2020/5/117 Indexes - LiteDB :: A .NET embedded NoSQL database
EliteDB

Docs

Getting Started
Data Structure
Object Mapping
Collections
BsonDocument
Expressions
DbRef
Connection String
FileStorage
Indexes
Encryption
Pragmas

Collation

Indexes

LiteDB improves search performance by using indexes on document fields or expressions. Each
index storess the value of a specific expression ordered by the value (and type). Without an index,
LiteDB must execute a query using a full document scan. Full document scans are inefficient
because LiteDB must deserialize every document in the collection.

Index Implementation

Indexes in LiteDB are implemented using Skip lists. Skip lists are double linked sorted list with up
to 32 levels. Skip lists are very easy to implement (only 15 lines of code) and statistically balanced.

Insert and search operations have an average complexity of O(log n). This means that in a
collection with 1 million documents, a search operation over an indexed expression will take about
13 steps to find the desired document. If you want to know more about skip lists, check this great
video.

Given that collections are schema-less, it is possible for an expression to return different data
types when applied over different documents. In such cases, the documents will be ordered by the
type returned by the indexing expression, according to the table below:

https://www.litedb.org/docs/indexes/ 1/4



2020/5/117

BSON Type

MinValue

Null

Int32, Int64, Double, Decimal

String

Document

Array

Binary

Objectld

Guid

Boolean

DateTime

MaxValue

Indexes - LiteDB :: A .NET embedded NoSQL database

Order

10

11

12

* When comparing documents, the values in the key-value pairs are compared in the order that

they appear until a tie is broken.

e When comparing arrays, every position is compeared until a tie is broken.

e All numeric values are converted to Decimal before comparison.

Primary key (= auto id)

By default, an index over _id is created upon the first insertion.

Ensurelndex()

Indexes are created via EnsureIndex . This method creates the index if it does not exist and does

nothing if already exists.

https://www.litedb.org/docs/indexes/

2/4



2020/5117 Indexes - LiteDB :: A .NET embedded NoSQL database

An index can be created over any valid BsonExpression.

{
_id: 1,
Address:
{
Street: "Av. Protasio Alves, 1331",
City: "Porto Alegre",
Country: "Brazil"
}
}

e Youcanuse EnsureIndex("Address") tocreate anindexto all Address embedded
document

e Or EnsureIndex("Address.Street") to createanindex on Street using dotted notation

e Indexes are executed as BsonDocument fields. If you are using a custom
ResolvePropertyName or [BsonField] attribute, you must use your document field name
and not the property name. See Object Mapping.

e You can use a lambda expression to define an index field in a strongly typed collection:
EnsureIndex(x => x.Name)

e Indexes are identified by an unique name

MultiKey Index

When you create an index in a array type field, all values are included on index keys and you can
search for any value.

public class Customer

{
public int Id { get; set; }
public string Name { get; set; }
public string[] Phones { get; set; }
}

var customers = db.GetCollection<Customer>("customers");

"John", Phones = new string[] { "1", "2",
"Doe", Phones = new string[] { "1", "8" }

customers.Insert(new Customer { Name
customers.Insert(new Customer { Name

customers.EnsureIndex(x => x.Phones);

var result = customers.Find(x => x.Phones.Contains("1")); // returns both docume

https://www.litedb.org/docs/indexes/ 3/4



2020/5117 Indexes - LiteDB :: A .NET embedded NoSQL database

Expressions

It is now possible to create an index based on a expression execution with multikey values
support. With this, you can index any kind of information that is not directly the value of a field.

e collection.EnsureIndex("Name", "LOWER(S.Name)")
e collection.EnsureIndex("Total", "SUM(S.Items[x].Price)")
e collection.EnsureIndex("CheapBooks", "LOWER(S.Books[@.Price < 20].Title)")

See Expressions for more details about expressions.
Limitations

e Even if multiple indexed expressions are used on a query, only one of the indexes is used, with
the remaining expressions being filtered using a full scan.

* Index keys must have at most 1023 bytes

e Up to 255 indexes per collections, including the _id primary key, but limited to 8096 bytes for
index definition. Each index uses: 41 bytes+ LEN(name) + LEN(expression)

Made with v by LiteDB team - @mbdavid - MIT License

https://www.litedb.org/docs/indexes/ 4/4



