15,994,910 members 1.7K Honda Chen

.F For those who code

quick answers discussions features Search for articles, questions, tip:

community help

Articles / Programming Languages / C# v -

C# NET singleton design-patterns

Thread-Safe Singleton in C#: A Guide to
Double-Checked Locking and Lazy<T>
Approaches

B Antonio Ripa Rate me: 5.00/5 (2 votes)

10 Sep 2024 CPOL 10 min read 2.9K 7 5

A practical guide to implementing the Thread-Safe Singleton pattern in C# with modern and
traditional approaches, including real-world scenarios where each method excels.

This article explores the thread-safe implementation of the Singleton design pattern in C#, providing a
clear comparison between the modern Lazy approach and the classic double-checked locking method.
It covers the benefits and drawbacks of each, offering practical code examples and a real-world
scenario where double-checked locking might still be the better choice. Whether you're implementing
simple lazy initialization or need a more dynamic, flexible solution, this guide helps you choose the
right approach for your application

Design patterns are tried-and-true solutions to common software design problems. They provide a
standard way to solve recurring issues, making code more flexible, reusable, and easier to understand.
This article is the first in a series exploring popular design patterns, starting with the Singleton
pattern.

The Singleton pattern ensures that a class has only one instance and provides a global point of access
to that instance. In this article, we'll explore how to implement a thread-safe Singleton in C#, using
both the classic double-checked locking pattern and the more modern Lazy<T> approach. We'll
also look at a real-world scenario where double-checked locking is a better fit.

Why Use a Singleton?

The Singleton pattern guarantees that a class has exactly one instance and provides a global access
point to that instance. It is often used for tasks that require a single, centralized object, like a
configuration manager, a logger, or a connection pool.

Some typical use cases for the Singleton pattern include:

¢ Logging: Having a single logging object that writes to a file or console ensures consistent
logging behavior.

e Configuration Management: A Singleton is useful for managing configuration settings that
should only be initialized once during the application lifecycle.

e Database Connections: A Singleton can be used to manage a shared connection to a database,
reducing resource overhead.

Basic Singleton Example in C#

C#]

public class Singleton

{

private static Singleton _instance;

// Private constructor to prevent instantiation from outside
private Singleton() { }

// Public static method to access the single instance
public static Singleton Instance

{
get
{
if (_instance == null)
{
_instance = new Singleton();
}
return _instance;
}
}

public void DoSomething()
{

Console.WriteLine("Singleton instance method called!");

In this basic implementation:

¢ Private Constructor: Ensures no external classes can create new instances of Singleton.
¢ Static Field: Holds the single instance of the class.
¢ Instance Property: Provides global access to the instance and creates it if it doesn't already exist

(lazy initialization).

How to Call the Singleton
C# Shrink A [

class Program

{

static void Main(string[] args)

{

// Accessing the Singleton 1instance for the first time
Singleton instancel = Singleton.Instance;
instancel.DoSomething();

// Accessing the Singleton instance again
Singleton instance2 = Singleton.Instance;

// Verifying that both references point to the same object
if (Object.ReferenceEquals(instancel, instance2))

{
}
else

{
}

Console.WriteLine("Both instances are the same.");

Console.WriteLine("Instances are different.");

// Example output:
// "Singleton instance method called!"
// "Both instances are the same."

Here the Singleton class is accessed via the Instance property. Since the Singleton pattern ensures
only one instance of the class is created, all references to the Singleton.Instance will point to the
same object. This allows you to invoke the DoSomething method and ensure that the Singleton object
is consistently used across your application.

o ReferenceEquals(instance1, instance2) checks if instancel and instance2 refer to the same

object in memory.
e When using the Singleton pattern, both instancel and instance2 will refer to the same

instance, and the program will print "Both instances are the same."

This demonstrates that no matter how many times the Instance property is called, it always returns
the same object, ensuring that only one instance of the Singleton class exists in the application.

When working in multithreaded environments, ensuring that only one instance of a Singleton is
created can be tricky. This is where thread-safe implementations come into play.

To illustrate the issue with multithreading in a Singleton without locks, here’s an example:

Imagine you have a StaticDataManager class with a GetCountries method that fetches data from a
database and populates a list of countries. Without proper synchronization, multiple threads might
attempt to create the Singleton instance simultaneously, leading to unpredictable behavior or even
duplicate instances.

Example Without Thread Safety

C# Shrink a4 (37

using System;

using System.Collections.Generic;
using System.Data;

using System.Data.SqlClient;

public class StaticDataManager

{

private static ConfigurationManager _instance;
private List<string> _countries;

private ConfigurationManager()

{ _countries = new List<string>();
LoadCountriesFromDatabase();
}
public static ConfigurationManager Instance
{
get
{
if (_instance == null)
{ _instance = new StaticDataManager();
}
return _instance;
}
}

public List<string> GetCountries()

{
}

return _countries;

private void LoadCountriesFromDatabase()

{

// Here we are reading the CountryName from the database
// and adding it to the _countries Llist variable _countries

}

Problem Explanation

If multiple threads call StaticDataManager.Instance simultaneously, there's a race condition: two or
more threads may create their own instance of StaticDataManager before the _instance variable is
set, causing multiple instances and redundant database calls.

This scenario can lead to:

1. Multiple Instance Creation: Without proper synchronization, different threads could create
separate instances of StaticDataManager, leading to multiple database connections or
unnecessary resource consumption.

2. Redundant Database Calls: Each thread could independently fetch the same data from the
database, resulting in multiple identical queries being executed simultaneously, which increases
load and latency unnecessarily.

In a real-world application, this could lead to inconsistent behavior, increased resource consumption,
or incorrect data handling.

There's also another risk: what if one thread is in the process of initializing the
StaticDataManager (e.g. it's still loading data from the database), and another thread tries to access
the GetCountries method before the initialization is complete?

1. Thread 1 begins the initialization process and starts loading the list of countries from the

database.
2. Thread 2 calls GetCountries() while Thread 1 is still fetching data. Because Thread 2 accesses

_countries before it's fully populated, it could receive an incomplete list (or even an empty list if
initialization hasn't added any entries yet).

In this case, the second thread might access an incomplete _countries list, leading to incorrect or
partial data being returned. This introduces data inconsistency, where different parts of the
application may operate on incomplete or incorrect data.

Solution
This issue is solved with proper synchronization mechanisms, such as locking, to ensure that:

e Only one thread can create the StaticDataManager instance.

¢ No thread can access the data (via GetCountries) until the initialization is fully complete.

By implementing double-checked locking or using Lazy<T>, you prevent both the race condition and
the scenario where a second thread accesses the data before initialization is complete. This ensures
thread-safe access to the Singleton instance and data consistency throughout the application.

Historically, the double-checked locking pattern was used to create a thread-safe Singleton in C#.
The goal of this approach is to minimize the performance cost by only locking the instance creation
code when necessary, i.e., during the first initialization.

Classic Singleton with Double-Checked Locking

Here’s how you would implement a Singleton using double-checked locking:

C# Shrink A [
public class Singleton
{
private static Singleton _instance;
private static readonly object _lock = new object();
private Singleton()
{
}
public static Singleton Instance
{
get
{
if (_instance == null)
{
lock (_lock)
{
if (_instance == null)
{
_instance = new Singleton();
}
}
}
return _instance;
}
}
}
How It Works

e First Null Check: Before acquiring a lock, the code checks if the instance is already created. If it's
not, the locking block is entered.

e Locking: If the instance hasn’t been created, the code locks the critical section to ensure no
other thread can create the instance simultaneously.

e Second Null Check: After the lock is acquired, it checks again if the instance is still null. This is
necessary to avoid race conditions where multiple threads could pass the first check and attempt
to create the instance simultaneously.

Why Use Double-Checked Locking?

Double-checked locking ensures that the Singleton instance is lazily initialized and thread-safe, with
a significant focus on performance optimization. Here's why this method is important:

1. Lazy Initialization: The Singleton instance is created only when it's first needed, rather than at
the start of the application, saving resources and potentially avoiding unnecessary database
connections or object creation.

2. Reduced Locking Overhead: Without double-checked locking, the lock statement would be
executed every time the Instance property is accessed, even after the Singleton instance is
already created. This constant locking introduces unnecessary overhead, especially in high-
performance or multithreaded environments where the Singleton is accessed frequently.

o With double-checked locking, the method first checks if the instance is already created
without acquiring a lock (the first null check). If the instance exists, it skips the lock
entirely, significantly improving performance in the common case where the Singleton is
already initialized.

3. Thread-Safety: During the first access when the Singleton hasn’t been created, the lock ensures
that only one thread initializes the instance. Once initialized, subsequent threads bypass the lock,
avoiding performance penalties in future accesses.

4. Avoiding Race Conditions: By using two checks, you ensure that once a thread is inside the
lock block, it rechecks the instance's state before creating it, thus preventing multiple threads
from creating different instances simultaneously.

Performance Comparison:

Without double-checked locking, every access to the Singleton would require locking, which can be
costly, particularly in applications with high concurrency. In contrast, with double-checked locking,
once the Singleton is initialized, all future accesses avoid locking, providing near-instantaneous
access without the overhead.

In summary, double-checked locking strikes a balance between thread safety and performance by
ensuring that locking is only applied when absolutely necessary (during the first instance creation).
However, in modern C# development, using Lazy<T> provides a simpler and more efficient way to
achieve similar results.

Lazy<T>

In C# 4.0 and later, Microsoft introduced the Lazy<T> class, which simplifies thread-safe, lazy
initialization. It is now the preferred way to implement a Singleton, as it abstracts away the complexity
of locking and initialization.

Singleton Using Lazy<T>

C#)
public class Singleton

{
private static readonly Lazy<Singleton> _instance = new Lazy<Singleton>(() => new
Singleton());

private Singleton()

{
}

public static Singleton Instance => _instance.Value;

Benefits of Using Lazy<T>

¢ Built-in Thread Safety: Lazy<T> ensures that the Singleton instance is created only once, in a
thread-safe manner.

e Simplicity: The code is significantly cleaner and easier to understand than double-checked
locking.

o Deferred Initialization: The Singleton instance is created only when it's accessed for the first
time.

Here the code for the StaticDataManager using the Lazy<T> approach

C# Shrink A 037

using System;

using System.Collections.Generic;
using System.Data;

using System.Data.SqlClient;

public class StaticDataManager

{

// Lazy initialization of the singleton instance
private static readonly Lazy<StaticDataManager> _instance =
new Lazy<StaticDataManager>(() => new StaticDataManager());

private List<string> _countries;

// Private constructor to prevent instantiation from outside
private StaticDataManager()

{
_countries = new List<string>();
LoadCountriesFromDatabase();

}

// Public accessor for the singleton instance
public static StaticDataManager Instance => _instance.Value;

public List<string> GetCountries()

{
}

return _countries;

// Simulated database call to Load countries
private void LoadCountriesFromDatabase()

{

// Here we are reading the CountryName from the database
// and adding it to the _countries List variable _countries

When Lazy<T> is Enough

For most modern applications, using Lazy<T> is the best way to implement a Singleton. It handles
thread safety and lazy initialization out of the box, and the code is much simpler and easier to
maintain.

Although Lazy<T> is ideal for most situations, there are still some cases where the double-checked
locking approach is more appropriate. One such scenario is when you need to conditionally initialize
the Singleton instance based on runtime parameters.

Scenario: Dynamic Configuration Manager

Let's consider an example where you need to load configuration settings from different sources based
on the runtime environment. If the application is in development mode, the configuration is loaded
from a local file; if it's in production, the configuration is loaded from a database. Lazy<T> doesn’t
allow for this kind of dynamic initialization logic, but double-checked locking does.

Here's how you could implement a dynamic configuration manager:

C# Shrink o [

public class ConfigurationManager

{
private static ConfigurationManager _instance;
private static readonly object _lock = new object();

private string _configurationSource;

// Private constructor
private ConfigurationManager(string configurationSource)

{
_configurationSource = configurationSource;
LoadConfiguration();
}
private void LoadConfiguration()
{
if (_configurationSource == "File")
{
Console.WriteLine("Loading configuration from file...");
// Load from file
}
else if (_configurationSource == "Database")
{
Console.WriteLine("Loading configuration from database...");
// Load from database
}
}
public static ConfigurationManager GetInstance(string environment)
{
if (_instance == null)
{
lock (_lock)
{
if (_instance == null)
{
string configSource = environment == "Development" ? "File" :
"Database”;
_instance = new ConfigurationManager(configSource);
}
}

}

return _instance;

Why Use Double-Checked Locking Here?

In this case, double-checked locking gives you the flexibility to pass dynamic parameters to the
Singleton instance during its initialization. This flexibility is not available with Lazy<T>, which assumes
that the initialization logic is fixed at compile time.

Key Takeaways

¢ Dynamic Initialization: If the initialization logic depends on runtime parameters (like
environment-specific configurations), double-checked locking is more flexible.

e Control Over Initialization: Double-checked locking allows for more complex initialization
scenarios that Lazy<T> doesn't easily support.

Further Development

While double-checked locking and Lazy<T> provide reliable solutions for thread-safe Singleton
initialization, further enhancements can be considered based on your application's specific needs:

1. Dependency Injection (DI): In modern applications, especially with frameworks like ASP.NET
Core, using Dependency Injection can sometimes be a better alternative to Singletons. It ensures
controlled and testable lifetime management of objects, without the global state concerns that
Singletons may introduce.

2. Eager Initialization: In scenarios where performance is critical and the cost of instance creation
is negligible, eager initialization can be used. This approach pre-instantiates the Singleton at
application startup, avoiding any locking or lazy instantiation logic altogether. However, this is
only suitable when you are certain that the Singleton will always be used.

3. Asynchronous Lazy Initialization: For cases where your Singleton's initialization involves async
operations (such as I/O-bound tasks like database connections), you can use Lazy<T> combined
with async. This allows for non-blocking, thread-safe Singleton creation in asynchronous
scenarios.

4. Custom Thread-Safe Caches: If your Singleton manages a large amount of data, you could
incorporate custom caching mechanisms (e.g., using MemoryCache or a thread-safe dictionary) to
improve access speed and avoid unnecessary database calls.

5. Versioned Singleton: For advanced scenarios, you might implement a versioned Singleton
where different configurations or instances are needed for various parts of the application. This
can be useful in systems where a Singleton represents stateful objects, such as different
database connections or configurations for different tenants.

By considering these techniques, you can adapt the Singleton pattern to better suit specific
performance, concurrency, or scalability needs in your projects.

While Lazy<T> is the go-to approach for thread-safe, lazy Singleton initialization in modern C#
development, there are still scenarios where double-checked locking is preferable. If your Singleton

initialization requires dynamic parameters or complex decision-making based on runtime conditions,
double-checked locking provides the necessary flexibility.

In most cases, however, the simplicity and elegance of Lazy<T> make it the preferred choice. As
always, the right solution depends on the specific needs of your application.

This article, along with any associated source code and files, is licensed under The Code Project Open
License (CPOL)

Written By

Antonio Ripa
Architect
E3 Switzerland

| really like coding and continually strive to improve my knowledge of design patterns and emerging
architectures. My journey began 41 years ago, when at the age of 13, | bought my first Sinclair ZX
Spectrum and started teaching myself to code. Today, | am a Senior Solution Architect with expertise
in Agile methodologies, specializing in the design and development of Enterprise Applications across
both back-end and front-end. | have extensive experience working in the Fintech and Medtech
domains.

Over the years, | have developed a keen interest in Enterprise Design Patterns, Domain Driven Design,
Test Driven Design, and Scrum Methodology. I'm always on the lookout for new patterns that can
enhance software development practices. | am also passionate about Al, leveraging machine learning
and artificial intelligence technologies to optimize solutions and automate processes within enterprise
systems. My Al experience ranges from integrating intelligent algorithms into applications to
enhancing user experiences with predictive models.

| believe knowledge should be shared, so | actively contribute to the coding community through
platforms like Code Project, sharing insights that may benefit other software engineers and developers
in this incredible industry. | don’t claim to have all the answers, but the practices I've adopted have
played a significant role in my own career. If they resonate with you, feel free to try them. And if you
have any comments—positive or constructive—I'd love to hear from you.

in|

This is a Collaborative Group

10 members

Apply to join this group

Comments and Discussions

‘ Add a Comment or Question ’ ? Email Alerts | Search Comments P

Spacing Relaxed v Llayout Normal v | Perpage| 25 v| |Update

First Prev Next

i': Do NOT use DCL & wkempf 10-Sep-24 21:53
Re: Do NOT use DCL & Antonio Ripa 11-Sep-24 2:05
U Re: Do NOT use DCL & wkempf 11-Sep-24 2:28

(T Re: Do NOT use DCL @ Antonio Ripa 11-Sep-24 3:57

ET Re: Do NOT use DCL & wkempf 10hrs 13mins ago

Last Visit: 10-Sep-24 16:27 Last Update: 12-Sep-24 8:53 Refresh 1

(] General [E News @ Suggestion @ Question % Bug [l Answer @ Joke ODPraise [@Rant @
Admin

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

Permalink Layout: fixed | fluid Article Copyright 2024 by Antonio Ripa
Advertise Everything else Copyright ©
Privacy Posted 10 Sep 2024 CodeProject, 1999-2024
Cookies

Terms of Use Web04 2.8:2024-07-22:1

