2020/5/17 DbRef - LiteDB :: A .NET embedded NoSQL database
EliteDB

Docs

Getting Started
Data Structure
Object Mapping
Collections
BsonDocument
Expressions
DbRef
Connection String
FileStorage
Indexes
Encryption
Pragmas

Collation

DbRef

LiteDB is a document database, so there is no JOIN between collections. You can use embedded
documents (sub-documents) or create a reference between collections. To create a reference you
canuse [BsonRef] attribute or use the DbRef method from the fluent APl mapper.

Mapping a reference on database initialization

public class Customer

{
public int CustomerId { get; set; }
public string Name { get; set; }
}
public class Order
{
public int OrderId { get; set; }
public Customer Customer { get; set; }
}

https://www.litedb.org/docs/dbref/ 1/3

2020/5/117 DbRef - LiteDB :: A .NET embedded NoSQL database

If no custom mapping is created, when you save an Order , Customer is saved as an embedded
document with no link to any other collection. Any changes made to documents in the
customers collection will not be reflected in the orders collection.

Order => { _id: 123, Customer: { CustomerId: 99, Name: "John Doe" } }
If you want to store only a reference to a customer in Order , you can decorate your class:

public class Order

{
public int OrderId { get; set; }
[BsonRef("customers")] // where "customers" is the collection to be referenc
public Customer Customer { get; set; }

}

Note that BsonRef decorates the full object being referenced, not an int customerid field that
references an object in the other collection.

Or use fluent API:

BsonMapper.Global.Entity<Order>()
.DbRef(x => x.Customer, "customers"); // where "customers" are Customer coll

Note: Customer needsto havea [BsonId] defined.

Now, when you store Order you are storing only the reference.

Order => { _id: 123, Customer: { $id: 4, Sref: "customers"} }

Querying results

When you query a document with a cross-collection reference, you can auto load references using
the Include method before query.

var orders = db.GetCollection<Order>("orders");
var order1 = orders

.Include(x => x.Customer)
.FindById(1);

https://www.litedb.org/docs/dbref/ 2/3

2020/5/117 DbRef - LiteDB :: A .NET embedded NoSQL database

DbRef also support List<T> or Array, like:

public class Product

{
public int ProductId { get; set; }
public string Name { get; set; }
public decimal Price { get; set; }
}
public class Order
{
public int OrderId { get; set; }
public DateTime OrderDate { get; set; }
public List<Product> Products { get; set; }
}

BsonMapper .Global.Entity<Order>()
.DbRef(x => x.Products, "products");

If the Products field is null or an empty list, the value will be preserved when being mapped from
a BsonDocument toan Order .If you donotuse Include inquery, every Product in
Products will be loaded with the id field set and all other fields null or default.

In v4, this include process occurs on BsonDocument engine level. It also support any level of
include, just using Path syntax:

orders.Include(new string[] { "S.Customer", "S.Products[*]" });

If you are using LiteCollection or Repository you can also use Ling syntax:

// repository fluent syntax
db.Query<Order>()
.Include(x => x.Customer)
.Include(x => x.Products)
.ToList();

Made with v by LiteDB team - @mbdavid - MIT License

https://www.litedb.org/docs/dbref/ 3/3

