
Articles » Desktop Development » Shell and IE programming » Shell Programming

.NET Shell Extensions - Shell Context Menus
Dave Kerr

29 Jun 2019 CPOL

Rapidly create Shell Context Menu Extensions using .NET

Download SharpShell source code - 1.8 MB

Download SharpShell tools - 181.1 KB

Download SharpShell core library - 90.9 KB

Introduction
Until .NET 4.0, it was impossible to reliably create Windows Shell Extensions using .NET code. With improvements to the
framework, it is now possible to use .NET to create these extensions. In this article, I'll show you how to quickly create Shell
Context Menus as a C# class library.

Above: A screenshot of an example Shell Context Menu Extension - the 'Count Lines...' item is a custom shell
extension that this article demonstrates how to create.

The Series
This article is part of the series '.NET Shell Extensions', which includes:

1. .NET Shell Extensions - Shell Context Menus
2. .NET Shell Extensions - Shell Icon Handlers
3. .NET Shell Extensions - Shell Info Tip Handlers
4. .NET Shell Extensions - Shell Drop Handlers
5. .NET Shell Extensions - Shell Preview Handlers
6. .NET Shell Extensions - Shell Icon Overlay Handlers
7. .NET Shell Extensions - Shell Thumbnail Handlers
8. .NET Shell Extensions - Shell Property Sheets
9. .NET Shell Extensions - Deploying SharpShell Servers

What are Shell Context Menus?
Shell Context Menus are COM servers that are registered in the system that allow the context menus of shell objects to be
extended. This could be the context menu for a specific file type, such as *.txt files, file classes such as 'text files', drives,
folders and more. The context menus can be used to provide advanced functionality that can be accessed quickly through
Windows Explorer.

Getting Started
There's a lot of work involved in setting up Shell Extensions. Specific COM interfaces have to be implemented, servers must
be built, the registry must be updated in a variety of ways. We're going to use a library I have developed called
'SharpShell' to do all of the hard work - leaving us with the task of creating a lightweight class library that contains our
extension class.

Our Goal
The code below creates a Shell Extension that allows you to count the lines in any text file by right clicking on it and
choosing 'Count Lines'. For the rest of the article, I'll show you how to create a library like this. The code is shown first
because I want to highlight how straightforward writing these libraries is when using SharpShell.

/// <summary>
/// The CountLinesExtensions is an example shell context menu extension,
/// implemented with SharpShell. It adds the command 'Count Lines' to text
/// files.
/// </summary>
[ComVisible(true)]
[COMServerAssociation(AssociationType.ClassOfExtension, ".txt")]
public class CountLinesExtension : SharpContextMenu
{

/// <summary>
/// Determines whether this instance can a shell
/// context show menu, given the specified selected file list
/// </summary>
/// <returns>
/// <c>true</c> if this instance should show a shell context
/// menu for the specified file list; otherwise, <c>false</c>
/// </returns>
protected override bool CanShowMenu()

 {
// We always show the menu

return true;
 }

/// <summary>
/// Creates the context menu. This can be a single menu item or a tree of them.
/// </summary>
/// <returns>
/// The context menu for the shell context menu.
/// </returns>
protected override ContextMenuStrip CreateMenu()

 {
// Create the menu strip
var menu = new ContextMenuStrip();

// Create a 'count lines' item
var itemCountLines = new ToolStripMenuItem

 {
 Text = "Count Lines...",
 Image = Properties.Resources.CountLines
 };

// When we click, we'll count the lines
 itemCountLines.Click += (sender, args) => CountLines();

// Add the item to the context menu.
 menu.Items.Add(itemCountLines);

// Return the menu
return menu;

 }

/// <summary>
/// Counts the lines in the selected files
/// </summary>
private void CountLines()

 {
// Builder for the output
var builder = new StringBuilder();

// Go through each file.
foreach (var filePath in SelectedItemPaths)

 {
// Count the lines

 builder.AppendLine(string.Format("{0} - {1} Lines",
 Path.GetFileName(filePath), File.ReadAllLines(filePath).Length));
 }

// Show the output
 MessageBox.Show(builder.ToString());
 }
}

That's pretty clean and simple - now let's look in detail about how to create this Shell Context Menu with SharpShell.

Step 1: Creating the Project
First, create a new C# Class Library project.

Tip: You can use Visual Basic rather than C# - in this article, the source code is C# but the method for
creating a Visual Basic Shell Extension is just the same.

In this example, we'll call the project 'CountLinesExtension'.

Now add the following references:

1. System.Windows.Forms
2. System.Drawing

System.Windows.Forms is needed because we're going to use the WinForms ContextMenuStrip to define the
context menu. System.Drawing is needed as we're going to want to use Icons.

Rename the 'Class1.cs' file to 'CountLinesExtension.cs'. We should now have a project structure that looks like this:

Step 2: Referencing SharpShell
We now need to add a reference to the core SharpShell library. You can do that in a few different ways.

Add Reference

Download the 'SharpShell Library' zip file at the top of the article and add a reference to the downloaded SharpShell.dll file.

Tip: The download on this article is correct at the time of writing - if you need the latest version, use Nuget
(as described below) or get the library from sharpshell.codeplex.com.

Use Nuget

If you have Nuget installed, just do a quick search for SharpShell and install it directly - or get the package details at
https://www.nuget.org/packages/SharpShell.

Use CodePlex

Rather than getting the library from this page, which may not be the latest version, you can always get the very latest
version of the library from CodePlex - on the SharpShell home page which is https://sharpshell.codeplex.com. Nuget will
always have the latest stable version - CodePlex may have betas available, and the CodeProject articles will have the version
that was available at the time of writing.

Step 3: Deriving from SharpContextMenu
Now things get interesting. Derive your CountLinesExtension class from SharpContextMenu:

/// <summary>
/// The Count Lines Context Menu Extension
/// </summary>
public class CountLinesExtension : SharpContextMenu
{
}

Now we must implement the abstract members of the class. Right click on the SharpContextMenu part of the line and
choose 'Implement Abstract Class':

This'll create implementations of the two functions needed - CanShowMenu and CreateMenu:

/// <summary>
/// The Count Lines Context Menu Extension
/// </summary>

public class CountLinesExtension : SharpContextMenu
{

protected override bool CanShowMenu()
 {

throw new NotImplementedException();
 }

protected override ContextMenuStrip CreateMenu()
 {

throw new NotImplementedException();
 }
}

By implementing these two functions, we can provide all of the functionality needed. Here's what they do:

CanShowMenu

This function is called to determine whether we should show the Context Menu Extension for a given set of files. The files
the user has selected are in the property SelectedItemPaths. We can check these file paths to see whether we
actually want to show the menu. If the menu should be shown, return true. If not, return false.

CreateMenu

This function is called to actually create the Context Menu. A standard WinForms ContextMenuStrip is all we need to
return.

Here's how we'll implement the two functions:

protected override bool CanShowMenu()
{

// We will always show the menu
return true;

}

protected override ContextMenuStrip CreateMenu()
{

// Create the menu strip
var menu = new ContextMenuStrip();

// Create a 'count lines' item
var itemCountLines = new ToolStripMenuItem

 {
 Text = "Count Lines"
 };

// When we click, we'll call the 'CountLines' function
 itemCountLines.Click += (sender, args) => CountLines();

// Add the item to the context menu
 menu.Items.Add(itemCountLines);

// Return the menu
return menu;

}

private void CountLines()

{
// Builder for the output
var builder = new StringBuilder();

// Go through each file
foreach (var filePath in SelectedItemPaths)

 {
// Count the lines

 builder.AppendLine(string.Format("{0} - {1} Lines",
 Path.GetFileName(filePath), File.ReadAllLines(filePath).Length));
 }

// Show the output
 MessageBox.Show(builder.ToString());
}

For CanShowMenu, we return true always - shortly, we'll see why we don't need to validate that we have text files. For
CreateMenu, we build a context menu strip with one item only, that has the caption 'Count Lines' and calls the
CountLines function.

The CountLines function goes through the SelectedItemPaths and counts the lines in each file - then displays a
message box with the summary.

Step 4: Handling the COM Registration
There are just a few things left to do. First, we must add the COMVisible attribute to our class.

[ComVisible(true)]
public class CountLinesExtension : SharpContextMenu

Why? Well, even though our class doesn't really look like it, it is in fact a COM server. If you were to look at the base class,
you'd see that we're implementing COM interfaces such as IShellExtInit, IContextMenu, and
ISharpShellServer. We don't need to worry about what they do, but for the system to be able to create our
extension, it must have this attribute.

Next, we must give the assembly a strong name. There are ways around this requirement, but generally this is the best
approach to take. To do this, right click on the project and choose 'Properties'. Then go to 'Signing'. Choose 'Sign the
Assembly', specify 'New' for the key and choose a key name. You can password protect the key if you want to, but it is not
required:

The final step - we now need to associate our extension with some file types. We can do that with the
COMServerAssociation attribute (provided by SharpShell):

[ComVisible(true)]
[COMServerAssociation(AssociationType.ClassOfExtension, ".txt")]
public class CountLinesExtension : SharpContextMenu

So what have we done here? We've told SharpShell that when registering the server, we want it to be associated with the
class of *.txt files. This means that we won't just have it available for anything that ends in *.txt, but anything that is the
same class. In basic terms, that's most things that share the same icon as the *.txt files.

You can do some pretty funky things with the COMServerAssociation attribute - you can associate with folders,
drives, unknown files, specific extensions and so on. The full documentation for this feature is at COM Server Associations
on the SharpShell CodePlex site.

And that's it! Building the project creates the CountLinesExtension assembly, which can be registered as a COM
server to add the context menu to the system. Registering the COM server is a debugging and deployment task, so we'll
talk about this in detail in the next section.

Debugging the Shell Extension
The Shell Extension is going to be hosted in Windows Explorer - due to the roundabout way that .NET COM Servers are
loaded, it's damn near impossible to get a debugger into the process and step through the managed code. However, there
is a way to debug your extension quickly. SharpShell comes with some tools that make working with SharpShell
COM servers a bit easier, and one of them is the Server Manager. We can use this tool to debug our extension.

Open the Server Manager tool and use File > Load Server to load the built server file (the DLL). You can also drag the
server into the main window. Selecting the server will show you some details on it.

The Server Manager is very useful - it will tell you whether the server is installed (32 or 64 bit mode) and some more details.

If you load the SharpContextMenu server, then select it, you can go to the 'Tools' menu and choose 'Test Context
Menu'.

When you use 'Test Context Menu', you'll get a Test Shell Window. This is a basic implementation of the Windows Explorer
application. You can right click on any item to test the Shell Context Menu.

Tip: Regardless of the COMServerAssocations you've set, the Test Shell will always attempt to create the context menu for
the items created.

Attaching a debugger to the ServerManager.exe process will allow you to debug into your Context Menu and test its
functionality, without having to register the server in Windows. Here's what the Test Shell will look like when running the
Count Line Context menu extension.

Installing and Registering the Shell Extension
There are a number of ways to install and register SharpShell Shell Extensions. In this section, I'll detail them all.

The regasm Tool

You can use the tool 'regasm' to install and register a shell extension. When using regasm, the shell extension will be
installed into the registry (i.e., the Class ID of the COM Server will be put in the COM Server Classes section and associated
with the path to the actual server file), it will also register the associations.

The Server Manager Tool

The Server Manager Tool is my preferred approach for installing/uninstalling and registering/unregistering, at least during
development, because it lets you install and register as separate steps. It will also let you specify whether you're
installing/uninstalling etc in 32 bit or 64 bit mode.

Manual Registry Manipulation

Generally a bad approach, but if you absolutely have to then the MSDN documentation for Shell Extensions describes the
changes that must be made to the registry to manually register a COM server, or a Managed COM Server. The
documentation is listed in the 'Useful Resources' section.

Useful Resources
• Creating Shortcut Menu Handlers in Windows: The most important resource - the detail on how Shell Context Menu

extensions work in Windows
• SharpShell on CodePlex: The home of the SharpShell project - includes documentation, discussions and the

latest source code and releases

What's Next?
SharpShell will over time provide a mechanism to create all of the available Shell Extensions using .NET. Currently, Icon
Handlers are implemented (I'm working on the documentation) and Property Sheet Handlers are implemented (with a few
bugs to iron out). Each extension type will have an article.

I hope you've found this article useful - for feature requests, bugs or comments, you can use the comments section below
or the CodePlex site.

History
• 27th November, 2014: Initial version

License
This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

About the Author

Comments and Discussions

294 messages have been posted for this article Visit https://www.codeproject.com/Articles/512956/NET-Shell-
Extensions-Shell-Context-Menus to post and view comments on this article, or click here to get a print view with
messages.

Follow my blog at www.dwmkerr.com and find out about my charity at www.childrenshomesnepal.org.

Dave Kerr
Software Developer
United Kingdom

Permalink
Advertise
Privacy
Cookies
Terms of Use

Article Copyright 2013 by Dave Kerr
Everything else Copyright © CodeProject, 1999-2019

Web02 2.8.190704.2

