For those who code

Articles / Programming Languages / C#

C# Windows NET Visual-Studio TCP/IP

TCPIP Server and Client example

Patrick Eckler
6 Dec 2023 CPOL 9 min read 146K 14.8K 161

Example of a TCPIP server that listens and can serve multiple client connections

This article describes a classic TCP/IP server that can receive multiple client connections. The focus of
the article is the unique packet collection and assembly process used by the server and client sides
which allows the user to create specific commands for transmission to the server or another or all
clients.

Download source code - 10.7 MB
UPDATED as of December 5, 2023...
* Made some changes to better handle multiple simultaneous incoming connection.
How It Works

When a TCPIPClient connects to the TCPIPServer, the TCPIPServer fires back to the newly
connected TCPIPClient data about the other TCPIPClients who are already connected AND THEN
tells the already connected TCPIPClients of the newly arrived TCPIPClient. So now, each client has a
list of all the other clients who are on the system along with some details of who they are, like their IP
addresses, their name, the name of the computer they're on and the connection ID that the
TCPIPServer has given to the TCPIPClient.

When you select one or more TCPIPClients to send a text message to, the text is put into packets...
the TCPIPServer gets the packets and are re-routed to the specific TCPIPClient. The server knows
where to redirect the packet because the 'idTo' data field in the packet is set to the targeted
TCPIPClient...

C#

/**/

//prepare the start packet

xdata.Packet_Type = (UIntl1l6)PACKETTYPES.TYPE_Message;

xdata.Data_Type = (UInt16)PACKETTYPES_SUBMESSAGE.SUBMSG_MessageStart;
xdata.Packet_Size = 16;

xdata.maskTo = 0;

// Set this so server will re-direct this message to the connected client.
// If it's '@’ then it will only go to the server.
xdata.idTo = (uint)clientsHostId;

// Set this so the client who is getting your message will know who it's from.
xdata.idFrom = (uint)MyHostServerlID;

NOTE: Sending data like this is not the most efficient way because the packets have to travel from the
TCPIPClient computer to the TCPIPServer computer, then again to the targeted TCPIPClient...
someone creative may want to create a server in each TCPIPClient so the only role the TCPIPServer
would play would be to introduce the TCPIPClients and provide enough data to each other that they
could then make a point-to-point connections without having to send data via the TCPIPServer. But
that's a lesson for another day!

File Transfer

Also note the blue 'File Drop' area.... drag and drop some files on there and see what happens. :)

The solution contains a TCPIPServer project, a TCPIPClient project and a CommonClassLibs DLL
project that the first two projects share.

The solution was created using Microsoft Visual Studio 2015, .NET Framework 4.5... The server is set to
listen on port 9999 so it will ask to open the firewall for that.

B ToRE Client — O x

Tent to send: Mumber to sand:

Another number

[E=—

My Address fz Soen By The Server: 127.0.0.1, and my [0 grven by the ssrvers: 6

— e

Tina Tumer A
| SAID TO (Cire Eastwood, Tine Tumer) on /52020 - 543 AM-
Aryone up for lunch?

Tina Tumer at 252020 - 3:45 AM SAYS:
| canl make & today . rext time!

Chrt Ezetwood st 3752020 - 346 AM SAYS:
I game, what da you fed lixe having?

1 SAID TO (Cirt Eastwood) on 3/5/2020 - 3:48 AM:

) !ic- she-t Ynricer, =

Fie Do

>

TCPIPClient .. you can run several of these on a network!

B3 TCPiP Server App = O .4

Client IP Computer

192.168.100.224:56058
152.168.100.138:60187
127.0.0.1:65307

SATURN
SERIAL103-PC
PECKLER-PC

Host Name: PECKLER-PC. Listening on Port: 5339

™ (nmmunical:inn Events

0
Mmesmemonmchnrcredent'lﬂs ‘Fr'un l
3/5/2020, 9:37:25 AM Registered Cormection
3/5/2020, 9;37:3% AM Incoming Connection 2
Req.lesthlev(nnmct'lor{reden‘t'la]s from: 2
3/5/2020, 9:37:39 AM Registered Cormection
3/5,/2020, 9:37:45 AM Incoming Conrection 3
RequestNe\nConnechm{rederrha]s fromi 3
3/5/2020, 3 37:45 AM Registered Conrmection
3/5/2020, - 1 has disconmected
3;"5)"’2020 - 2 has disconmected
3)"5{2020 45 AM - 3 has disconnected
3/5/2020 03 AM Incoming Conmection 4
estNeuConnect\DrCrederrt1a1s From: 4

Re
3;"51?!2020 9:41:03 AM Registerad Conmection
3/5/2020, 9:41:45 AM Imcoming Connection 5
questNean ctionCredentials from: &
3/5/2020, 9:41:45 AM Registered Conrmection
3/5/2020, 2:42:20 AM Incoming Connection &
Requ.iestNeuConnechm{rederrha]s from: &
3/5/2020, 9:42:20 AM Registered Conmection

The TCPIPServer with a listview of the client connections and a fancy event viewer so we can see

what's going on inside.

"John Smith' on PC: PECKLER-PC

'Tina Turrer® on PC: SATLRN

‘Clint Eastwood' on PC: SERIALL0S-PC

"Tina Turrer® on PC: SATURN

'Clint Eastwood’ on PC: SERTALLIO0S-PC

'John Swith' on PC: PECKLER-PC

Host P4 Address
192.168.100.223

IP6 addresses
fef:91df:4b30 chdached %2

As a developer of windows programs, there was a need to be able to communicate and send real-time
data to other users who were using the same application at the same time. Perhaps you develop an
application that allows you to create and edit common network documents... if another person is also
viewing that same document and making changes, then you will want to make sure that the other user
is not overwriting the changes you are making at that moment. So, there should be a way to
communicate information between the users so they know that changes are being made.

This article describes a classic TCP/IP server that can receive several client connections and handles all
the data packets that come from the client side connections. The packets are assembled and
processed on the server OR they can be forwarded to other single clients or sent to all of them
simultaneously.

If you are really creative, you can use the server to simply let clients know about the other connected
clients and pass enough information to each other that they can just talk directly to one other
(typically called a rendezvous server). Here is a picture of what | call 'GComm'(Group Communicator)
using this principle. This app is a tool for sending files and RTF messages to one or more people on a
network. The core mechanism for receiving and constructing data packets is what this article will
describe.

The nuts and bolts are described below...

The TCPIPServer Program

Let me preface by saying that in this example, I'm using a fixed packet size which is inefficient since
typically most of the packet space won't be used, but as you will see it's not the end of the world.... as
pointed out by a commenter using 'length prefixing' would be the best way... in this case the user would
stuff in the size of the packet as well as a type so you would then just assemble the tcpip chunks to that
length and cast the whole thing to its original state.

Let's have a look at the server side of the TCPIPServer project... the main purpose of this application is
to listen for and connect to client connections. We have a set of global variables for the project:

C#

/**********************>l<********************************/

/// <summary>
/// TCPiP server
/// </summary>

Server svr = null;

private Dictionary<int, MotherOfRawPackets> dClientRawPacketlList = null;
private Queue<FullPacket> FullPacketList = null;

static AutoResetEvent autoEvent;//mutex

static AutoResetEvent autoEvent2;//mutex

private Thread DataProcessThread = null;

private Thread FullPacketDataProcessThread = null;
/***/

e The 'Server'is the TCP layer class that establishes a Socket that listens on a port for incoming
client connection and gives up the raw data packets to the interface via an Event callback... it
also maintains a few items of information on each client and note a defined Packet class that
contains a data buffer of 1024 bytes.

C#

private Socket _UserSocket;

private DateTime _dTimer;

private int _iClientID;

private string _szClientName;

private string _szStationName;

private UIntl6 _UserlListentingPort;
private string _szAlternateIP;

private PingStatsClass _pingStatClass;

/// <summary>
/// Represents a TCP/IP transmission containing the socket it 1is using, the
clientNumber
/// (used by server communication only), and a data buffer representing the message.
/// </summary>
private class Packet
{
public Socket CurrentSocket;
public int ClientNumber;
public byte[] DataBuffer = new byte[1024];

/// <summary>

/// Construct a Packet Object

/// </summary>

/// <param name="sock">The socket this Packet 1s being used on.</param>

/// <param name="client">The client number that this packet is from.</param>
public Packet(Socket sock, int client)

{

CurrentSocket = sock;
ClientNumber = client;

e The'dClientRawPacketList'is a Dictionary that handles each clients raw data packets. As a
client attaches to the server, the server creates and assigns a unique integer value(starting at 1)
to each client... a Dictionary entry is made for that client where the Key value in the Dictionary
is the unique value. As those clients fire data packets to the server, it collects that clients packets

in the dictionary's MotherOofRawPackets class which manages a queue type list of classes called

RawPackets.
C#
public class RawPackets
{
public RawPackets(int iClientId, byte[] theChunk, int sizeofchunk)
{
_dataChunk = new byte[sizeofchunk]; //create the space
_dataChunk = theChunk; //ram it in there
_iClientId = iClientId; //save who it came from
_iChunkLen = sizeofchunk; //hang onto the space size
}
public byte[] dataChunk { get { return _dataChunk; } }
public int iClientId { get { return _iClientId; } }
public int iChunkLen { get { return _iChunkLen; } }
private byte[] _dataChunk;
private int _iClientId;
private int _iChunkLen;
}

e The 'FullPacketList'is a Queue type list. Its purpose is to hold onto the incoming packets in
the order by which they arrived. If you have 10 client connections all firing data at the server, the
server's DataProcessingThread function will assemble those packets into full packets and store
them into this list for processing shortly thereafter.

e There are 2 AutoEvent mutexes used in packet assembly threads, autoEvent and autoEvent2
(sorry for the generic names). These allow those threaded function to efficiently sleep when data
is being processed.

e As mentioned above, the 'DataProcessThread' and the '‘FullPacketDataProcessThread' are 2
threads that work hand in hand to assemble data packets in the exact order they were sent.

As the TCPIPServer application starts up, we initialize the above defined variables:

C#

private void StartPacketCommunicationsServiceThread()
{
try
{
//Packet processor mutex and Loop
autoEvent = new AutoResetEvent(false); //the RawPacket data mutex
autoEvent2 = new AutoResetEvent(false);//the FullPacket data mutex
DataProcessThread = new Thread(new ThreadStart(NormalizeThePackets));
FullPacketDataProcessThread = new Thread(new ThreadStart(ProcessRecievedData));

//Lists
dClientRawPacketlList = new Dictionary<int, MotherOfRawPackets>();
FullPacketList = new Queue<FullPacket>();

//Create HostServer
svr = new Server();

svr.Listen(MyPort);//MySettings.HostPort);

svr.OnReceiveData += new Server.ReceiveDataCallback(OnDataReceived);
svr.0OnClientConnect += new Server.ClientConnectCallback(NewClientConnected);
svr.0OnClientDisconnect += new Server.ClientDisconnectCallback(ClientDisconnect);

DataProcessThread.Start();
FullPacketDataProcessThread.Start();
OnCommunications($"TCPiP Server is listening on port {MyPort}", INK.CLR_GREEN);

}
catch(Exception ex)
{
var exceptionMessage = (ex.InnerException != null) ?
ex.InnerException.Message : ex.Message;
//Debug.Writeline($"EXCEPTION IN: StartPacketCommunicationsServiceThread -
// {exceptionMessage}");
OnCommunications($"EXCEPTION: TCPiP FAILED TO START,
exception: {exceptionMessage}", INK.CLR_RED);
}

Note the ‘NormalizeThePackets' and 'ProcessRecievedData’(yes misspelled) threads... as the TCP
Socket layer throws up its incoming packets, we get a hold of them in the NormalizeThePackets
function loop. As long as the application is listening (while(svr.IsListening)), the function thread
stays alive and sits at the autoEvent.WaitOne() mutex until data comes in on the TCP layer and we
call autoEvent.Set(), which allows the application process to drop through and process the data that
is being collected in the dClientRawPacketList Dictionary. Each client's dictionary entry
(MotherOfRawPackets) is examined for data, if one of the attached clients have sent packets, then
RawPackets Queue list will have items to be processed. The Packets are concatenated together and
once 1024 bytes are strung together, we know we have 1 full packet! That packet is Enqueued into the

FullPacket Queue List, then the 2"d mutex is triggered(autoEvent2.Set()) to drop past the loop in
the other threaded function(ProcessRecieveData)... see below. :)

NOTE: With TCPIP, we know that the data packets are guaranteed to arrive intact and in order of
how they were sent...

Knowing that then we can assume that if we send packets of data then we know that we can assemble
them when we get them on the receiving side... but the trickery of the TCP layer is that the packets can
come in varying chunks before we get the whole thing, so we need a way to stick the chunks together
to reassemble what was originally sent...

C#

private void NormalizeThePackets()

{
if (svr == null)
return;

while (svr.IslListening)

{

autoEvent.WaitOne();//wait at mutex until signal

/**/
lock (dClientRawPacketList)//http://www.albahari.com/threading/part2.aspx#_Locking

(MotherOfRawPackets MRP in dClientRawPacketlList.Values)

if (MRP.GetItemCount.Equals(@))

{
foreach
{
try
{

continue;

byte[] packetplayground = new byte[11264];//good for
//10 full packets(10240) + 1 remainder(1024)

RawPackets rp;

int actualPackets = 0;

while (true)

{ if (MRP.GetItemCount == 0)
break;

int holdLen = 9;

if (MRP.bytesRemaining > 0)
Copy(MRP.Remainder, 0, packetplayground, 0, MRP.bytesRemaining);

holdLen = MRP.bytesRemaining;

for (int i = @; i < 10; i++)//only go through a max of
//16 times so there will be room for any remainder

{
rp = MRP.GetTopItem;//dequeue
Copy(rp.dataChunk, @, packetplayground, holdLen, rp.iChunkLen);
holdLen += rp.iChunkLen;
if (MRP.GetItemCount.Equals(®@))//make sure there is more
//in the Llist before continuing
break;
}

actualPackets = 0;

if (holdLen >= 1024)//make sure we have at lLeast one packet in there
{

actualPackets = holdLen / 1024;

MRP.bytesRemaining = holdLen - (actualPackets * 1024);

for (int i = @; i < actualPackets; i++)
{
byte[] tmpByteArr = new byte[1024];
Copy(packetplayground, i * 1024, tmpByteArr, 0, 1024);
lock (FullPacketList)
FullPacketlList.Enqueue(new FullPacket
(MRP.iListClientID, tmpByteArr));

}

else

{
}

MRP.bytesRemaining = holdLen;

//hang onto the remainder
Copy(packetplayground, actualPackets * 1024, MRP.Remainder,
0, MRP.bytesRemaining);

if (FullPacketList.Count > 0)
autoEvent2.Set();

}Y//end of while(true)

}
catch (Exception ex)
{

MRP.ClearList();//pe ©3-20-2013

string msg = (ex.InnerException == null) ?

ex.Message : ex.InnerException.Message;
OnCommunications
("EXCEPTION in NormalizeThePackets - " + msg, INK.CLR_RED);

}

}//end of foreach (dClLientRawPacketList)
}//end of Llock
/**/
if (ServerIskExiting)
break;
}Y//Endof of while(svr.IsListening)

Debug.WritelLine("Exiting the packet normalizer");
OnCommunications("Exiting the packet normalizer", INK.CLR_RED);

Now the ProcessRecievedData function:

C#

private void ProcessReceivedData()
{
if (svr == null)
return;

while (svr.IslListening)

{

autoEvent2.WaitOne();//wait at mutex until signal

try
{
while (FullPacketList.Count > @)
{
FullPacket fp;
lock (FullPacketList)
fp = FullPacketList.Dequeue();
//Console.WritelLine(GetDateTimeFormatted +" - Full packet fromID:

//fp.1FromClient.ToString() + ", Type: " +

// ((PACKETTYPES) fp.ThePacket[0]).ToString());

UIntl6 type = (ushort)(fp.ThePacket[1] << 8 | fp.ThePacket[@]);

switch (type)//Interrogate the first 2 Bytes to see what the packet TYPE 1is

{
case (UIntl16)PACKETTYPES.TYPE_MyCredentials:
{
PostUserCredentials(fp.iFromClient, fp.ThePacket);
SendRegisteredMessage(fp.iFromClient, fp.ThePacket);
}
break;
case (UIntl6)PACKETTYPES.TYPE_CredentialsUpdate:
break;
case (UIntl16)PACKETTYPES.TYPE_PingResponse:
//Debug.WritelLine(DateTime.Now. ToShortDateString() + ", " +
//DateTime.Now. ToLongTimeString() + " - Received Ping from: " +
//fp.1FromClient.ToString() + ", on " +
//DateTime.Now. ToShortDateString() + ", at: " +
//DateTime.Now. ToLongTimeString());
UpdateTheConnectionTimers(fp.iFromClient, fp.ThePacket);
break;
case (UIntl6)PACKETTYPES.TYPE_Close:
ClientDisconnect(fp.iFromClient);
break;
case (UIntl16)PACKETTYPES.TYPE_Message:
{
AssembleMessage(fp.iFromClient, fp.ThePacket);
}
break;
default:
PassDataThru(type, fp.iFromClient, fp.ThePacket);
break;
}
}//END while (FullPacketList.Count > @)
}Y//END try
catch (Exception ex)
{
try
{
string msg = (ex.InnerException == null) ?
ex.Message : ex.InnerException.Message;
OnCommunications($"EXCEPTION in ProcessRecievedData - {msg}", INK.CLR_RED);
}
catch { }
}

if (ServerIsExiting)
break;
}//End while (svr.IslListening)

string info2
string info3

string.Format("AppIskExiting = {@}", ServerIsExiting.ToString());
string.Format("Past the ProcessRecievedData loop™);

Debug.WriteLine(info2);
Debug.WriteLine(info3);

try

OnCommunications(info3, INK.CLR_RED); // "Past the ProcessRecievedData Loop"
// also is logged to Infolog.log

}

catch { }

if (!ServerIsExiting)

{
//1f we got here then something went wrong, we need to shut down the service
OnCommunications("SOMETHING CRASHED", INK.CLR_RED);

}

Ok, we have described how data is received from the clients on the TCPIP server application! Let's look
at the packet of data that is transmitted... both the server and client have this packet defined in the
CommonClassLib DLL... | decided that | would just create a generic class called PACKET_DATA of a fixed
size of a computer friendly number of 1024. You can create as many classes as you like. Just make sure
that they are 1024 bytes. Note that that matches the size of the Packet class described in the
Service class above.

So! For each full packet that comes in and is EnQueued in the FullPacketList, this is the class we are
getting.

The very first variable is an unsigned short(UInt16) called Packet_Type. If we interrogate the first 2

bytes as seen in the ProcessRecievedData function above, we can then figure out what the rest of the
data in the class contains.

C#

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public class PACKET_DATA

{

/**/

//HEADER 1is 18 BYTES

public UIntl6 Packet_Type; //TYPE_ ??

public UIntl6 Packet_Size;

public UIntl6 Data_Type; // DATA_ type fields

public UIntl6 maskTo; // SENDTO_MY_SHUBONLY and the Like.
public UInt32 idTo; // Used if maskTo is SENDTO_INDIVIDUAL
public UInt32 idFrom; // Client ID value

public UIntl6 nApplLevel;

/**/

public UInt32 Datal; //miscellaneous information
public UInt32 Data2; //miscellaneous information
public UInt32 Data3; //miscellaneous information
public UInt32 Data4; //miscellaneous information
public UInt32 Data5; //miscellaneous information
public Int32 Data6; //miscellaneous information
public Int32 Data7; //miscellaneous information
public Int32 Data8; //miscellaneous information

public Int32 Data9; //miscellaneous information

public Int32 Datale;

public UInt32 Datall;
public UInt32 Datal2;
public UInt32 Datal3;
public UInt32 Datal4;
public UInt32 Datal5;

public Int32 Datal6;
public Int32 Datal7;
public Int32 Datals8;
public Int32 Datal9;
public Int32 Data2e;

public UInt32 Data2l;
public UInt32 Data22;
public UInt32 Data23;
public UInt32 Data24;
public UInt32 Data25;

public Int32 Data26;
public Int32 Data27;
public Int32 Data28;
public Int32 Data29;
public Int32 Data30;

public
public
public
public
public

Double DataDoublel;
Double DataDouble2;
Double DataDouble3;
Double DataDouble4;
Double DataDouble5;

/// <summary>

/// Long valuel

/// </summary>

public Int64 DatalLongl;
/// <summary>

/// Long value2

/// </summary>

public Int64 DatalLong2;
/// <summary>

/// Long value3

/// </summary>

public Int64 DatalLong3;
/// <summary>

/// Long value4

/// </summary>

public Int64 Datalong4;

/// <summary>

/// Unsigned Long valuel

/// </summary>

public UInt64 DataULongl;

/// <summary>

/// Unsigned Long value2

/// </summary>

public UInt64 DataUlLong2;

//miscel laneous

//miscel laneous
//miscel laneous
//miscel laneous
//miscel laneous
//miscel laneous

//miscel laneous
//miscel laneous
//miscel laneous
//miscel laneous
//miscel laneous

//miscel laneous
//miscel laneous
//miscel laneous
//miscel laneous
//miscel laneous

//miscel laneous
//miscel laneous
//miscel laneous
//miscellanious
//miscel laneous

information

information
information
information
information
information

information
information
information
information
information

information
information
information
information
information

information
information
information
information
information

/// <summary>

/// Unsigned Long value3
/// </summary>

public UInt64 DataULong3;
/// <summary>

/// Unsigned Long value4
/// </summary>

public UInt64 DataULong4;

/// <summary>

/// DateTime Tick valuel
/// </summary>

public Int64 DataTimeTick1l;

/// <summary>

/// DateTime Tick value2
/// </summary>

public Int64 DataTimeTick2;

/// <summary>

/// DateTime Tick valuel
/// </summary>

public Int64 DataTimeTick3;

/// <summary>

/// DateTime Tick value2
/// </summary>

public Int64 DataTimeTick4;

/// <summary>

/// 360 Chars

/// </summary>
[MarshalAs(UnmanagedType.ByValArray, SizeConst
public Char[] szStringDataA = new Char[300];

300)]

/// <summary>

/// 360 Chars

/// </summary>

[MarshalAs(UnmanagedType.ByValArray, SizeConst = 300)]
public Char[] szStringDataB = new Char[300];

/// <summary>
/// 156 Chars
/// </summary>
[MarshalAs(UnmanagedType.ByValArray, SizeConst
public Char[] szStringDatal5@ = new Char[150];

150)]

//18 + 120 + 40 + 96 + 600 + 150 = 1024

Creating an enum and defining a set of packet types allows us to know what the data is that's coming
in from a client.

C#

public enum PACKETTYPES

{
TYPE Ping = 1,
TYPE_PingResponse = 2,
TYPE_RequestCredentials = 3,
TYPE_MyCredentials = 4,
TYPE_Registered = 5,
TYPE_HostExiting = 6,
TYPE_ClientData = 7,
TYPE_ClientDisconnecting
TYPE_CredentialsUpdate =
TYPE_Close = 10,
TYPE_Message = 11,
TYPE_MessageReceived = 12,
TYPE_FileStart = 13,
TYPE_FileChunk = 14,
TYPE_FileEnd = 15,
TYPE_DoneRecievingFile = 16

= 8,
9,

Again, this PACKETTYPES enum is also part of the CommonClassLib DLL that are shared between the
TCPIPServer and TCPIPClient programs.

The TCPIPClient Program

The TCPIPClient program is almost identical to the server as far as how it processes data packets but
it only has to worry about what it's getting from the server, rather than several TCP streams from
several clients.

The TCPIPClient also has a client side version of the TCP layer that does a connect to attach to the
listening server.

C#

/***/

private Client client = null;//Client Socket class

private MotherOfRawPackets HostServerRawPackets = null;
static AutoResetEvent autoEventHostServer = null;//mutex
static AutoResetEvent autoEvent2;//mutex

private Thread DataProcessHostServerThread null;
private Thread FullPacketDataProcessThread = null;

private Queue<FullPacket> FullHostServerPacketlList = null;
/***/

Here is a client side example of the client responding to a TYPE_Ping message from the server:

C#

private void ReplyToHostPing(byte[] message)

{
try

PACKET_DATA IncomingData = new PACKET_DATA();
IncomingData = (PACKET_DATA)PACKET_FUNCTIONS.ByteArrayToStructure
(message, typeof(PACKET_DATA));

/***/

//calculate how Llong that ping took to get here

TimeSpan ts = (new DateTime(IncomingData.DatalLongl)) - (new DateTime(ServerTime));
Console.WriteLine($"{GeneralFunction.GetDateTimeFormatted}:

{string.Format("Ping From Server to client: {0:0.##}ms", ts.TotalMilliseconds)}");

/***/

ServerTime = IncomingData.Datalongl;// Server computer's current time!
PACKET_DATA xdata = new PACKET_DATA();

xdata.Packet_Type
xdata.Data_Type =
xdata.Packet_Size
xdata.maskTo = 0;
xdata.idTo = ©;

xdata.idFrom =

(UInt16)PACKETTYPES.TYPE_PingResponse;

)

16;

n o© 1

H

xdata.DatalLongl = IncomingData.DatalLongl;

byte[] byData = PACKET_FUNCTIONS.StructureToByteArray(xdata);
SendMessageToServer(byData);

CheckThisComputersTimeAgainstServerTime();

}
catch (Exception ex)
{
string exceptionMessage = (ex.InnerException != null) ?
ex.InnerException.Message : ex.Message;
Console.WriteLine($"EXCEPTION IN: ReplyToHostPing - {exceptionMessage}");
}

Compiling and Running the Apps in the Solution

To start, compile the CommonClassLibs project. This creates the DLL that the TCPIPServer and the
TCPIPClient will need. It contains the classes and enumerations that each side will need along with a
few common functions. Make sure that you reference this DLL in the other projects.

Compile the TCPIPServer and the TCPIPClient projects, then run the TCPIPServer... it will likely want
to make a rule in the computers firewall to allow port 9999 through so go ahead and allow that. Take
note of the computer's IP address on the network:

132.168.100.223
192:168.23.1
192.168.182.1
152.168.137.1

(If more than one, then it's likely the first one.)

Once it's running, fire up the TCPIPClient application... Set the IP address of the TCPIPServer in the
'‘Address to the Server' textbox. If you are running this on the same computer using localhost should
work. Run this app on as many computers as you like and click the 'Connect to Server' button. If the
red indicator turns green, then the connection was made... it turns green when the client gets a
TYPE_Registered message from the server.

I've used this method between applications for years and it's pretty solid!

Sth

e A rainy November the 15", 2017 day in Livonia Michigan

This article, along with any associated source code and files, is licensed under The Code Project Open
License (CPOL)

Written By

Patrick Eckler

Software Developer (Senior)
== United States

Born and raised in the city of Detroit...
C, C++, C# application and web developer.
https://PESystemsllc.com/

Email: EcklerPa@yPESystemslic.com

Comments and Discussions

= 60 messages have been posted for this article Visit
https://www.codeproject.com/Articles/1215517/TCPIP-Server-and-Client-example to post and

view comments on this article, or click here to get a print view with messages.

Article Copyright 2017 by Patrick Eckler

Permalink

Advertise Posted 17 Nov 2017 Everything else Copyright ©
Privacy CodeProject, 1999-2023
Cookies

Terms of Use Web03 2.8:2023-10-29:1

