R sl

Thread-safe Events in C#
a Mark Pelf
11 Mar 2022 MIT

Discussion on proper method to check for null-value and raise Event in C#

In this article, we discuss three most common ways to check for null-value and raise Event in C#. Thread safety is analyzed. Then, in a
small demo program, by creating thread race situation, we attack each solution and demo its thread-safety.

Download source code - 81.5 KB

Three Most Common Ways to Check for null-value and Raise an
Event

In articles on the internet, you will find a lot of discussions on what is the best and thread-safe way to check for null-value and raise
Event in C#. Usually, there are three methods mentioned and discussed:

C#
public static event EventHandler<EventArgs> MyEvent;

Object objl = new Object();
EventArgs argsl = new EventArgs();

//Method A
if (MyEvent != null) // (A1)
{

MyEvent(objl, argsl); //(A2)
}
//Method B
var TmpEvent = MyEvent; //(B1)
if (TmpEvent != null) //(B2)
{

TmpEvent(objl, argsl); //(B3)
}
//Method C

MyEvent?.Invoke(objl, argsl); //(C1)

Let us immediately give an answer: method A is not thread-safe, while methods B and C are thread-safe ways to check for null-value
and raise an Event. Let us provide an analysis of each of them.

Analyzing Method A

In order to avoid Nul1lReferenceException,in (A1) we check for null, then in (A2) we raise the Event. The problem is that in
the time between (A1) and (A2), some other thread can access Event MyEvent and change its status. So, this approach is not thread
safe. We demo that in our code (below) where we successfully launch race-thread attack on this approach.

Analyzing Method B

Key to understanding this approach is to really understand well what is happening in (B1). There, we have objects and assignment
between them.

At first, one might think, we have two C# object references and assignment between them, So, they should be pointing to the same C#
object. That is not the case here, since then there would be no point of that assignment. Events are C# objects (you can assign Object
obj=MyEvent, and that is legal), but that assignment in (B1) is different there.

The real type of TmpEvent generated by compiler is EventHandler<EventArgs>. So, we basically have assignment of an
Event to a delegate. If we assume that Events and Delegates are different types (see text below), conceptually compiler is doing
implicit cast, that is the same as if we wrote:

C#

//not needed, just a concept of what compiler it is implicitly doing
EventHandler<EventArgs> TmpEvent = EventA as EventHandler<EventArgs>; //(**)

As explained in [1], Delegates are immutable reference types. This implies that the reference assignment operation for such types creates
a copy of an instance unlike the assignment of regular reference types which just copies the values of references. The key thing here is
what really happens with InvocationList (thatis of type Delegate[]) which contains list of all added delegates. What it seems
is that list is Cloned in that assignment. That is the key reason why method B will work, because nobody else has access to newly created
variable TmpEvent and its inner InvocationList of type Delegate[].

We demo that this approach is thread safe in our code (below) where we launch race-thread attack on this approach.

Analyzing Method C

This method is based on null-conditional operator that is available from C#6. For thread safety, we need to trust Microsoft and its
documentation. In [2], they say:

“The '? operator evaluates its left-hand operand no more than once, guaranteeing that it cannot be changed to nU11 after being
verified as non-null.... Use the ? . operator to check if a delegate is non-null and invoke it in a thread-safe way (for example, when
you raise an event).”

We demo that this approach is thread safe in our code (below) where we launch race-thread attack on this approach.

In the above text at (**), we were arguing that in (B1), we have implicit cast from Event to a Delegate. But, are Events and
Delegates the same or different type in C#?

If you look at [3], you will find the author Jon Skeet strongly arguing that Events and Delegates are not the same. To quote:

"Events aren't delegate instances. It's unfortunate in some ways that C# lets you use them in the same way in certain situations, but
it's very important that you understand the difference. | find the easiest way to understand events is to think of them a bit like
properties. While properties look like they're fields, they're definitely not Events are pairs of methods, appropriately decorated in
IL to tie them together"

So, based on the text above by Jon Skeet and comments on this article below by Paulo Zemek, we can accept the interpretation that
“events are like special kind of properties”. Following on that analogy, we can in our demo program below replace:

C#
public

public
public

with:

C#

public
public
public

static
static
static

static
static
static

and everything will

C#

public
public
public

EventD1

static
static
static

event EventHandler<EventArgs> EventA;
event EventHandler<EventArgs> EventB;
event EventHandler<EventArgs> EventC;

EventHandler<EventArgs> EventA { get; set; } = null;
EventHandler<EventArgs> EventB { get; set; } = null;
EventHandler<EventArgs> EventC { get; set; } = null;

still work. Also, it is interesting to try this code:

event EventHandler<EventArgs> EventD1;
EventHandler<EventArgs> EventD2 { get; set; } = null;
EventHandler<EventArgs> EventD3;

= EventD2 = EventD3 = delegate { };

Console.WritelLine("Type of EventDl1l: {@©}", EventDl.GetType().Name);
Console.WriteLine("Type of EventD2: {0}", EventD2.GetType().Name);
Console.WriteLine("Type of EventD3: {0}", EventD3.GetType().Name);

You will get a response:

Type of EventD1l: EventHandler'1
Type of EventD2: EventHandler'1
Type of EventD3: EventHandler'1

But, going back to reality, events are created by “event” keyword and therefore they are separate construct in C# language, then

properties or delegates. We can “interpret” them that they are “alike” properties or delegates, but they are not the same. Truth is Events

are whatever compiler is doing with that keyword “event”, and it seems that it makes them look like C# Delegates.

| am inclined to think like this: Events and Delegates are strictly speaking not the same, but in C# language, it seems that they are

treated interchangeably in a very similar manner, so it has become accustomed in the industry to talk about them as they are the same,

interchangeably. Even in Microsoft documentation [2], the author is interchangeably using terms Event and Delegate when discussing

null-conditional operator “?.". In one moment, the author talks about “..raise an event”, then the next sentence says “...delegate instances

are immutable...” etc.

In order to verify thread safety of the three proposed approaches, we created a small demo program. This program is not a definite
answer for all cases and cannot be considered as a “proof”, but still can show/demo some interesting points. In order to setup race
situations, we slow down threads with some Thread.Sleep() calls

Here is the demo code:

C#

internal class Client

{

public static event EventHandler<EventArgs> EventA;
public static event EventHandler<EventArgs> EventB;
public static event EventHandler<EventArgs> EventC;
public static void HandlerAl(object obj, EventArgs argsi)
{
Console.WriteLine("ThreadId:{@}, HandlerAl invoked",
Thread.CurrentThread.ManagedThreadId);
}
public static void HandlerBl(object obj, EventArgs argsl)
{
Console.WriteLine("ThreadId:{@}, HandlerBl invoked",
Thread.CurrentThread.ManagedThreadId);
}

public static void HandlerCl(object obj, EventArgs argsl)
{
Console.WriteLine("ThreadId:{@}, HandlerCl - Start",
Thread.CurrentThread.ManagedThreadId);
Thread.Sleep(3000);
Console.WriteLine("ThreadId:{@}, HandlerCl - End",
Thread.CurrentThread.ManagedThreadId);
}
public static void HandlerC2(object obj, EventArgs argsl)
{
Console.WriteLine("ThreadId:{@}, HandlerC2 invoked",
Thread.CurrentThread.ManagedThreadId);

}

static void Main(string[] args)

{
// Demo Method A for firing of Event------------------——~—~—~—~——--—----
Console.wr‘iteLine("Demo A =========================")_;

EventA += HandlerAl;

Task.Factory.StartNew(() => //(A11)

{
Thread.Sleep(1000);
Console.WriteLine("ThreadId:{@}, About to remove handler HandlerAl",
Thread.CurrentThread.ManagedThreadId);
EventA -= HandlerAl;
Console.WritelLine("ThreadId:{@}, Removed handler HandlerAl",
Thread.CurrentThread.ManagedThreadId);
1
if (EventA != null)
{

Console.WritelLine("ThreadId:{@}, EventA is null:{1}",
Thread.CurrentThread.ManagedThreadId, EventA == null);

Thread.Sleep(2000);

Console.WriteLine("ThreadId:{@}, EventA is null:{1}",
Thread.CurrentThread.ManagedThreadId, EventA == null);

Object objl = new Object();
EventArgs argsl = new EventArgs();

try
{

}

catch (Exception ex)

{

EventA(objl, argsl); //(A12)

Console.WriteLine("ThreadId:{@}, Exception:{1}",
Thread.CurrentThread.ManagedThreadId, ex.Message);

}

// Demo Method B for firing of Event----------------------------
Console.writeLine("Demo B =:==============:========");

EventB += HandlerB1;

Task.Factory.StartNew(() => //(B11)
{
Thread.Sleep(1000);
Console.WriteLine("ThreadId:{@}, About to remove handler HandlerB1",
Thread.CurrentThread.ManagedThreadId);
EventB -= HandlerB1;
Console.WriteLine("ThreadId:{@}, Removed handler HandlerBl",
Thread.CurrentThread.ManagedThreadId);

s

var TmpEvent = EventB;
if (TmpEvent != null)
{
Console.WritelLine("ThreadId:{0}, EventB is null:{1}",
Thread.CurrentThread.ManagedThreadId, EventB == null);
Console.WriteLine("ThreadId:{@}, TmpEvent is null:{1}",
Thread.CurrentThread.ManagedThreadId, TmpEvent == null);
Thread.Sleep(2000);
Console.WriteLine("ThreadId:{@}, EventB is null:{1}", //(B13)
Thread.CurrentThread.ManagedThreadId, EventB == null);
Console.WriteLine("ThreadId:{@}, TmpEvent is null:{1}", //(B14)
Thread.CurrentThread.ManagedThreadId, TmpEvent == null);

Object objl = new Object();
EventArgs argsl = new EventArgs();

try
{

}

catch (Exception ex)

{

TmpEvent(objl, argsl); //(B12)

Console.WriteLine("ThreadId:{@}, Exception:{1}",
Thread.CurrentThread.ManagedThreadIld, ex.Message);

}

// Demo Method C for firing of Event-----------c--ommmommmm oo
Console.writeLine("Demo C =========================");

EventC += HandlercCil;
EventC += HandlerC2; //(C11)

Task.Factory.StartNew(() => //(C12)
{
Thread.Sleep(1000);
Console.WritelLine("ThreadId:{@}, About to remove handler HandlerC2",
Thread.CurrentThread.ManagedThreadId);
EventC -= Handler(C2;
Console.WriteLine("ThreadId:{@}, Removed handler HandlercC2",
Thread.CurrentThread.ManagedThreadId);

s

Console.WriteLine("ThreadId:{@}, EventC has EventHandlers:{1}",
Thread.CurrentThread.ManagedThreadId, EventC?.GetInvocationList().Length);

try

{
Object objl = new Object();
EventArgs argsl = new EventArgs();
EventC?.Invoke(objl, argsl);
Console.WritelLine("ThreadId:{@}, EventC has EventHandlers:{1}",
Thread.CurrentThread.ManagedThreadId, EventC?.GetInvocationList().Length); //(C13)
}
catch (Exception ex)
{
Console.WriteLine("ThreadId:{@}, Exception:{1}",
Thread.CurrentThread.ManagedThreadIld, ex.Message);
}
Console.WritelLine("End =========================");

Console.ReadlLine();

And here is the execution result:

A) In order to attack Method A, we at (A11) launch new racing thread that is going to do some damage. We will see that it succeeds to
create NullReferenceException at (A12)

B) In order to attack Method B, we at (B11) launch new racing thread that is going to do some damage. We will see that at (B12) nothing
eventful will happen and this approach will survive this attack. Key thing is printout at (B13) and (B14) that will show that TmpEvent is
not affected by changes to EventB.

C) We will attack method C in a different way. We know that EventHandlers are invoked synchronously. We will create 2
EventHandlers (C11) and will during execution of the first one, attack with racing thread (C12) and try to remove the second
handler. We will from printouts see that attack has failed and both EventHandlers were executed. It is interesting to look at output
at (C13) that shows that AFTER EventC, reports decreased number of EventHandlers.

Conclusion

The best solution is to avoid thread-racing situations, and to access Events from a single thread. But, if you need, Method C based on
null-conditional operator is the preferred way to check for null-value and raise an Event.

References

¢ [1] https://stackoverflow.com/questions/55322255/what-if-i-will-copy-a-reference-to-an-event-object-to-another-object-and-
will-ch

¢ [2] https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-
operators--and-

e [3] https://jonskeet.uk/csharp/events.html

History
. 10th March, 2022: Initial version

License

This article, along with any associated source code and files, is licensed under The MIT License

About the Author
Mark Pelf

Serbia W Mark Pelf is pseudonym of just another programmer from Belgrade, Serbia.
erbia

Comments and Discussions

[ﬁ 10 messages have been posted for this article Visit https://www.codeproject.com/Articles/5327025/Thread-safe-Events-in-
Csharp to post and view comments on this article, or click here to get a print view with messages.

Permalink Article Copyright 2022 by Mark Pelf
Advertise Everything else Copyright © CodeProject,
Privacy 1999-2022
Cookies

Terms of Use Web03 2.8.2022.03.01.3

