Using MqttClient

Using MQTT client from library is very simple. First you have to create an
instance of MgttClient class which provides only one mandatory parameter (the IP
address or the host name of the broker you want to connect to) and some optional
parameters with default values (MQTT broker port, secure connection and X.509
certificate). In the simpler case, you can use the default port (1883) and you don’t
have the support for secure connection based on SSL/TLS using default values for

optional parameters and specifying only broker address (or host name).

1 | MgttClient client = new
MgttClient(IPAddress.Parse("192.168.10.53"));

Before connect to the broker, you can register to the event
MgqttMsgPublishReceived raised when a message is published on a topic the client
is subscribed to. In this case, you have to provide an event handler to handle the
incoming message using the instance of MqttMsgPublishEventArgs that exposes

the data bytes through the Message property.

1 client.MqttMsgPublishReceived += client_MqttMsgPublishReceived;
2
3 | void client_MqgttMsgPublishReceived(object sender,
4 | MqttMsgPublishEventArgs e)
5S4
6 // access data bytes throug e.Message
}

You can also be interested to know if a subscription and/or unsubscription to a
topic is completed and registered to the broker. In this case, you can define two
event handlers for the events MqgttMsgSubscribed and MqttMsgUnsubscribed.

1 client.MqttMsgSubscribed += client_MqgttMsgSubscribed;
2 client.MgttMsgUnsubscribed += client_MqttMsgUnsubscribed;



void client_MqgttMsgUnsubscribed(object sender,
MgttMsgUnsubscribedEventArgs e)

4
5
6 14

7 // write your code
8

9

}

void client_MqgttMsgSubscribed(object sender,
MgttMsgSubscribedEventArgs e)
{

// write your code

}

BREZ v

If you are using QoS Level 1 or 2 to publish a message on a specified topic, you
can also register to MqttMsgPublished event that will be raised when the message

will be delivered (exactly once) to all subscribers on the topic.

1 client.MgttMsgPublished += client_MqttMsgPublished;
2
3 | void client_MqgttMsgPublished(object sender,
4 | MgttMsgPublishedEventArgs e)
S 1A
6 // write your code
}

After you have registered to all events you are interested in, you can use the
Connect() method of MqttClient class to connect to the broker. The only
mandatory parameter is the client ID that must be unique; the other parameters

have some default values and they are related to :

e Username and password for client authentication (default values are
null, no authentication);

e Will message feature (default values provides NO Will message);

e Clean session for removing subscriptions on disconnection (default
value is true);

e Keep Alive period for keeping alive connection with ping message

(default value is 60 seconds);

Without using all the MQTT advanced features (authentication and “will”
message), you can specify only the client ID (for example a generated GUID) and



leave the default keep alive period with clean session flag set.

1 | client.Connect(Guid.NewGuid().ToString());

To subscribe and unsubscribe to a topic, the MgttClient class provides Subscribe()
and Unsubscribe() methods. The former needs the list of topics and relative QoS

levels to subscribe and the latter needs only the list of topic to unsubscribe.

string[] topic = { "sensor/temp", "sensor/humidity" };

byte[] gosLevels = { MqttMsgBase.QOS_LEVEL_AT_MOST_ONCE,
MgttMsgBase.QOS_LEVEL_AT_MOST_ONCE };

client.Subscribe(topic, qoslLevels);

N O S

Subscribe() method returns the message id for subscription.

1 string[] topic = { "sensor/temp", "sensor/humidity" };

3 | client.Unsubscribe(topics);

The last method is Publish() by which you can publish a message to a topic,
specifying topic itself and the data bytes for the message. You can also set the
QoS level parameter (that has a default value level 0) and the retain flag for
delivery message also to the clients that aren’t already connected when the
message is published. In this case, the broker saves the message and send it to a

new client as soon as it connects and subscribe to the topic.

1 | client.Publish("sensor/temp", Encoding.UTF8.GetBytes(temp)

The M2Mqtt client library supports an internal “inflight queue” to execute all
publish requests asynchronously (also subscribe and unsubscribe actions). The
methods related to the above features (Publish(), Subscribe() and Unsubscribe())
return the message id assigned to the MQTT message sent to the broker. When the
asynchronous operation is executed, the corresponding event is raised and the

event args contains info on message id so that the user can match it.






