to select a RichTextBox.")
 End Try
 End If
End Sub

1. Within a method, copy the text on the Clipboard to the active control of the active child form.

This example assumes there is an MDI parent form (Form1) that has one or more MDI child windows containing

a RichTextBox control. For more information, see Creating MDI Parent Forms.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-send-data-to-the-active-mdi-child.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox

See also

protected void mniPaste_Click (object sender, System.EventArgs e)
{
 // Determine the active child form.
 Form activeChild = this.ParentForm.ActiveMdiChild;

 // If there is an active child form, find the active control, which
 // in this example should be a RichTextBox.
 if (activeChild != null)
 {
 try
 {
 RichTextBox theBox = (RichTextBox)activeChild.ActiveControl;
 if (theBox != null)
 {
 // Create a new instance of the DataObject interface.
 IDataObject data = Clipboard.GetDataObject();
 // If the data is text, then set the text of the
 // RichTextBox to the text in the clipboard.
 if (data.GetDataPresent(DataFormats.Text))
 {
 theBox.SelectedText = data.GetData(DataFormats.Text).ToString();
 }
 }
 }
 catch
 {
 MessageBox.Show("You need to select a RichTextBox.");
 }
 }
}

Multiple-Document Interface (MDI) Applications

How to: Create MDI Parent Forms

How to: Create MDI Child Forms

How to: Determine the Active MDI Child

How to: Arrange MDI Child Forms

How to: Arrange MDI Child Forms
11/3/2020 • 2 minutes to read • Edit Online

To arrange child forms

See also

Often, applications will have menu commands for actions such as Tile, Cascade, and Arrange, which control the

layout of the open MDI child forms. You can use the LayoutMdi method with one of the MdiLayout enumeration

values to rearrange the child forms in an MDI parent form.

The MdiLayout enumeration values display child forms as cascading, as horizontally or vertically tiled, or as

child form icons arranged along the lower portion of the MDI form. These values have the same effect as the

Windows commands Cascade windows , Show windows side by side, Show windows stacked, and

Show the desktop, respectively.

Often, these methods are used as the event handlers called by a menu item's Click event. In this way, a menu

item with the text "Cascade Windows" can have the desired effect on the MDI child windows.

Protected Sub CascadeWindows_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Me.LayoutMdi(System.Windows.Forms.MdiLayout.Cascade)
End Sub

protected void CascadeWindows_Click(object sender, System.EventArgs e){
 this.LayoutMdi(System.Windows.Forms.MdiLayout.Cascade);
}

NOTE

this.button1.Click += new System.EventHandler(this.button1_Click);

1. In a method, use the LayoutMdi method to set the MdiLayout enumeration for the MDI parent form. The

following example uses the MdiLayout.Cascade enumeration value for the child windows of the MDI

parent form (Form1). The enumeration is used in code during the event handler for the Click event of the

Cascade Windows menu item.

You can also tile windows and arranging windows as icons by changing the MdiLayout enumeration value used.

2. If you’re using Visual C#, place the following code in the form's constructor to register the event handler.

Multiple-Document Interface (MDI) Applications

How to: Create MDI Parent Forms

How to: Create MDI Child Forms

How to: Determine the Active MDI Child

How to: Send Data to the Active MDI Child

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-arrange-mdi-child-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.layoutmdi
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mdilayout
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mdilayout
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.layoutmdi
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mdilayout
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mdilayout#system_windows_forms_mdilayout_cascade
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mdilayout

Integrating User Help in Windows Forms
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Related Sections

An essential, but often overlooked, aspect of building Windows-based applications is the Help system, as this is

where users turn for assistance in times of confusion. Windows Forms support two different types of Help, each

provided by the HelpProvider Component. The first involves pointing the user to a Help file of either HTML or

HTML Help 1.x or greater format. The second can display brief "What's This"-type Help on individual controls;

this is especially useful on dialog boxes. Both types of Help can be used on the same form.

Additionally, the ToolTip Component can be used to provide individual Help for controls on Windows Forms.

How to: Provide Help in a Windows Application

Explains how to use the HelpProvider component to link controls to files in a Help system.

How to: Display Pop-up Help

Explains how to use the HelpProvider component to show pop-up Help on Windows Forms.

Control Help Using ToolTips

Describes using the ToolTip component to show control-specific Help.

HelpProvider Component

Explains the basics of the HelpProvider component.

ToolTip Component

Explains the basics of the ToolTip component.

Windows Forms Overview

Explains the basics of Windows Forms.

Windows Forms

Provides an overview of Windows Forms.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/integrating-user-help-in-windows-forms.md
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/helpprovider-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/tooltip-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/helpprovider-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/tooltip-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/windows-forms-overview
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

How to: Provide Help in a Windows Application
11/3/2020 • 2 minutes to read • Edit Online

Provide Help

You can make use of the HelpProvider component to attach Help topics within a Help file to specific controls on

Windows Forms. The Help file can be either HTML or HTMLHelp 1.x or greater format.

M EM B ER N A M E DESC RIP T IO N

AssociateIndex Specifies that the index for a specified topic is performed
in the specified URL.

Find Specifies that the search page of a specified URL is
displayed.

Index Specifies that the index of a specified URL is displayed.

KeywordIndex Specifies a keyword to search for and the action to take
in the specified URL.

TableOfContents Specifies that the table of contents of the HTML 1.0 Help
file is displayed.

Topic Specifies that the topic referenced by the specified URL is
displayed.

1. In Visual Studio, from the Toolbox, drag a HelpProvider component to your form.

The component will reside in the tray at the bottom of the Windows Forms Designer.

2. In the Proper ties window, set the HelpNamespace property to the .chm, .col, or .htm Help file.

3. Select another control you have on your form, and in the Proper ties window, set the SetHelpKeyword

property.

This is the string passed through the HelpProvider component to your Help file to summon the

appropriate Help topic.

4. In the Proper ties window, set the SetHelpNavigator property to a value of the HelpNavigator

enumeration.

This determines the way in which the HelpKeyword property is passed to the Help system. The

following table shows the possible settings and their descriptions.

At run time, pressing F1 when the control—for which you have set the HelpKeyword and HelpNavigator

properties—has focus will open the Help file you associated with that HelpProvider component.

Currently, the HelpNamespace property supports Help files in the following three formats: HTMLHelp 1.x,

HTMLHelp 2.0, and HTML. Thus, you can set the HelpNamespace property to an http:// address, such as a

Web page. If this is done, it will open the default browser to the Web page with the string specified in the

HelpKeyword property used as the anchor. The anchor is used to jump to a specific part of an HTML page.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-provide-help-in-a-windows-application.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider.helpnamespace
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider.sethelpkeyword
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider.sethelpnavigator
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpnavigator
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider

IMPORTANT

See also

Be careful to check any information that is sent from a client before using it in your application. Malicious users might try

to send or inject executable script, SQL statements, or other code. Before you display a user's input, store it in a database,

or work with it, check that it does not contain potentially unsafe information. A typical way to check is to use a regular

expression to look for keywords such as "SCRIPT" when you receive input from a user.

You can also use the HelpProvider component to show pop-up Help, even if you have it configured to display

Help files for the controls on your Windows Forms. For more information, see How to: Display Pop-up Help.

How to: Display Pop-up Help

Control Help Using ToolTips

Integrating User Help in Windows Forms

Windows Forms

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

How to: Display pop-up Help
11/3/2020 • 2 minutes to read • Edit Online

Display pop-up Help

See also

One way to display Help on Windows Forms is through the Help button, located on the right side of the title bar,

accessible through the HelpButton property. This type of Help display is well-suited for use with dialog boxes.

Dialog boxes shown modally (with the ShowDialog method) have trouble bringing up external Help systems,

because modal dialog boxes need to be closed before focus can shift to another window. Additionally, using the

Help button requires that there is no Minimize button or Maximize button shown in the title bar. This is a

standard dialog-box convention, whereas forms usually have Minimize and Maximize buttons.

You can also use the HelpProvider component to link controls to files in a Help system, even if you have

implemented pop-up Help. For more information, see Providing Help in a Windows Application.

1. In Visual Studio, drag a HelpProvider component from the Toolbox to your form.

It will sit in the tray at the bottom of the Windows Forms Designer.

2. In the Properties window, set the HelpButton property to true . This will display a button with a question

mark in it on the right side of the title bar of the form.

3. In order for the HelpButton to display, the form's MinimizeBox and MaximizeBox properties must be set

to false , the ControlBox property set to true , and the FormBorderStyle property to one of the

following values: FixedSingle, Fixed3D, FixedDialog or Sizable.

4. Select the control for which you want to show help on your form and set the Help string in the Properties

window. This is the string of text that will be displayed in a window similar to a ToolTip.

5. Press F5 .

6. Press the Help button on the title bar and click the control on which you set the Help string.

Control Help Using ToolTips

Integrating User Help in Windows Forms

Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-display-pop-up-help.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.helpbutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.helpprovider
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/helpprovider-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.helpbutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.helpbutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.minimizebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.maximizebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.controlbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.formborderstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formborderstyle#system_windows_forms_formborderstyle_fixedsingle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formborderstyle#system_windows_forms_formborderstyle_fixed3d
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formborderstyle#system_windows_forms_formborderstyle_fixeddialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formborderstyle#system_windows_forms_formborderstyle_sizable
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/tooltip-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

Control Help Using ToolTips
11/3/2020 • 2 minutes to read • Edit Online

See also

You can use the ToolTip component to display a brief, specialized Help message for individual controls on

Windows Forms. The ToolTip component provides a property that specifies the text displayed for each control

on the form. For more information about working with the ToolTip component in this way, see How to: Set

ToolTips for Controls on a Windows Form at Design Time. Additionally, you can configure the ToolTip

component so that there is a delay before it is shown. For more information, see How to: Change the Delay of

the Windows Forms ToolTip Component.

How to: Display Pop-up Help

ToolTip Component

Integrating User Help in Windows Forms

Windows Forms

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/control-help-using-tooltips.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tooltip
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-set-tooltips-for-controls-on-a-windows-form-at-design-time
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tooltip
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-change-the-delay-of-the-windows-forms-tooltip-component
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/tooltip-component-windows-forms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

Windows Forms Accessibility
11/3/2020 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

The accessibility functionality of Windows Forms allows you to make your application available to a wide variety

of users.

Walkthrough: Creating an Accessible Windows-based Application

Describes all of the features you should support to increase accessibility.

Accessibility

A namespace containing a number of classes related to accessibility.

AccessibleObject

Provides information that accessibility applications use to adjust an application's user interface (UI) for users

with impairments.

Providing Accessibility Information for Controls on a Windows Form

Describes how to supply information that Windows Forms controls can use to assist users with impairments.

Automatic Scaling in Windows Forms

Describes how to make your Windows Forms application react to changes in the system font size.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/windows-forms-accessibility.md
https://docs.microsoft.com/en-us/dotnet/api/accessibility
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.accessibleobject
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/providing-accessibility-information-for-controls-on-a-windows-form
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/automatic-scaling-in-windows-forms

Walkthrough: Creating an Accessible Windows-
based Application
3/9/2021 • 8 minutes to read • Edit Online

Creating the Project

To begin making the application

Adding the Controls to the Form

Creating an accessible application has important business implications. Many governments have accessibility

regulations for software purchase. The Certified for Windows logo includes accessibility requirements. An

estimated 30 million residents of the U.S. alone, many of them potential customers, are affected by the

accessibility of software.

This walkthrough will address the five accessibility requirements for the Certified for Windows logo. According

to these requirements, an accessible application will:

Support Control Panel size, color, font, and input settings. The menu bar, title bar, borders, and status bar

will all resize themselves when the user changes the control panel settings. No additional changes to the

controls or code are required in this application.

Support High Contrast mode.

Provide documented keyboard access to all features.

Expose location of the keyboard focus visually and programmatically.

Avoid conveying important information by sound alone.

For more information, see Resources for Designing Accessible Applications.

For information on supporting varying keyboard layouts, see Best Practices for Developing World-Ready

Applications.

This walkthrough creates the user interface for an application that takes pizza orders. It consists of a TextBox for

the customer's name, a RadioButton group to select the pizza size, a CheckedListBox for selecting the toppings,

two Button controls labeled Order and Cancel, and a Menu with an Exit command.

The user enters the customer's name, the size of the pizza, and the toppings desired. When the user clicks the

Order button, a summary of the order and its cost are displayed in a message box and the controls are cleared

and ready for the next order. When the user clicks the Cancel button, the controls are cleared and ready for the

next order. When the user clicks the Exit menu item, the program closes.

The emphasis of this walkthrough is not the code for a retail order system, but the accessibility of the user

interface. The walkthrough demonstrates the accessibility features of several frequently used controls, including

buttons, radio buttons, text boxes, and labels.

Create a new Windows Application in Visual Basic or Visual C#. Name the project PizzaOrder . For details,

see Creating New Solutions and Projects.

When adding the controls to a form, keep in mind the following guidelines to make an accessible application:

Set the AccessibleDescription and AccessibleName properties. In this example, the Default setting for the

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/walkthrough-creating-an-accessible-windows-based-application.md
https://docs.microsoft.com/en-us/visualstudio/ide/reference/resources-for-designing-accessible-applications
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/best-practices-for-developing-world-ready-apps
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox
https://docs.microsoft.com/en-us/visualstudio/ide/creating-solutions-and-projects
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibledescription
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessiblename

To make your Windows Application accessible

NOTE

AccessibleRole is sufficient. For more information on the accessibility properties, see Providing

Accessibility Information for Controls on a Windows Form.

Set the font size to 10 points or larger.

If you set the font size of the form to 10 when you start, then all controls subsequently added to the form will

have a font size of 10.

Make sure any Label control that describes a TextBox control immediately precedes the TextBox control in

the tab order.

Add an access key, using the "&" character, to the Text property of any control the user may want to

navigate to.

Add an access key, using the "&" character, to the Text property of the label that precedes a control that

the user may want to navigate to. Set the labels' UseMnemonic property to true , so that the focus is set

to the next control in the tab order when the user presses the access key.

Add access keys to all menu items.

O B JEC T P RO P ERT Y VA L UE

Form1 AccessibleDescription Order form

AccessibleName Order form

Font Size 10

Text Pizza Order Form

PictureBox Name logo

AccessibleDescription A slice of pizza

AccessibleName Company logo

Image Any icon or bitmap

Label Name companyLabel

Text Good Pizza

TabIndex 1

AccessibleDescription Company name

AccessibleName Company name

Add the controls to the form and set the properties as described below. See the picture at the end of the

table for a model of how to arrange the controls on the form.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessiblerole
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/providing-accessibility-information-for-controls-on-a-windows-form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.usemnemonic

Backcolor Blue

Forecolor Yellow

Font size 18

Label Name customerLabel

Text &Name

TabIndex 2

AccessibleDescription Customer name label

AccessibleName Customer name label

UseMnemonic True

TextBox Name customerName

Text (none)

TabIndex 3

AccessibleDescription Customer name

AccessibleName Customer name

GroupBox Name sizeOptions

AccessibleDescription Pizza size options

AccessibleName Pizza size options

Text Pizza size

TabIndex 4

RadioButton Name smallPizza

Text &Small $6.00

Checked True

TabIndex 0

AccessibleDescription Small pizza

AccessibleName Small pizza

O B JEC T P RO P ERT Y VA L UE

RadioButton Name largePizza

Text &Large $10.00

TabIndex 1

AccessibleDescription Large pizza

AccessibleName Large pizza

Label Name toppingsLabel

Text &Toppings ($0.75 each)

TabIndex 5

AccessibleDescription Toppings label

AccessibleName Toppings label

UseMnemonic True

CheckedListBox Name toppings

TabIndex 6

AccessibleDescription Available toppings

AccessibleName Available toppings

Items Pepperoni, Sausage, Mushrooms

Button Name order

Text &Order

TabIndex 7

AccessibleDescription Total the order

AccessibleName Total order

Button Name cancel

Text &Cancel

TabIndex 8

AccessibleDescription Cancel the order

O B JEC T P RO P ERT Y VA L UE

Supporting High Contrast Mode

To enable High Contrast mode in an effective way

AccessibleName Cancel order

MainMenu Name theMainMenu

MenuItem Name fileCommands

Text &File

MenuItem Name exitApp

Text E&xit

O B JEC T P RO P ERT Y VA L UE

Your form will look something like the following image:

High Contrast mode is a Windows system setting that improves readability by using contrasting colors and font

sizes that are beneficial for visually impaired users. The HighContrast property is provided to determine whether

the High Contrast mode is set.

If SystemInformation.HighContrast is true , the application should:

Display all user interface elements using the system color scheme

Convey by visual cues or sound any information that is conveyed through color. For example, if particular

list items are highlighted by using a red font, you could also add bold to the font, so that the user has a

non-color cue that the items are highlighted.

Omit any images or patterns behind text

The application should check the setting of HighContrast when the application starts and respond to the system

event UserPreferenceChanged. The UserPreferenceChanged event is raised whenever the value of HighContrast

changes.

In our application, the only element that is not using the system settings for color is lblCompanyName . The

SystemColors class is used to change the color settings of the label to the user-selected system colors.

1. Create a method to set the colors of the label to the system colors.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.highcontrast
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.highcontrast
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.systemevents.userpreferencechanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.systemevents.userpreferencechanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.highcontrast
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.systemcolors

Private Sub SetColorScheme()
 If SystemInformation.HighContrast Then
 companyLabel.BackColor = SystemColors.Window
 companyLabel.ForeColor = SystemColors.WindowText
 Else
 companyLabel.BackColor = Color.Blue
 companyLabel.ForeColor = Color.Yellow
 End If
End Sub

private void SetColorScheme()
{
 if (SystemInformation.HighContrast)
 {
 companyLabel.BackColor = SystemColors.Window;
 companyLabel.ForeColor = SystemColors.WindowText;
 }
 else
 {
 companyLabel.BackColor = Color.Blue;
 companyLabel.ForeColor = Color.Yellow;
 }
}

Public Sub New()
 MyBase.New()
 InitializeComponent()
 SetColorScheme()
End Sub

public Form1()
{
 InitializeComponent();
 SetColorScheme();
}

Protected Sub UserPreferenceChanged(sender As Object, _
e As Microsoft.Win32.UserPreferenceChangedEventArgs)
 SetColorScheme()
End Sub

public void UserPreferenceChanged(object sender,
Microsoft.Win32.UserPreferenceChangedEventArgs e)
{
 SetColorScheme();
}

2. Call the SetColorScheme procedure in the form constructor (Public Sub New() in Visual Basic and

public Form1() in Visual C#). To access the constructor in Visual Basic, you will need to expand the region

labeled Windows Form Designer generated code.

3. Create an event procedure, with the appropriate signature, to respond to the UserPreferenceChanged

event.

4. Add code to the form constructor, after the call to InitializeComponents , to hook up the event procedure

to the system event. This method calls the SetColorScheme procedure.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.systemevents.userpreferencechanged

Conveying Important Information by Means Other Than Sound

To supply information by some other means than sound

Public Sub New()
 MyBase.New()
 InitializeComponent()
 SetColorScheme()
 AddHandler Microsoft.Win32.SystemEvents.UserPreferenceChanged, _
 AddressOf Me.UserPreferenceChanged
End Sub

public Form1()
{
 InitializeComponent();
 SetColorScheme();
 Microsoft.Win32.SystemEvents.UserPreferenceChanged
 += new Microsoft.Win32.UserPreferenceChangedEventHandler(
 this.UserPreferenceChanged);
}

NOTE

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 RemoveHandler Microsoft.Win32.SystemEvents.UserPreferenceChanged, _
 AddressOf Me.UserPreferenceChanged
 MyBase.Dispose(disposing)
End Sub

protected override void Dispose(bool disposing)
{
 if(disposing && components != null)
 {
 components.Dispose();
 }
 Microsoft.Win32.SystemEvents.UserPreferenceChanged
 -= new Microsoft.Win32.UserPreferenceChangedEventHandler(
 this.UserPreferenceChanged);
 base.Dispose(disposing);
}

5. Add code to the form Dispose method, before the call to the Dispose method of the base class, to release

the event when the application closes. To access the Dispose method in Visual Basic, you will need to

expand the region labeled Windows Form Designer generated code.

The system event code runs a thread separate from the main application. If you do not release the event, the code

that you hook up to the event will run even after the program is closed.

6. Press F5 to run the application.

In this application, no information is conveyed by sound alone. If you use sound in your application, then you

should supply the information by some other means as well.

1. Make the title bar flash by using the Windows API function FlashWindow. For an example of how to call

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dispose

Testing the Application

To test accessibility features

NOTE

Windows API functions, see Walkthrough: Calling Windows APIs.

The user may have the Windows SoundSentry service enabled, which will also cause the window to flash when the

system sounds are played through the computer's built-in speaker.

2. Display the important information in a non-modal window so that the user may respond to it.

3. Display a message box that acquires the keyboard focus. Avoid this method when the user may be typing.

4. Display a status indicator in the status notification area of the taskbar. For details, see Adding Application

Icons to the TaskBar with the Windows Forms NotifyIcon Component.

Before deploying the application, you should test the accessibility features that you have implemented.

NOTE

1. To test keyboard access, unplug the mouse and navigate the user interface for each feature using only the

keyboard. Ensure that all tasks may be performed using the keyboard only.

2. To test support of High Contrast, choose the Accessibility Options icon in Control Panel. Click the Display

tab and select the Use High Contrast check box. Navigate through all user interface elements to ensure

that the color and font changes are reflected. Also, ensure that images or patterns drawn behind text are

omitted.

Windows NT 4 does not have an Accessibility Options icon in Control Panel. Thus, this procedure for changing the

SystemInformation.HighContrast setting does not work in Windows NT 4.

3. Other tools are readily available for testing the accessibility of an application.

4. To test exposing the keyboard focus, run Magnifier. (To open it, click the Star t menu, point to Programs ,

point to Accessories , point to Accessibility , and then click Magnifier). Navigate the user interface

using both keyboard tabbing and the mouse. Ensure that all navigation is tracked properly in Magnifier .

5. To test exposing screen elements, run Inspect, and use both the mouse and the TAB key to reach each

element. Ensure that the information presented in the Name, State, Role, Location, and Value fields of the

Inspect window is meaningful to the user for each object in the UI.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/walkthrough-calling-windows-apis
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/app-icons-to-the-taskbar-with-wf-notifyicon

Properties on Windows Forms Controls That
Support Accessibility Guidelines
11/3/2020 • 2 minutes to read • Edit Online

Planning Ahead for Accessibility

C O N T RO L P RO P ERT Y C O N SIDERAT IO N S F O R A C C ESSIB IL IT Y

AccessibleDescription The description is reported to accessibility aids such as
screen readers. Accessibility aids are specialized programs
and devices that help people with disabilities use computers
more effectively.

AccessibleName The name that will be reported to the accessibility aids.

AccessibleRole Describes the use of the element in the user interface.

TabIndex Creates a sensible navigational path through the form. It is
important for controls without intrinsic labels, such as text
boxes, to have their associated label immediately precede
them in the tab order.

Text Use the "&" character to create access keys. Using access
keys is part of providing documented keyboard access to
features.

Font Size If the font size is not adjustable, then it should be set to 10
points or larger. Once the form's font size is set, all the
controls added to the form thereafter will have the same
size.

Forecolor If this property is set to the default, then the user's color
preferences will be used on the form.

Backcolor If this property is set to the default, then the user's color
preferences will be used on the form.

BackgroundImage Leave this property blank to make text more readable.

See also

Controls on the standard toolbox for Windows Forms support many of the accessibility guidelines, including

exposing the keyboard focus and exposing the screen elements.

The controls' properties can be used to support other accessibility guidelines as shown in the following table.

Additionally, you should use menus to provide access to program features.

Walkthrough: Creating an Accessible Windows-based Application

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/properties-on-windows-forms-controls-that-support-accessibility-guidelines.md

Use WPF controls in Windows Forms apps
3/9/2021 • 2 minutes to read • Edit Online

See also

You can use Windows Presentation Foundation (WPF) controls in Windows Forms-based applications. Although

these are two different view technologies, they interoperate smoothly.

The Windows Forms Designer in Visual Studio provides a visual design environment for hosting Windows

Presentation Foundation controls. A WPF control is hosted by a special Windows Forms control that's named

ElementHost. This control enables the WPF control to participate in the form's layout and to receive keyboard

and mouse messages. At design time, you can arrange the ElementHost control just as you would any Windows

Forms control.

You can also use Windows Forms controls in WPF-based applications. For more information, see Design XAML

in Visual Studio.

WPF and Windows Forms interoperation

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/using-wpf-controls.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/visualstudio/xaml-tools/designing-xaml-in-visual-studio
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/wpf-and-windows-forms-interoperation

How to: Copy and paste an ElementHost control
3/9/2021 • 2 minutes to read • Edit Online

See also

This procedure shows you how to copy a Windows Presentation Foundation (WPF) control on a Windows Form

in Visual Studio.

1. In Visual Studio, add a new WPF UserControl to a Windows Forms project. Use the default name for the

control type, UserControl1.xaml . For more information, see Walkthrough: Creating New WPF Content on

Windows Forms at Design Time.

2. In the Proper ties window, set the value of the Width and Height properties of UserControl1 to 200 .

3. Set the value of the Background property to Blue.

4. Build the project.

5. Open Form1 in the Windows Forms Designer.

6. From the Toolbox, drag an instance of UserControl1 onto the form.

An instance of UserControl1 is hosted in a new ElementHost control named elementHost1 .

7. With elementHost1 selected, press Ctr l +C to copy it to the clipboard.

8. Press Ctr l +V to paste the copied control onto the form.

A new ElementHost control named elementHost2 is created on the form.

ElementHost

WindowsFormsHost

Migration and Interoperability

Using WPF Controls

Design XAML in Visual Studio

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/how-to-copy-and-paste-an-elementhost-control-at-design-time.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.windowsformshost
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/migration-and-interoperability
https://docs.microsoft.com/en-us/visualstudio/xaml-tools/designing-xaml-in-visual-studio

Walkthrough: Arrange WPF content on Windows
Forms at design time
3/9/2021 • 3 minutes to read • Edit Online

Prerequisites

Create the project

NOTE

Create the WPF control

Host WPF controls in a layout panel

This article shows you how to use the Windows Forms layout features, such as anchoring and snaplines, to

arrange Windows Presentation Foundation (WPF) controls.

You need Visual Studio to complete this walkthrough.

Open Visual Studio and create a new Windows Forms Application project in Visual Basic or Visual C# named

ArrangeElementHost .

When hosting WPF content, only C# and Visual Basic projects are supported.

After you add a WPF control to the project, you can arrange it on the form.

1. Add a new WPF UserControl to the project. Use the default name for the control type, UserControl1.xaml .

For more information, see Walkthrough: Creating New WPF Content on Windows Forms at Design Time.

2. In Design view, make sure that UserControl1 is selected.

3. In the Proper ties window, set the value of the Width and Height properties to 200 .

4. Set the value of the Background property to Blue.

5. Build the project.

You can use WPF controls in layout panels in the same way you use other Windows Forms controls.

1. Open Form1 in the Windows Forms Designer.

2. In the Toolbox, drag a TableLayoutPanel control onto the form.

3. On the TableLayoutPanel control's smart tag panel, select Remove Last Row .

4. Resize the TableLayoutPanel control to a larger width and height.

5. In the Toolbox, double-click UserControl1 to create an instance of UserControl1 in the first cell of the

TableLayoutPanel control.

The instance of UserControl1 is hosted in a new ElementHost control named elementHost1 .

6. In the Toolbox, double-click UserControl1 to create another instance in the second cell of the

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/walkthrough-arranging-wpf-content-on-windows-forms-at-design-time.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost

Use snaplines to align WPF controls

Anchor and dock WPF controls

TableLayoutPanel control.

7. In the Document Outline window, select tableLayoutPanel1 .

8. In the Proper ties window, set the value of the Padding property to 10, 10, 10, 10 .

Both ElementHost controls are resized to fit into the new layout.

Snaplines enable easy alignment of controls on a form. You can use snaplines to align your WPF controls as well.

For more information, see Walkthrough: Arranging Controls on Windows Forms Using Snaplines.

1. From the Toolbox, drag an instance of UserControl1 onto the form, and place it in the space beneath the

TableLayoutPanel control.

The instance of UserControl1 is hosted in a new ElementHost control named elementHost3 .

2. Using snaplines, align the left edge of elementHost3 with the left edge of TableLayoutPanel control.

3. Using snaplines, size elementHost3 to the same width as the TableLayoutPanel control.

4. Move elementHost3 toward the TableLayoutPanel control until a center snapline appears between the

controls.

5. In the Proper ties window, set the value of the Margin property to 20, 20, 20, 20 .

6. Move the elementHost3 away from the TableLayoutPanel control until the center snapline appears again.

The center snapline now indicates a margin of 20.

7. Move elementHost3 to the right until its left edge aligns with the left edge of elementHost1 .

8. Change the width of elementHost3 until its right edge aligns with the right edge of elementHost2 .

A WPF control hosted on a form has the same anchoring and docking behavior as other Windows Forms

controls.

1. Select elementHost1 .

2. In the Proper ties window, set the Anchor property to Top, Bottom, Left, R ight .

3. Resize the TableLayoutPanel control to a larger size.

The elementHost1 control resizes to fill the cell.

4. Select elementHost2 .

5. In the Proper ties window, set the value of the Dock property to Fill.

The elementHost2 control resizes to fill the cell.

6. Select the TableLayoutPanel control.

7. Set the value of its Dock property to Top.

8. Select elementHost3 .

9. Set the value of its Dock property to Fill.

The elementHost3 control resizes to fill the remaining space on the form.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.padding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/walkthrough-arranging-controls-on-windows-forms-using-snaplines
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dockstyle#system_windows_forms_dockstyle_fill
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dockstyle#system_windows_forms_dockstyle_top
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dockstyle#system_windows_forms_dockstyle_fill

See also

10. Resize the form.

All three ElementHost controls resize appropriately.

For more information, see How to: Anchor and Dock Child Controls in a TableLayoutPanel Control.

ElementHost

WindowsFormsHost

How to: Anchor and Dock Child Controls in a TableLayoutPanel Control

How to: Align a Control to the Edges of Forms at Design Time

Walkthrough: Arranging Controls on Windows Forms Using Snaplines

Migration and Interoperability

Using WPF Controls

Design XAML in Visual Studio

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-anchor-and-dock-child-controls-in-a-tablelayoutpanel-control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.windowsformshost
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-anchor-and-dock-child-controls-in-a-tablelayoutpanel-control
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-align-a-control-to-the-edges-of-forms-at-design-time
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/walkthrough-arranging-controls-on-windows-forms-using-snaplines
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/migration-and-interoperability
https://docs.microsoft.com/en-us/visualstudio/xaml-tools/designing-xaml-in-visual-studio

Walkthrough: Create new WPF content on Windows
Forms at design time
3/9/2021 • 2 minutes to read • Edit Online

Prerequisites

Create the project

NOTE

Create a new WPF control

NOTE

This article shows you how to create a Windows Presentation Foundation (WPF) control for use in your

Windows Forms-based applications.

You need Visual Studio to complete this walkthrough.

Open Visual Studio and create a new Windows Forms App (.NET Framework) project in Visual Basic or

Visual C# named HostingWpf .

When hosting WPF content, only C# and Visual Basic projects are supported.

Creating a new WPF control and adding it to your project is as easy as adding any other item to your project.

The Windows Forms Designer works with a particular kind of control named composite control, or user control.

For more information about WPF user controls, see UserControl.

The System.Windows.Controls.UserControl type for WPF is distinct from the user control type provided by Windows

Forms, which is also named System.Windows.Forms.UserControl.

To create a new WPF control:

1. In Solution Explorer , add a new WPF User Control L ibrar y (.NET Framework) project to the

solution. Use the default name for the control library, WpfControlLibrary1 . The default control name is

UserControl1.xaml .

Adding the new control has the following effects:

File UserControl1.xaml is added.

File UserControl1.xaml.cs (or UserControl1.xaml.vb) is added. This file contains the code-behind for

event handlers and other implementation.

References to WPF assemblies are added.

File UserControl1.xaml opens in the WPF Designer for Visual Studio.

2. In Design view, make sure that UserControl1 is selected.

3. In the Proper ties window, set the value of the Width and Height properties to 200 .

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/walkthrough-creating-new-wpf-content-on-windows-forms-at-design-time.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height

Add a WPF control to a Windows Form

Next steps

See also

NOTE

4. From the Toolbox, drag a System.Windows.Controls.TextBox control onto the design surface.

5. In the Proper ties window, set the value of the Text property to Hosted Content.

In general, you should host more sophisticated WPF content. The System.Windows.Controls.TextBox control is

used here for illustrative purposes only.

6. Build the project.

Your new WPF control is ready for use on the form. Windows Forms uses the ElementHost control to host WPF

content.

To add a WPF control to a Windows Form:

1. Open Form1 in the Windows Forms Designer.

2. In the Toolbox, find the tab labeled WPFUserControlL ibrar y WPF User Controls .

3. Drag an instance of UserControl1 onto the form.

An ElementHost control is created automatically on the form to host the WPF control.

The ElementHost control is named elementHost1 and in the Proper ties window, you can see its

Child property is set to UserControl1 .

References to WPF assemblies are added to the project.

The elementHost1 control has a smart tag panel that shows the available hosting options.

4. In the ElementHost Tasks smart tag panel, select Dock in parent container .

5. Press F5 to build and run the application.

Windows Forms and WPF are different technologies, but they are designed to interoperate closely. To provide

richer appearance and behavior in your applications, try the following:

Host a Windows Forms control in a WPF page. For more information, see Walkthrough: Hosting a

Windows Forms Control in WPF.

Apply Windows Forms visual styles to your WPF content. For more information, see How to: Enable

Visual Styles in a Hybrid Application.

Change the style of your WPF content. For more information, see Walkthrough: Styling WPF Content.

ElementHost

WindowsFormsHost

Migration and Interoperability

Using WPF Controls

Design XAML in Visual Studio

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost.child
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/walkthrough-hosting-a-windows-forms-control-in-wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/how-to-enable-visual-styles-in-a-hybrid-application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.windowsformshost
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/migration-and-interoperability
https://docs.microsoft.com/en-us/visualstudio/xaml-tools/designing-xaml-in-visual-studio

Walkthrough: Assign WPF content on Windows
Forms at design time
3/9/2021 • 2 minutes to read • Edit Online

Prerequisites

Create the project

NOTE

Create the WPF control types

This article show you how to select the Windows Presentation Foundation (WPF) control types you want to

display on your form. You can select any WPF control types that are included in your project.

You need Visual Studio to complete this walkthrough.

Open Visual Studio and create a new Windows Forms Application project in Visual Basic or Visual C# named

SelectingWpfContent .

When hosting WPF content, only C# and Visual Basic projects are supported.

After you add WPF control types to the project, you can host them in different ElementHost controls.

NOTE

1. Add a new WPF UserControl project to the solution. Use the default name for the control type,

UserControl1.xaml . For more information, see Walkthrough: Creating New WPF Content on Windows

Forms at Design Time.

2. In Design view, make sure that UserControl1 is selected.

3. In the Proper ties window, set the value of the Width and Height properties to 200 .

4. Add a System.Windows.Controls.TextBox control to the UserControl and set the value of the Text property

to Hosted Content.

5. Add a second WPF UserControl to the project. Use the default name for the control type,

UserControl2.xaml .

6. In the Proper ties window, set the value of the Width and Height properties to 200 .

7. Add a System.Windows.Controls.TextBox control to the UserControl and set the value of the Text property

to Hosted Content 2 .

In general, you should host more sophisticated WPF content. The System.Windows.Controls.TextBox control is

used here for illustrative purposes only.

8. Build the project.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/walkthrough-assigning-wpf-content-on-windows-forms-at-design-time.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox

Select WPF controls

See also

You can assign different WPF content to an ElementHost control, which is already hosting content.

1. Open Form1 in the Windows Forms Designer.

2. In the Toolbox, double-click UserControl1 to create an instance of UserControl1 on the form.

An instance of UserControl1 is hosted in a new ElementHost control named elementHost1 .

3. In the smart tag panel for elementHost1 , open the Select Hosted Content drop-down list.

4. Select UserControl2 from the drop-down list box.

The elementHost1 control now hosts an instance of the UserControl2 type.

5. In the Proper ties window, confirm that the Child property is set to UserControl2 .

6. From the Toolbox, in the WPF Interoperability group, drag an ElementHost control onto the form.

The default name for the new control is elementHost2 .

7. In the smart tag panel for elementHost2 , open the Select Hosted Content drop-down list.

8. Select UserControl1 from the drop-down list.

9. The elementHost2 control now hosts an instance of the UserControl1 type.

ElementHost

WindowsFormsHost

Migration and Interoperability

Using WPF Controls

Design XAML in Visual Studio

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost.child
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.windowsformshost
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/migration-and-interoperability
https://docs.microsoft.com/en-us/visualstudio/xaml-tools/designing-xaml-in-visual-studio

Walkthrough: Style WPF content
3/9/2021 • 2 minutes to read • Edit Online

Prerequisites

Create the project

NOTE

Create the WPF control types

Apply a Style to a WPF Control

This article show you how to apply styling to a Windows Presentation Foundation (WPF) control hosted on a

Windows Form.

You need Visual Studio to complete this walkthrough.

Open Visual Studio and create a new Windows Forms Application project in Visual Basic or Visual C# named

StylingWpfContent .

When hosting WPF content, only C# and Visual Basic projects are supported.

After you add a WPF control type to the project, you can host it in an ElementHost control.

1. Add a new WPF UserControl project to the solution. Use the default name for the control type,

UserControl1.xaml . For more information, see Walkthrough: Creating New WPF Content on Windows

Forms at Design Time.

2. In Design view, make sure that UserControl1 is selected.

3. In the Proper ties window, set the value of the Width and Height properties to 200 .

4. Add a System.Windows.Controls.Button control to the UserControl and set the value of the Content

property to Cancel .

5. Add a second System.Windows.Controls.Button control to the UserControl and set the value of the

Content property to OK.

6. Build the project.

You can apply different styling to a WPF control to change its appearance and behavior.

1. Open Form1 in the Windows Forms Designer.

2. In the Toolbox, double-click UserControl1 to create an instance of UserControl1 on the form.

An instance of UserControl1 is hosted in a new ElementHost control named elementHost1 .

3. In the smart tag panel for elementHost1 , click Edit Hosted Content from the drop-down list.

UserControl1 opens in the WPF Designer.

4. In XAML view, insert the following XAML after the <UserControl> opening tag. This XAML creates a

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/framework/winforms/advanced/walkthrough-styling-wpf-content.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost

<UserControl.Resources>
 <LinearGradientBrush x:Key="NormalBrush" EndPoint="0,1" StartPoint="0,0">
 <GradientStop Color="#FFF" Offset="0.0"/>
 <GradientStop Color="#CCC" Offset="1.0"/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key="PressedBrush" EndPoint="0,1" StartPoint="0,0">
 <GradientStop Color="#BBB" Offset="0.0"/>
 <GradientStop Color="#EEE" Offset="0.1"/>
 <GradientStop Color="#EEE" Offset="0.9"/>
 <GradientStop Color="#FFF" Offset="1.0"/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key="NormalBorderBrush" EndPoint="0,1" StartPoint="0,0">
 <GradientStop Color="#CCC" Offset="0.0"/>
 <GradientStop Color="#444" Offset="1.0"/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key="BorderBrush" EndPoint="0,1" StartPoint="0,0">
 <GradientStop Color="#CCC" Offset="0.0"/>
 <GradientStop Color="#444" Offset="1.0"/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key="PressedBorderBrush" EndPoint="0,1" StartPoint="0,0">
 <GradientStop Color="#444" Offset="0.0"/>
 <GradientStop Color="#888" Offset="1.0"/>
 </LinearGradientBrush>

 <Style x:Key="SimpleButton" TargetType="{x:Type Button}" BasedOn="{x:Null}">
 <Setter Property="Background" Value="{StaticResource NormalBrush}"/>
 <Setter Property="BorderBrush" Value="{StaticResource NormalBorderBrush}"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid x:Name="Grid">
 <Border x:Name="Border" Background="{TemplateBinding Background}" BorderBrush="
{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}" Padding="
{TemplateBinding Padding}"/>
 <ContentPresenter HorizontalAlignment="{TemplateBinding
HorizontalContentAlignment}" Margin="{TemplateBinding Padding}" VerticalAlignment="{TemplateBinding
VerticalContentAlignment}" RecognizesAccessKey="True"/>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="IsPressed" Value="true">
 <Setter Property="Background" Value="{StaticResource PressedBrush}"
TargetName="Border"/>
 <Setter Property="BorderBrush" Value="{StaticResource PressedBorderBrush}"
TargetName="Border"/>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</UserControl.Resources>

Style="{StaticResource SimpleButton}

gradient with a contrasting gradient border. When the control is clicked, the gradients are changed to

generate a pressed button look. For more information, see Styling and Templating.

5. Apply the SimpleButton style defined in the previous step to the Cancel button by inserting the following

XAML in the <Button> tag of the Cancel button.

Your button declaration will resemble the following XAML:

https://docs.microsoft.com/en-us/dotnet/desktop-wpf/fundamentals/styles-templates-overview

See also

<Button Height="23" Margin="41,52,98,0" Name="button1" VerticalAlignment="Top"
 Style="{StaticResource SimpleButton}">Cancel</Button>

6. Build the project.

7. Open Form1 in the Windows Forms Designer.

8. The new style is applied to the button control.

9. From the Debug menu, select Star t Debugging to run the application.

10. Click the OK and Cancel buttons and view the differences.

ElementHost

WindowsFormsHost

Migration and Interoperability

Using WPF Controls

Design XAML in Visual Studio

XAML Overview (WPF)

Styling and Templating

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.elementhost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.integration.windowsformshost
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/migration-and-interoperability
https://docs.microsoft.com/en-us/visualstudio/xaml-tools/designing-xaml-in-visual-studio
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/fundamentals/xaml
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/fundamentals/styles-templates-overview

	Cover Page
	Enhancing Windows Forms Applications
	Graphics and Drawing in Windows Forms
	Graphics Overview
	Overview of Graphics
	Three Categories of Graphics Services
	Structure of the Graphics Interface

	About GDI+ Managed Code
	Lines, Curves, and Shapes
	Vector Graphics Overview
	Pens, Lines, and Rectangles in GDI+
	Ellipses and Arcs in GDI+
	Polygons in GDI+
	Cardinal Splines in GDI+
	Bézier Splines in GDI+
	Graphics Paths in GDI+
	Brushes and Filled Shapes in GDI+
	Open and Closed Curves in GDI+
	Regions in GDI+
	Restricting the Drawing Surface in GDI+
	Antialiasing with Lines and Curves

	Images, Bitmaps, and Metafiles
	Types of Bitmaps
	Metafiles in GDI+
	Drawing, Positioning, and Cloning Images in GDI+
	Cropping and Scaling Images in GDI+

	Coordinate Systems and Transformations
	Types of Coordinate Systems
	Matrix Representation of Transformations
	Global and Local Transformations

	Using Managed Graphics Classes
	Getting Started with Graphics Programming
	How to: Create Graphics Objects for Drawing
	How to: Create a Pen
	How to: Set the Color of a Pen
	How to: Create a Solid Brush
	How to: Draw a Line on a Windows Form
	How to: Draw an Outlined Shape
	How to: Draw a Filled Rectangle on a Windows Form
	How to: Draw a Filled Ellipse on a Windows Form
	How to: Draw Text on a Windows Form
	How to: Draw Vertical Text on a Windows Form
	How to: Render Images with GDI+
	How to: Create a Shaped Windows Form
	How to: Copy Pixels for Reducing Flicker in Windows Forms

	Using a Pen to Draw Lines and Shapes
	How to: Use a Pen to Draw Lines
	How to: Use a Pen to Draw Rectangles
	How to: Set Pen Width and Alignment
	How to: Draw a Line with Line Caps
	How to: Join Lines
	How to: Draw a Custom Dashed Line
	How to: Draw a Line Filled with a Texture

	Using a Brush to Fill Shapes
	How to: Fill a Shape with a Solid Color
	How to: Fill a Shape with a Hatch Pattern
	How to: Fill a Shape with an Image Texture
	How to: Tile a Shape with an Image

	Using a Gradient Brush to Fill Shapes
	How to: Create a Linear Gradient
	How to: Create a Path Gradient
	How to: Apply Gamma Correction to a Gradient

	Working with Images, Bitmaps, Icons, and Metafiles
	How to: Draw an Existing Bitmap to the Screen
	How to: Load and Display Metafiles
	How to: Crop and Scale Images
	How to: Rotate, Reflect, and Skew Images
	How to: Use Interpolation Mode to Control Image Quality During Scaling
	How to: Create Thumbnail Images
	How to: Improve Performance by Avoiding Automatic Scaling
	How to: Read Image Metadata
	How to: Create a Bitmap at Run Time
	How to: Extract the Icon Associated with a File in Windows Forms

	Alpha Blending Lines and Fills
	How to: Draw Opaque and Semitransparent Lines
	How to: Draw with Opaque and Semitransparent Brushes
	How to: Use Compositing Mode to Control Alpha Blending
	How to: Use a Color Matrix to Set Alpha Values in Images

	Using Fonts and Text
	How to: Construct Font Families and Fonts
	How to: Draw Text at a Specified Location
	How to: Draw Wrapped Text in a Rectangle
	How to: Draw Text with GDI
	How to: Align Drawn Text
	How to: Create Vertical Text
	How to: Set Tab Stops in Drawn Text
	How to: Enumerate Installed Fonts
	How to: Create a Private Font Collection
	How to: Obtain Font Metrics
	How to: Use Antialiasing with Text

	Constructing and Drawing Curves
	How to: Draw Cardinal Splines
	How to: Draw a Single Bézier Spline
	How to: Draw a Sequence of Bézier Splines

	Constructing and Drawing Paths
	How to: Create Figures from Lines, Curves, and Shapes
	How to: Fill Open Figures
	How to: Flatten a Curved Path into a Line

	Using Transformations in Managed GDI+
	Using the World Transformation
	Why Transformation Order Is Significant

	Using Graphics Containers
	Managing the State of a Graphics Object
	Using Nested Graphics Containers

	Using Regions
	How to: Use Hit Testing with a Region
	How to: Use Clipping with a Region

	Recoloring Images
	How to: Use a Color Matrix to Transform a Single Color
	How to: Translate Image Colors
	Using Transformations to Scale Colors
	How to: Rotate Colors
	How to: Shear Colors
	How to: Use a Color Remap Table

	Using Image Encoders and Decoders in Managed GDI+
	How to: List Installed Encoders
	How to: List Installed Decoders
	How to: Determine the Parameters Supported by an Encoder
	How to: Convert a BMP image to a PNG image
	How to: Set JPEG Compression Level

	Using Double Buffering
	Double Buffered Graphics
	How to: Reduce Graphics Flicker with Double Buffering for Forms and Controls
	How to: Manually Manage Buffered Graphics
	How to: Manually Render Buffered Graphics

	Application Settings for Windows Forms
	Application Settings Overview
	Application Settings Architecture
	Application Settings Attributes
	Application Settings for Custom Controls
	Using Application Settings and User Settings
	How To: Create a New Setting at Design Time
	How To: Change the Value of an Existing Setting at Design Time
	How To: Change the Value of a Setting Between Application Sessions
	How To: Read Settings at Run Time With C#
	How To: Write User Settings at Run Time with C#
	How To: Add Multiple Sets of Settings To Your Application in C#

	How to: Create Application Settings
	How to: Validate Application Settings

	Windows Forms Print Support
	How to: Create Standard Windows Forms Print Jobs
	How to: Capture User Input from a PrintDialog at Run Time
	How to: Choose the Printers Attached to a User's Computer in Windows Forms
	How to: Print Graphics in Windows Forms
	How to: Print a Multi-Page Text File in Windows Forms
	How to: Complete Windows Forms Print Jobs
	How to: Print a Windows Form
	How to: Print in Windows Forms Using Print Preview

	Drag-and-Drop Operations and Clipboard Support
	Walkthrough: Performing a Drag-and-Drop Operation in Windows Forms
	How to: Perform Drag-and-Drop Operations Between Applications
	How to: Add Data to the Clipboard
	How to: Retrieve Data from the Clipboard

	Networking in Windows Forms Applications
	Globalizing Windows Forms
	International Fonts in Windows Forms and Controls
	Bi-Directional Support for Windows Forms Applications
	Display of Asian Characters with the ImeMode Property

	Windows Forms and Unmanaged Applications
	Windows Forms and Unmanaged Applications Overview
	How to: Support COM Interop by Displaying Each Windows Form on Its Own Thread
	How to: Support COM Interop by Displaying a Windows Form with the ShowDialog Method

	System Information and Windows Forms
	Power Management in Windows Forms
	Help Systems in Windows Forms Applications
	Windows Forms Visual Inheritance
	How to: Inherit Windows Forms
	How to: Inherit Forms Using the Inheritance Picker Dialog Box
	Effects of Modifying a Base Form's Appearance
	Walkthrough: Demonstrating Visual Inheritance
	How to: Use the Modifiers and GenerateMember Properties

	Multiple-Document Interface (MDI) Applications
	How to: Create MDI Parent Forms
	How to: Create MDI Child Forms
	How to: Determine the Active MDI Child
	How to: Send Data to the Active MDI Child
	How to: Arrange MDI Child Forms

	Integrating User Help in Windows Forms
	How to: Provide Help in a Windows Application
	How to: Display Pop-up Help
	Control Help Using ToolTips

	Windows Forms Accessibility
	Walkthrough: Creating an Accessible Windows-based Application
	Properties on Windows Forms Controls That Support Accessibility Guidelines

	Using WPF Controls
	How to: Copy and Paste an ElementHost Control at Design Time
	Walkthrough: Arranging WPF Content on Windows Forms at Design Time
	Walkthrough: Creating New WPF Content on Windows Forms at Design Time
	Walkthrough: Assigning WPF Content on Windows Forms at Design Time
	Walkthrough: Styling WPF Content

