15,979,004 members 1.7K Honda Chen

articles quick answers discussions features Search for articles, questions, tip: 2

community help

Articles / Programming Languages / C#
9 g rangtag Watch ﬁ} [E] |>

C# SQLite ORM

SQLite Helper: A Micro-ORM for SQLite
Database

EmaEm Code Artist Rate me: ***** 43675 (10 votes
25Aug 2024 MIT 9minread ©237K ©,195 M 34 T8

This project showcases how SQLiteHelper simplifies database interactions, which allows developers to
concentrate more on the application’s logic rather than the complexities of SQL query writing.

Download latest Repository Archive

Download local copy

SQLite Helper: A Micro-ORM for SQLite

Database

e [ntroduction

o Dependency
o Key Features of SQLite Helper
o Anatomy of SQLiteHelper

e Using SQLiteHelper

Create SQLite Database class

Basic Query Functions

Read from Database Table

Write Data to Database

Reading and Writing Complex Tables (ORM)

O O O O o

= Table Name

m Column Name

m Data Type

m |ndex Table

m Primary Key

= Parent and Child Tables

= Multiple Database Source
= Array Table

e Suggestion and Feedback

Introduction

SQLite Helper is a micro-Object-Relational Mapping (ORM) tool crafted to facilitate application
development with SQLite databases. It is particularly well-suited for small to medium-scale
applications, negating the necessity of authoring each SQL query from the ground up.

Conversely, Entity Framework (EF) is a comprehensive ORM offering a complete suite of functionalities.
However, more features do not inherently equate to superiority. It is prudent to weigh the Pros and
Cons of EF prior to its adoption.

While Entity Framework presents a robust ORM solution with an extensive feature set, SQLite Helper is
tailored for simplicity and expediency, enabling streamlined interactions with SQLite databases
through straightforward functions.

An article Micro ORM vs ORM written by Alex Shapovalov explained in details difference between
Micro ORM vs ORM and how to choose among them.

e NuGet: System.Data.SQLite.Core
e NET Framework 4.8

SQLite Helper comes with a set of features aimed at making your interaction with SQLite databases as
smooth as possible:

1.

Manage Connection String: SQLiteHelper requires only the database file path to establish a
connection, streamlining the process significantly.

. Automatic Open and Close Connection: SQLiteHelper employs a helper class to manage

database connections, obviating the need for manual tracking of connection states and ensuring
proper release post-write operations.

. Object Mapping to Database Class: sQLiteHelper facilitates single-method read and write

operations to the database by mapping objects directly to the database class, thereby
simplifying data manipulation tasks.

. Handle Queries from Different Database Sources: SQLiteHelper is adept at processing

queries from various database sources, offering the requisite flexibility for managing multiple
databases.

. Utility Functions: sQLiteHelper includes utility methods such as ClearTable, GetPrimaryKeys,

GetTableSchema, among others, all designed with safeguards against SQL injection—a common
oversight for novices.

In conclusion, SQLiteHelper is an essential tool for developers working with SQLite databases. It
simplifies database interactions, allowing developers to concentrate more on the application's logic
rather than the complexities of SQL query writing. SQLiteHelper is effective in improving the
development process for both small and medium-sized projects.

SQlLiteHelper (abstract): Primary class for the package. It encompasses all methods necessary for
database read and write operations.

SQLiteDatabaseHandler (abstract): This is a subclass derived from SQLiteHelper. It inherits all
features from the SQLiteHelper class and additionally has the ability to toggle between remote
and local databases, as well as synchronize data from a remote source to a local cached copy.
SQLiteDataReaderEx (extension): Extension class for SQLiteDataReader which handle null
check for get value method.

SQLAttribute: Attribute base class for table mapping.

Using SQLiteHelper

As a helper class, most methods within SQLiteHelper are designated as protected, as it is not
anticipated that users of derived classes will interact directly with the database layer. All operations
related to the database should remain concealed from the user at both the API and application levels.

Create project specific database class inherits from sQLiteHelper class. SetSQLPath have an optional
readonly parameter when set to true will open the database file in read only mode.

public class MyDatabase : SQLiteHelper

{
public MyDatabase(string databaseFilePath): base()
{
SetSQLPath(databaseFilePath);
}
}

Handling Busy Connection

Proper handling of retry and timeout is crucial to ensure transaction completed successfully without
impact user experience. Parameters SQLStepRetries and SQLBusyTimeout are 2 important parameters
to define how many iteration and delay used to retry for busy (locked database) connection.

In SQLite Helper, we offer a suite of query methods that internally handle database connections,
eliminating the need to search for unclosed connections that could result in a locked database.

protected void ExecuteQuery(string query, Action<SQLiteDataReader> processQueryResults)
protected object ExecuteScalar(string query)

protected int ExecuteNonQuery(string query)

protected void ExecuteTransaction(Action performTransactions)

Example below show usage of ExecuteQuery method. Connection are closed and SQLiteDataReader
object r is disposed at end of ExecuteQuery method.

ExecuteQuery(query, (r)=>

{
while(r.Read())
{
//ToDo: Perform readback here. ..
}
1)

SQLite Helper offer 2 solutions to read data from Employee table into Employee class object as shown
below:

Employee (Table)
|- ID, INTEGER, Primary Key
| - Name, TEXT

| - Department, TEXT
| - salary, INTEGER

public class Employee

{
public int ID {get; set;}
public string Name {get; set;}
public string Department {get; set;}
public int Salary {get; set;}

¥

1. The convention way, manually read data from database using ExecuteQuery method:

public Employee[] ReadEmployeeData()
{
List<Employee> results = new List<Employee>();
//Execute Query handle database connection
ExecuteQuery("SELECT * FROM Employee", (r) =>
{
//(r) = Delegate call back function with SQLiteDataReader parameter r.
//Disposal of r is taken care by ExecuteQuery method.
int x;
while(r.Read())
{
X = 0;
Employee e = new Employee();
e.ID = r.GetInt32(x++);
e.Name = r.GetStringEx(x++); //Extension method. Handle null value.
e.Department = r.GetStringEx(x++);
e.Salary = r.GetInt32Ex(x++);z
¥
1

2. Implementation above can be further simplify using query with class - ReadFromDatabase

public Employee[] ReadEmployeeData()
{

}

return ReadFromDatabase<Employee>().ToArray();

To update or write new data into database, you can utilize the WriteToDatabase method. Although it
is possible perform the same action using ExecuteNonQuery method for simple table structure,
WriteToDatabase method capable to handle more complex database structure which described in
following section.

public void WriteEmployeeData(Employee[] newDatas)
{

WriteToDatabase(newDatas);

Reading and Writing Complex Tables
(ORM)

The ReadFromDatabase and WriteToDatabase methods make it easy to link objects in your code to
tables in your database. They work well with tables that have relationships (child tables) and can
handle working with more than one database using simple commands. Let's take a closer look at what

they can do.

These methods follow the Fail Fast Principle, which means they quickly check if the structure of your

objects matches the structure of your database tables when you first use them. This check is to make
sure that all the columns match up. To avoid problems with older versions, your database tables can

have extra columns that aren’t in your objects, but not the other way around.

The 'WriteOptions' properties specify by SQLiteWriteOption class, sets how SQLiteHelper behaves
when reading and writing data with following options:

e CreateTable: Automatic create table in database if not exists when set to true. Do nothing if

table already exists.
e WriteMode: Used by WriteToDatabase method to decide what to update. (Reserved for future

implemntation, not available yet)

Mapping a class to database table named Employee. Use SQLName attribute to overwrite default table
name.
public class Employee { ... }

[SQLName("Employee")]
public class Emp { ... }

All public properties that have public getters and setters are regarded as SQL columns. The names of
these properties are, by default, used as the names of the corresponding columns. The SQLName

attribute can be used to overwrite the default column name or table name.

public class Employee

{
//Database Column: Name = 'Name', Type = TEXT
public string Name {get; set;}
//Database Column: Name = 'Department', Type = TEXT
[SQLName("Department")]
public string Dept {get; set;}
//Database Column: Name = 'Salary', Type = INTEGER
public int Salary {get; set;}
//Database Column: Name = 'Cost', Type = NUMERIC
public double Cost {get; set;}
//Read only property is not a valid SQL Column
public int Age {get;}

}

The table below displays the default data type mappings between objects and the database. Ensuring
matching data types is crucial for the accurate writing and reading of data. NOTE: SQLite may
automatically convert values to the appropriate datatype. More details in SQLite documentation Type
Affinity

Object Type Database Type
string, Enum, DateTime TEXT
int, long, bool INTEGER
double, decimal, float REAL

The sQLDataType attribute can be utilized to explicitly define the storage type of a value in the
database. For instance, Enum and DateTime types can be stored as integers by applying the
SQLDataType attribute, with Enum Status being stored as an integer and DateTime being stored as
ticks (long).

public enum Status { ... }
public class MyTable

{
[SQLDataType(DataType.INTEGER)]

public Status CurrentStatus {get; set;}

[SQLDataType(DataType.INTEGER)]
public DateTime LastUpdate {get; set;}

The example below demonstrates that UserName is stored as an index in the NameID column of the
Employee table, while the actual string value is kept in a key-value pair table named Name. This method
facilitates efficient data retrieval and management, particularly when the same name is used multiple
times across different tables.

Table name parameter for SQLIndexTable is optional. If left blank, the property name UserName will be
used as the table name. The values for the index table can be shared among multiple tables.

public class Employee

{
[SQLIndexTable("Name")]
[SQLName("NameID")]
public string UserName {get; set;}

}

Employee (Table)
| - NameID, INTEGER

Name (Table)
|- ID, INTEGER, Primary Key
| - Name, TEXT, Unique

The primary key attribute is linked to the primary key in the database table. When the
WriteToDatabase method is executed with an item whose ID is 0, it will create a new entry in the
database table and assign it a unique ID. If the ID is not 0, it will update the existing row with the
matching ID. NOTE: Primary key must be declared with int type.

public class Employee

{
[PrimaryKey]
public int ID {get; set;}

Let's examine the example provided: In database, Department (Table Name: Department) serves as a
parent table, and List<Employee> (Table Name: Employees) functions as a child table with a one-to-
many relationship, where each department can be associated with multiple employees. In other words,
for every single entry in the Department table, there can be several corresponding entries in the

Employee table, each representing an individual employee belonging to that department, while each
Employee is assigned to only one Department.

Child table must have a properties ID declared with ParentKey attribute which function as mapping
between child and parent table. Value of DepartmentID in example below is assigned by SQLite
Helper. PrimaryKey for class class Department is mandatory while it is optional for class Employee
depends on need of the design.

A child table must have an ID property, decorated with ParentKey attribute, which serves as the link
between child and parent table. In the example below, parent key value DepartmentID is assigned by
SQLite Helper.

public class Department

{
[PrimaryKey]
public int ID { get; set; }
public string Name { get; set; }
public List<Employee> Employees { get; set; } = new List<Employee>();
}
public class Employee
{
public string Name { get; set; }
[ParentKey(typeof (Department))]
public int DepartmentID { get; set; }
¥

Equivalent database table are given as follow:

Department (Table)
|- ID, INTEGER, Primary Key
| - Name, TEXT

Employee (Table)
| - Name, TEXT
| - DepartmentID, INTEGER

SQLite Helper also support multiple database source, allow data to be read and write from tables
stored in different SQLite database files. Example below showing that Department table is stored in
main database while Employee table is table stored in Employee.db. Switching between main and sub
database are handled internally by read and write method. This SQLDatabase attribute can only be
used with child table.

public class Department

{

[SQLName("Employee")]

[SQLDatabase("Employee.db")]
public List<Employee> Employees { get; set; } = new List<Employee>();

The array table functionality allows the storage of array properties from a sample table,
TableWithArray, into separate SQLite tables. This process involves creating specific SQLite tables for
each type of array property, enabling efficient storage and retrieval of array data. The following
example demonstrates how to map the array properties into SQLite tables.

public class TableWithArray

{
[PrimaryKey]
public int ID { get; set; }
public string[] ArrayData { get; set; }
[SQLName("ArrayIntValue")]
public int[] ItemValue { get; set; }

}

ArrayDatais a string array which mapped into ArrayTable with TEXT value.

ArrayData (Table)
|- ID, INTEGER
|- value, TEXT

ItemValue is an integer array, mapped to the SQLite table ArrayIntVvalue using the SQLName
attribute.

ArrayIntValue (Table)
|- ID, INTEGER
|- value, INTEGER

The sQLUnique and SQLUniqueMultiColumn attributes are used to mark columns with a unique
constraint. SQLUnique sets a unique constraint on a single column, while SQLUniqueMultiColumn sets
unique constraints across multiple columns.

Example usage of these attributes as follow:

public class User

{
[PrimaryKey]
public int ID { get; set; }
[SQLUNnique]
public string Email { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
[SQLUniqueMultiColumn]
public string Username { get; set; }
[SQLUniqueMultiColumn]
public string PhoneNumber { get; set; }
}

SQL Table Structure

User (Table)
|- ID, INTEGER, Primary Key
|- Email, TEXT, Unique
|- FirstName, TEXT
|- LastName, TEXT
| - Username, TEXT
| - PhoneNumber, TEXT
(Unique Username, PhoneNumber)

SQL Schema

CREATE TABLE User (
Id INTEGER PRIMARY KEY AUTOINCREMENT,
Email TEXT UNIQUE,
FirstName TEXT,
LastName TEXT,
Username TEXT,
PhoneNumber TEXT,
UNIQUE (Username, PhoneNumber)

);
In this example:

The Email column is marked with the SQLUnique attribute, ensuring that each email address is unique.
The Username and PhoneNumber columns are marked with the SQLUniqueMultiColumn attribute,
ensuring that the combination of Username and PhoneNumber is unique across the table.

Suggestion and Feedback

We hope this document has provided you with clear and helpful information to use this tool. Your
feedback is invaluable to us as it helps improve the quality of our work and clarity of our

documentation. Please share your suggestions, comments, or any difficulties you encountered while
using this guide. Your input will assist us in enhancing our resources and supporting users like you
more effectively. Thank you for your attention and contribution.

This article was originally posted at https://github.com/Code-Artist/CodeArtEng.SQLite

This article, along with any associated source code and files, is licensed under The MIT License

Written By

Code Artist

Technical Lead
= Malaysia

Official Page: www.codearteng.com

Comments and Discussions

ke

Search Comments

Relaxed v Normal v 25 v

First Prev Next

@ Some questions about the code snippets @ star_duster 21-Jul-24 20:59
Zl Re: Some questions about the code snippets € code Artist 27-Jul-24 9:51
(] My vote of 5 % stefan-Mihai MOGA 25-Jun-24 0:07
(] Re: My vote of 5 € Code Artist 27-Jun-24 20:45
@ Why not .net core as dependency & Jean Petrovic 18-Jun-24 20:36
Zl Re: Why not .net core as dependency £ Code Artist 18-Jun-24 20:46

(] Re: Why not .net core as dependency & Raul Duque 19-Jul-24 2:49

Re: Why not .net core as dependency B code Artist 27-Jul-24 9:53

Last Visit: 21-Aug-24 19:37 Last Update: 26-Aug-24 16:42 Refresh 1

(] General News ¥ Suggestion @ Question S 3 Bug Answer @ Joke O9Praise |@Rant @
Admin
Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

Permalink Layout: fixed | fluid Article Copyright 2024 by Code Artist
Advertise Everything else Copyright ©
Privacy Posted 25 Aug 2024 CodeProject, 1999-2024
Cookies

Terms of Use Web02 2.8:2024-07-22:1

