2020/4/15 Tiny Web Server Take 2 - CodeProject

A § .F For those wha code

honey the codewitch

9 Sep 2019 CPOL

A Tiny Dynamic Home Webserver in .NET that runs on Core and DNF both (Take 2)

Download source - 26.1 KB

So my first crack at this was not up to par. | dramatically misunderstood where my app was blocking despite using all asynchronous 1/0
and was only serving synchronously, which is a real problem in a webserver, even one intended for home networks like this.

Speaking of which, don't make this internet facing. It's not scalable. It's intended for small apps and a limited number of connections, on
something where you don't want the full ASP.NET stack to haul around, like on a standalone system where .NET Core runs but you don't
have Apache on it. Or maybe you just want to make an HTML based application in your own winforms app so you want to serve to
yourself and use the web browser control (though I don't recommend this these days). Maybe you want a little gadget to talk to your
loT gadgets and need to mess with headers, or whatever. Maybe you're just interested in stuff like this.

HTTP is ugly, but it works. Most of what this project does is hack its way through headers and mangle responses to do chunking. The
rest is just serving async, which is pretty easy in .NET, unless you muck it up like I did last time.

What we do is create a listening port and then accept on a pooled thread, where we handle the request. Right now, it's about half
asynchronous on the 1/0 end and the threading takes care of any blocking that still happens, although there's a lot more async support
in SocketUtility thanis being used right now. | didn't want to complicate the source more than it is.

The code does minimal validation, and | didn't spend a lot of time making it robust. It's more of an example than anything.

SocketUtility is the foundation of all the HTTP and socket 1/0, usually by way of extension methods on Socket.

Basically, much of the class is just HTTP protocol stuff, and asynchronous socket I/O, like the socket awaitable adapter that sort of
munges the weird async socket APl into something more async/await based (courtesy of MSDN, | didn't write that little adapter class -
I use what's good! - link in the source).

It processes HTTP primarily using the ServeHttp() method, takes a listener socket that's already bound and blocks on it, so call it from
another thread - preferably a thread pool. I've found that even using awaitable asynchronous methods, you still need the threads or it
will block. I understand why, but only now. Basically, they're implemented by waiting the thread, and then waking up on a callback, or at

https://www.codeproject.com/Articles/5205722/Tiny-Web-Server-Take-2?display=Print 1/3

2020/4/15 Tiny Web Server Take 2 - CodeProject

least that's how it appears to run underneath the abstraction, but that's not exactly what | needed. So | just converted it to block, and set
it on the ThreadPool. | suspect this is proper in any case, even if we were using some sort of ServeHttpAsync () method -
which | have yet to write.

var listener = new Socket(SocketType.Stream, ProtocolType.Tcp);
var endPoint = new IPEndPoint(IPAddress.Any,8080));
listener.Bind(endPoint);

listener.Listen(10);

ThreadPool.QueueUserWorkItem((1l) => {

listener.ServeHttp((request, response) => {
response.WriteLine("Hello World!");
3

}, listener);
// execute wait here as the above doesn't blocR

This is basically what it looks like to set up a server. However, the WebServer component leverages SocketUtility to handle
this for you.

All you have to do is set the properties and go. You'll note the surrounding code is more expansive than the actual webserving part. It's
super simple. On WinForms, it's a component, so it can be present in the designer on a WinForm, and you can just set the two
properties on it, wire up the event and go. See the TinyWebDemo.

static void Main(string[] args)

{

}

var w3s = new WebServer();
if (@ < args.Length)

{
w3s.EndPoint = _ToEndPoint(args[@]);

}

else

{
Console.Error.WriteLine("Usage: w3serv <ip>:<port>");
Console.Error.WriteLine("\t<ip> can be \"*\"");
return;

}

w3s.IsStarted = true;

w3s.ProcessRequest += W3s_ProcessRequest;

Console.Error.WriteLine("Press any key to stop serving...");

Console.ReadKey();

w3s.Dispose(); // shut down - in production you'd use the "using"” directive or try/finally

private static void W3s_ProcessRequest(object sender, ProcessRequestEventArgs args)

{

// default is text/plain
args.Response.ContentType = "text/html";
args.Response.WriteLine("<html><body><h1>Hello World</hl></body>");

It has no mechanism for serving files, only dynamic content, and it's your responsibility to handle the request path and serve the
appropriate content. You also need to set the Content-Type. Currently, it doesn't buffer but it can be easily updated to be able to buffer
the output like ASP.NET can. | just didn't bother to do it, and I like to stream anyway.

. gth September, 2019 - Initial submission

https://www.codeproject.com/Articles/5205722/Tiny-Web-Server-Take-2?display=Print 2/3

2020/4/15 Tiny Web Server Take 2 - CodeProject

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

honey the codewitch

United States B=

Just a shiny lil monster. Casts spells in C++. Mostly harmless.

Comments and Discussions

Iﬁ 35 messages have been posted for this article Visit https://www.codeproject.com/Articles/5205722/Tiny-Web-Server-Take-2 to
post and view comments on this article, or click here to get a print view with messages.

Article Copyright 2019 by honey the

Permalink

Advertise codewitch
Privacy Everything else Copyright © CodeProject,
Cookies 1999-2020

Terms of Use
Web06 2.8.200414.1

https://www.codeproject.com/Articles/5205722/Tiny-Web-Server-Take-2?display=Print 3/3

