2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

Tutorial: Server broadcast with SignalR 2

Article « 07/12/2022 « 26 minutes to read

/A Warning

This documentation isn't for the latest version of SignalR. Take a look at ASP.NET Core
SignalR.

This tutorial shows how to create a web application that uses ASP.NET SignalR 2 to provide

server broadcast functionality. Server broadcast means that the server starts the
communications sent to clients.

The application that you'll create in this tutorial simulates a stock ticker, a typical scenario
for server broadcast functionality. Periodically, the server randomly updates stock prices
and broadcast the updates to all connected clients. In the browser, the numbers and
symbols in the Change and % columns dynamically change in response to notifications
from the server. If you open additional browsers to the same URL, they all show the same

data and the same changes to the data simultaneously.

° B hitp://localhost:65012/StockTic = € | | Search... L~

(22 ASP.NET SignalR Stock Ticker

ASP.NET SignalR Stock Ticker Sample

” 5 «—E|| ASP.NET SignalR Stock ™ ‘ + v = O X
Live Stock Table
< =] (@ localhost:a5012/5 ¥ 3= 7=
Symbnl Price Open Change % Rescurces Microsoft Intranet Azure DevOps Other GitHub Tools

GOOG | 570.98 | 5703 | A068| 0.12%
MSFT | 31.97 | 3031| A 166| 519%

AppL| 577.31 | 578.18 | ¥ 087 | 015% | ASP.NET SlgnaIR Stock Ticker Sample

| Live Stock Table [ASP.NET SignalR Stock Ticker X+
C @ localhost:a5012/StockTickerhtml w 6

Symbol | Price | Open |[Change| %
GOOG | 570.98 | 570.3| A068| 0.12%

wsrr| 3197 3031| a1ss| s10| ASP.NET SignalR Stock Ticker Sample

APPL | 577.31 | 578.18 | ¥ -0.87 | -0.15%

Live Stock Table

Symbol | Price | Open Change| %
GOOG | 57098 | 5703 | A068| 0.12%
MSFT | 31.97| 3031 | A 1.66| 5.19%
APPL | 577.31 | 578.18 | ¥ -0.87 | -0.15%

In this tutorial, you:

v/ Create the project
v Set up the server code

v/ Examine the server code
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

1/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

v/ Set up the client code
v/ Examine the client code
v Test the application

v/ Enable logging

@ Important

If you don't want to work through the steps of building the application, you can install
the SignalR.Sample package in a new Empty ASP.NET Web Application project. If you
install the NuGet package without performing the steps in this tutorial, you must
follow the instructions in the readme.txt file. To run the package you need to add an
OWIN startup class which calls the configuresignalk method in the installed package.

You will receive an error if you do not add the OWIN startup class. See the Install the
StockTicker sample section of this article.

Prerequisites

e Visual Studio 2017 with the ASP.NET and web development workload.

Create the project

This section shows how to use Visual Studio 2017 to create an empty ASP.NET Web
Application.

1. In Visual Studio, create an ASP.NET Web Application.

MNew Project 7 X

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 2/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

P Recent Sort by: ;bejgglﬁ 'J EE: Search (Ctri+E) P~
4 |nstalled T
@ ASP.NET Core Web Application Visual C# Types Visual C£
4 Visual C Project templates for creating ASP.NET
Get Started @" | ASP.NET Web Application (NET Framework) Visual C2 applications. You can create ASP.NET Web
. E Forms, MVC, or Web AP applications and
Windows Universal

add many other features in ASP.NET.
Windows Desktop

“
Previous Versions
.NET Core
.NET Standard
Cloud
Test
WCF

Visual Basic

v v

Visual C++
Visual F#
SQL Server
JavaScript

-

- v

Other Project Types

P Online

Not finding what you are looking for?

Open Visual Studio Installer

Neme:

Location: | C:\Users\ <user> \source\repos '1 Browse...

Solution name: SignalR.StockTicker Z| Create directory for solution
Framework: MET Framework 46,1~ :l Add to Source Control

Cancel

2.In the New ASP.NET Web Application - SignalR.StockTicker window, leave Empty
selected and select OK.

Set up the server code

In this section, you set up the code that runs on the server.

Create the Stock class

You begin by creating the Stock model class that you'll use to store and transmit
information about a stock.

1. In Solution Explorer, right-click the project and select Add > Class.
2. Name the class Stock and add it to the project.
3. Replace the code in the Stock.cs file with this code:

C#

using System;

namespace SignalR.StockTicker

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 3/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

{
public class Stock
{
private decimal _price;
public string Symbol { get; set; }
public decimal Price
{
get
{
return _price;
}
set
{
if (_price == value)
{
return;
}
_price = value;
if (DayOpen == 0)
{
DayOpen = _price;
}
}
}
public decimal DayOpen { get; private set; }
public decimal Change
{
get
{
return Price - DayOpen;
}
}
public double PercentChange
{
get
{
return (double)Math.Round(Change / Price, 4);
}
}
}
}

The two properties that vou'll set when vou create stocks are svmbol (for examole.
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 4/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

- L D R A -0 - J - - - - - - -- - - -7 - -4 -

MSFT for Microsoft) and Price. The other properties depend on how and when you
set price. The first time you set pPrice, the value gets propagated to DayoOpen. After
that, when you set price, the app calculates the change and PercentChange property

values based on the difference between price and DayoOpen.

Create the StockTickerHub and StockTicker classes

You'll use the SignalR Hub API to handle server-to-client interaction. A StockTickerHub
class that derives from the SignalR Hub class will handle receiving connections and method
calls from clients. You also need to maintain stock data and run a Timer object. The Timer
object will periodically trigger price updates independent of client connections. You can't
put these functions in a Hub class, because Hubs are transient. The app creates a Hub class
instance for each task on the hub, like connections and calls from the client to the server.

So the mechanism that keeps stock data, updates prices, and broadcasts the price updates
has to run in a separate class. You'll name the class stockTicker.

StockTicker and StockTickerHub instances

é)

Server

SignalR StockTicker StockTickerHub StockTickerHub StockTickerHub
context Instance Instance Instance Instance

You only want one instance of the stockTicker class to run on the server, so you'll need to
set up a reference from each StockTickerHub instance to the singleton StockTicker
instance. The stockTicker class has to broadcast to clients because it has the stock data
and triggers updates, but StockTicker isn't a Hub class. The StockTicker class has to get a

reference to the SignalR Hub connection context object. It can then use the SignalR
connection context object to broadcast to clients.

Create StockTickerHuih c<

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 5/33

2023/1/10 £49:42

-l W VI ww W wws wEw oE

1. In Solution

Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

IR TN SR R A T

Explorer, right-click the project and select Add > New Item.

2.In Add New Item - SignalR.StockTicker, select Installed > Visual C# > Web >

SignalR and then select SignalR Hub Class (v2).

3. Name the class StockTickerHub and add it to the project.

This step creates the StockTickerHub.cs class file. Simultaneously, it adds a set of script

files and assembly references that supports SignalR to the project.

4. Replace the code in the StockTickerHub.cs file with this code:

C#
using System.Collections.Generic;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;
namespace SignalR.StockTicker
{
[HubName("stockTickerMini")]
public class StockTickerHub : Hub
{
private readonly StockTicker _stockTicker;
public StockTickerHub() : this(StockTicker.Instance) { }
public StockTickerHub(StockTicker stockTicker)
{
_stockTicker = stockTicker;
}
public IEnumerable<Stock> GetAllStocks()
{
return _stockTicker.GetAllStocks();
}
}
}

5. Save the file.

The app uses the Hub class to define methods the clients can call on the server. You're

defining one method: GetAllstocks(). When a client initially connects to the server, it will

call this method

to get a list of all of the stocks with their current prices. The method can

run svnchronouslv and return IEnumerable<Stock> because it's returnina data from
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

6/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

- - - e — e m = - N o - -

- - - - - -y - - R

memory.

If the method had to get the data by doing something that would involve waiting, like a
database lookup or a web service call, you would specify Task<IEnumerable<Stock>> as the
return value to enable asynchronous processing. For more information, see ASP.NET

SignalR Hubs API Guide - Server - When to execute asynchronously.

The HubName attribute specifies how the app will reference the Hub in JavaScript code on
the client. The default name on the client if you don't use this attribute, is a camelCase

version of the class name, which in this case would be stockTickerHub.

As you'll see later when you create the stockTicker class, the app creates a singleton
instance of that class in its static Instance property. That singleton instance of StockTicker

is in memory no matter how many clients connect or disconnect. That instance is what the
GetAllStocks() method uses to return current stock information.

Create StockTicker.cs

1. In Solution Explorer, right-click the project and select Add > Class.
2. Name the class StockTicker and add it to the project.
3. Replace the code in the StockTicker.cs file with this code:

C#

using System;

using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;

using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace SignalR.StockTicker

{

public class StockTicker
{
// Singleton instance
private readonly static Lazy<StockTicker> _instance = new
Lazy<StockTicker>(() => new
StockTicker(GlobalHost.ConnectionManager.GetHubContext<StockTickerHub>
().Clients));

private readonly ConcurrentDictionary<string, Stock> _stocks = new

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 7/33

2023/1/10 £49:42

Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

ConcurrentDictionary<string, Stock>();

private
//stock
change

private

private

readonly object _updateStockPricesLock = new object();

can go up or down by a percentage of this factor on each

readonly double _rangePercent = .002;

readonly TimeSpan _updatelInterval =

TimeSpan.FromMilliseconds(250);

private readonly Random _updateOrNotRandom = new Random();
private readonly Timer _timer;
private volatile bool _updatingStockPrices = false;
private StockTicker(IHubConnectionContext<dynamic> clients)
{
Clients = clients;
_stocks.Clear();
var stocks = new List<Stock>
{
new Stock { Symbol = "MSFT", Price = 30.31m },
new Stock { Symbol = "APPL", Price = 578.18m },
new Stock { Symbol = "GOOG", Price = 570.30m }
}s
stocks.Forkach(stock => _stocks.TryAdd(stock.Symbol, stock));
_timer = new Timer(UpdateStockPrices, null, _updatelnterval,
_updatelInterval);
}
public static StockTicker Instance
{
get
{
return _instance.Value;
}
}
private IHubConnectionContext<dynamic> Clients
{
get;
set;
}
public IEnumerable<Stock> GetAllStocks()
{
return _stocks.Values;
}

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

8/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

private void UpdateStockPrices(object state)
{
lock (_updateStockPriceslLock)
{
if (! _updatingStockPrices)
{

_updatingStockPrices = true;

foreach (var stock in _stocks.Values)

{
if (TryUpdateStockPrice(stock))

{

BroadcastStockPrice(stock);

_updatingStockPrices = false;

private bool TryUpdateStockPrice(Stock stock)
{
// Randomly choose whether to update this stock or not
var r = _updateOrNotRandom.NextDouble();
if (r > .1)
{

return false;

// Update the stock price by a random factor of the range per-
cent

var random = new Random((int)Math.Floor(stock.Price));

var percentChange = random.NextDouble() * _rangePercent;

var pos = random.NextDouble() > .51;

var change = Math.Round(stock.Price * (decimal)percentChange,
2);

change = pos ? change : -change;

stock.Price += change;
return true;

private void BroadcastStockPrice(Stock stock)

{
Clients.All.updateStockPrice(stock);

}

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 9/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

}

Since all threads will be running the same instance of StockTicker code, the StockTicker
class has to be thread-safe.

Examine the server code

If you examine the server code, it will help you understand how the app works.

Storing the singleton instance in a static field

The code initializes the static _instance field that backs the Instance property with an
instance of the class. Because the constructor is private, it's the only instance of the class
that the app can create. The app uses Lazy initialization for the _instance field. It's not for

performance reasons. It's to make sure the instance creation is thread-safe.
C#

private readonly static Lazy<StockTicker> _instance = new Lazy<StockTicker>(()
=> new StockTicker(GlobalHost.ConnectionManager.GetHubContext<StockTickerHub>
().Clients));

public static StockTicker Instance

{
get
{
return _instance.Value;
}
}

Each time a client connects to the server, a new instance of the StockTickerHub class
running in a separate thread gets the StockTicker singleton instance from the

StockTicker.Instance static property, as you saw earlier in the StockTickerHub class.

Storing stock data in a ConcurrentDictionary

The constructor initializes the _stocks collection with some sample stock data, and

GetAllStocks returns the stocks. As you saw earlier, this collection of stocks is returned by

StockTickerHub.GetAllStocks. which is a server method in the Hub class that clients can
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

10/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

C#

private readonly ConcurrentDictionary<string, Stock> _stocks = new
ConcurrentDictionary<string, Stock>();

C#

private StockTicker(IHubConnectionContext<dynamic> clients)

{
Clients = clients;
_stocks.Clear();
var stocks = new List<Stock>
{
new Stock { Symbol = "MSFT", Price = 30.31m },
new Stock { Symbol = "APPL", Price = 578.18m },
new Stock { Symbol = "GOOG", Price = 570.30m }
¥
stocks.ForEach(stock => _stocks.TryAdd(stock.Symbol, stock));
_timer = new Timer(UpdateStockPrices, null, _updateInterval,
_updatelInterval);
}
public IEnumerable<Stock> GetAllStocks()
{
return _stocks.Values;
}

The stocks collection is defined as a ConcurrentDictionary type for thread safety. As an
alternative, you could use a Dictionary object and explicitly lock the dictionary when you

make changes to it.

For this sample application, it's OK to store application data in memory and to lose the
data when the app disposes of the stockTicker instance. In a real application, you would

work with a back-end data store like a database.

Periodically updating stock prices
The constructor starts up a Timer object that periodically calls methods that update stock
prices on a random basis.

C#
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 11/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

_timer = new Timer(UpdateStockPrices, null, _updateInterval, _updatelnterval);

private void UpdateStockPrices(object state)
{
lock (_updateStockPriceslLock)
{
if (! _updatingStockPrices)
{

_updatingStockPrices = true;

foreach (var stock in _stocks.Values)
{
if (TryUpdateStockPrice(stock))

{

BroadcastStockPrice(stock);

_updatingStockPrices = false;

private bool TryUpdateStockPrice(Stock stock)
{
// Randomly choose whether to update this stock or not
var r = _updateOrNotRandom.NextDouble();
if (r > .1)
{

return false;

// Update the stock price by a random factor of the range percent
var random = new Random((int)Math.Floor(stock.Price));

var percentChange = random.NextDouble() * _rangePercent;

var pos = random.NextDouble() > .51;

var change = Math.Round(stock.Price * (decimal)percentChange, 2);
change = pos ? change : -change;

stock.Price += change;
return true;

Timer calls UpdateStockPrices, which passes in null in the state parameter. Before updating
prices, the app takes a lock on the _updateStockPricesLock object. The code checks if

another thread is already updating prices, and then it calls TryupdateStockPrice on each

stock in the list. The TrvUbndateStockPrice method decides whether to chanae the stock

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

12/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

- - - - P2 - - - - - - - - - - - - - - - -

price, and how much to change it. If the stock price changes, the app calls
BroadcastStockPrice to broadcast the stock price change to all connected clients.

The _updatingStockPrices flag designated volatile to make sure it is thread-safe.

C#

private volatile bool _updatingStockPrices = false;

In a real application, the TryupdateStockpPrice method would call a web service to look up

the price. In this code, the app uses a random number generator to make changes

randomly.

Getting the SignalR context so that the StockTicker class can
broadcast to clients

Because the price changes originate here in the StockTicker object, it's the object that
needs to call an updateStockPrice method on all connected clients. In a Hub class, you
have an API for calling client methods, but stockTicker doesn't derive from the Hub class
and doesn't have a reference to any Hub object. To broadcast to connected clients, the
StockTicker class has to get the SignalR context instance for the StockTickerHub class and

use that to call methods on clients.

The code gets a reference to the SignalR context when it creates the singleton class
instance, passes that reference to the constructor, and the constructor puts it in the
Clients property.

There are two reasons why you want to get the context only once: getting the context is an
expensive task, and getting it once makes sure the app preserves the intended order of
messages sent to the clients.

C#

private readonly static Lazy<StockTicker> _instance =

new Lazy<StockTicker>(() => new
StockTicker(GlobalHost.ConnectionManager.GetHubContext<StockTickerHub>
().Clients));

private StockTicker(IHubConnectionContext<dynamic> clients)
{
Clients = clients;

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 13/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

// Remainder of constructor ...

}
private IHubConnectionContext<dynamic> Clients
{
get;
set;
}
private void BroadcastStockPrice(Stock stock)
{
Clients.All.updateStockPrice(stock);
}

Getting the clients property of the context and putting it in the StockTickerClient
property lets you write code to call client methods that looks the same as it would in a Hub

class. For instance, to broadcast to all clients you can write
Clients.All.updateStockPrice(stock).

The updateStockPrice method that you're calling in BroadcastStockPrice doesn't exist yet.

You'll add it later when you write code that runs on the client. You can refer to
updateStockPrice here because Clients.All is dynamic, which means the app will evaluate

the expression at runtime. When this method call executes, SignalR will send the method

name and the parameter value to the client, and if the client has a method named
updateStockPrice, the app will call that method and pass the parameter value to it.

Clients.All means send to all clients. SignalR gives you other options to specify which

clients or groups of clients to send to. For more information, see HubConnectionContext

Register the SignalR route

The server needs to know which URL to intercept and direct to SignalR. To do that, add an
OWIN startup class:

1. In Solution Explorer, right-click the project and select Add > New Item.

2.In Add New Item - SignalR.StockTicker select Installed > Visual C# > Web and then
select OWIN Startup Class.

3. Name the class Startup and select OK.

4. Replace the default code in the Startup.cs file with this code:
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

14/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

B R e e - [

C#

using System;

using System.Threading.Tasks;
using Microsoft.Owin;

using Owin;

[assembly: OwinStartup(typeof(SignalR.StockTicker.Startup))]

namespace SignalR.StockTicker

{
public class Startup
{
public void Configuration(IAppBuilder app)
{
// Any connection or hub wire up and configuration should go
here
app.MapSignalR();
}
}
¥

You have now finished setting up the server code. In the next section, you'll set up the
client.

Set up the client code

In this section, you set up the code that runs on the client.

Create the HTML page and JavaScript file

The HTML page will display the data and the JavaScript file will organize the data.

Create StockTicker.html

First, you'll add the HTML client.
1. In Solution Explorer, right-click the project and select Add > HTML Page.

2. Name the file StockTicker and select OK.

3. Replace the default code in the StockTicker.html file with this code:

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 15/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

HTML

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>ASP.NET SignalR Stock Ticker</title>
<style>
body {
font-family: 'Segoe UI', Arial, Helvetica, sans-serif;
font-size: 16px;
}
#tstockTable table {
border-collapse: collapse;
}
#stockTable table th, #stockTable table td {
padding: 2px 6px;
}
#stockTable table td {
text-align: right;
}
#stockTable .loading td {
text-align: left;
}
</style>
</head>
<body>

<h1>ASP.NET SignalR Stock Ticker Sample</hl>

<h2>Live Stock Table</h2>
<div id="stockTable">
<table border="1">
<thead>
<tr><th>Symbol</th><th>Price</th><th>0pen</th>
<th>Change</th><th>%</th></tr>

</thead>
<tbody>
<tr class="loading"><td colspan="5">loading...</td></tr>
</tbody>
</table>
</div>
<!--Script references. -->
<!--Reference the jQuery library. -->
<script src="/Scripts/jquery-1.10.2.min.js" ></script>
<!--Reference the SignalR library. -->
<script src="/Scripts/jquery.signalR-2.1.0.js"></script>
<!--Reference the autogenerated SignalR hub script. -->

<script src="/signalr/hubs"></script>

<!--Reference the StockTicker script. -->

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

16/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

<script src="StockTicker.js"></script>
</body>
</html>

The HTML creates a table with five columns, a header row, and a data row with a
single cell that spans all five columns. The data row shows "loading..." momentarily
when the app starts. JavaScript code will remove that row and add in its place rows
with stock data retrieved from the server.

The script tags specify:
e The jQuery script file.
e The SignalR core script file.
e The SignalR proxies script file.
e A StockTicker script file that you'll create later.

The app dynamically generates the SignalR proxies script file. It specifies the
"/signalr/hubs” URL and defines proxy methods for the methods on the Hub class, in
this case, for StockTickerHub.GetAllStocks. If you prefer, you can generate this

JavaScript file manually by using SignalR Utilities . Don't forget to disable dynamic
file creation in the MapHubs method call.

4. In Solution Explorer, expand Scripts.

Script libraries for jQuery and SignalR are visible in the project.

@® Important

The package manager will install a later version of the SignalR scripts.

5. Update the script references in the code block to correspond to the versions of the
script files in the project.

6. In Solution Explorer, right-click StockTicker.html, and then select Set as Start Page.

Create StockTicker.js

Now create the JavaScript file.
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

17/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

1. In Solution Explorer, right-click the project and select Add > JavaScript File.
2. Name the file StockTicker and select OK.

3. Add this code to the StockTicker;s file:

JavaScript

// A simple templating method for replacing placeholders enclosed in curly
braces.
if (!String.prototype.supplant) {
String.prototype.supplant = function (o) {
return this.replace(/{(["*{}]1*)}/g,
function (a, b) {
var r = o[b];
return typeof r === 'string' || typeof r === 'number' ? r

)5
};

$(function () {

var ticker = $.connection.stockTickerMini, // the generated client-

side hub proxy

up = 'a’,

down = 'v',

$stockTable = $('#stockTable"),

$stockTableBody = $stockTable.find('tbody'),

rowTemplate = '<tr data-symbol="{Symbol}"><td>{Symbol}</td><td>
{Price}</td><td>{DayOpen}</td><td>{Direction} {Change}</td><td>
{PercentChange}</td></tr>";

function formatStock(stock) {
return $.extend(stock, {
Price: stock.Price.toFixed(2),
PercentChange: (stock.PercentChange * 100).toFixed(2) + '%',
Direction: stock.Change === 0 ? '' : stock.Change >= 0 ? up :
down

})s

function init() {
ticker.server.getAllStocks().done(function (stocks) {
$stockTableBody.empty();
$.each(stocks, function () {
var stock = formatStock(this);

$stockTableBody.append(rowTemplate.supplant(stock));

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 18/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

})s
})s

// Add a client-side hub method that the server will call
ticker.client.updateStockPrice = function (stock) {
var displayStock = formatStock(stock),
$row = $(rowTemplate.supplant(displayStock));

$stockTableBody.find('tr[data-symbol=" + stock.Symbol + ']")
.replaceWith($row);

// Start the connection
$.connection.hub.start().done(init);

1)

Examine the client code

If you examine the client code, it will help you learn how the client code interacts with the
server code to make the app work.

Starting the connection

$.connection refers to the SignalR proxies. The code gets a reference to the proxy for the
StockTickerHub class and puts it in the ticker variable. The proxy name is the name that

was set by the HubName attribute:

JavaScript

var ticker = $.connection.stockTickerMini

C#

[HubName("stockTickerMini™)]
public class StockTickerHub : Hub

After you define all the variables and functions, the last line of code in the file initializes the
SignalR connection by calling the SignalR start function. The start function executes

asvnchronouslv and returns a iQuerv Deferred obiect . You can call the done function to
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

19/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

T4 - J T - -0 I e -7 I A - - -7 - o - - T -

specify the function to call when the app finishes the asynchronous action.

JavaScript

$.connection.hub.start().done(init);

Getting all the stocks

The init function calls the getAllstocks function on the server and uses the information
that the server returns to update the stock table. Notice that, by default, you have to use
camelCasing on the client even though the method name is pascal-cased on the server.
The camelCasing rule only applies to methods, not objects. For example, you refer to
stock.Symbol and stock.Price, not stock.symbol oOr stock.price.

JavaScript

function init() {
ticker.server.getAllStocks().done(function (stocks) {
$stockTableBody.empty();
$.each(stocks, function () {
var stock = formatStock(this);
$stockTableBody.append(rowTemplate.supplant(stock));

1)
})s

C#

public IEnumerable<Stock> GetAllStocks()

{
return _stockTicker.GetAllStocks();

In the init method, the app creates HTML for a table row for each stock object received
from the server by calling formatStock to format properties of the stock object, and then
by calling supplant to replace placeholders in the rowTemplate variable with the stock

object property values. The resulting HTML is then appended to the stock table.

O Note

You call init bv passina it in as a callback function that executes after the
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 20/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

- T I A R = - -0 0 -7 T - -0 - - - T T T -

asynchronous start function finishes. If you called init as a separate JavaScript
statement after calling start, the function would fail because it would run

immediately without waiting for the start function to finish establishing the
connection. In that case, the init function would try to call the getAllstocks function

before the app establishes a server connection.

Getting updated stock prices

When the server changes a stock’s price, it calls the updateStockPrice on connected clients.
The app adds the function to the client property of the stockTicker proxy to make it
available to calls from the server.

JavaScript

ticker.client.updateStockPrice = function (stock) {
var displayStock = formatStock(stock),
$row = $(rowTemplate.supplant(displayStock));

$stockTableBody.find('tr[data-symbol=" + stock.Symbol + ']")
.replaceWith($row);

}

The updateStockPrice function formats a stock object received from the server into a table
row the same way as in the init function. Instead of appending the row to the table, it

finds the stock's current row in the table and replaces that row with the new one.

Test the application

You can test the app to make sure it's working. You'll see all browser windows display the
live stock table with stock prices fluctuating.

1. In the toolbar, turn on Script Debugging and then select the play button to run the
app in Debug mode.

B 115 Express (GoogleChrome) - @ = | B - &0 3 = A

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 21/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

[] soresopecnens |

¥ IS Express {Google Chrome) 9 [~
|

Web Browser (Google Chrome) L
Scnpt Debugging (Drizabled) " [Enabled]:

Erowse Yith, v Dizsbled

Muore Ermaslators....

A browser window will open displaying the Live Stock Table. The stock table initially
shows the "loading..." line, then, after a short time, the app shows the initial stock

data, and then the stock prices start to change.

2. Copy the URL from the browser, open two other browsers, and paste the URLs into

the address bars.

The initial stock display is the same as the first browser and changes happen
simultaneously.

3. Close all browsers, open a new browser, and go to the same URL.

The StockTicker singleton object continued to run in the server. The Live Stock Table
shows that the stocks have continued to change. You don't see the initial table with

zero change figures.

4. Close the browser.

Enable logging

SignalR has a built-in logging function that you can enable on the client to aid in
troubleshooting. In this section, you enable logging and see examples that show how logs

tell you which of the following transport methods SignalR is using:
e WebSockets , supported by IIS 8 and current browsers.
e Server-sent events , supported by browsers other than Internet Explorer.
e Forever frame , supported by Internet Explorer.
e Ajax long polling , supported by all browsers.

For any given connection, SignalR chooses the best transport method that both the server
and the client support.

1. Open StockTickers.

2. Add this hiahliahted line of code to enable loaaina immediatelv before the code that
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

22/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

=4 =4 - - -0 - -~ - T T = I A - - - - - - -

initializes the connection at the end of the file:

JavaScript
// Start the connection

$.connection.hub.logging = true;
$.connection.hub.start().done(init);

3. Press F5 to run the project.

4. Open your browser's developer tools window, and select the Console to see the logs.

You might have to refresh the page to see the logs of SignalR negotiating the

transport method for a new connection.

e |f you're running Internet Explorer 10 on Windows 8 (lIS 8), the transport
method is WebSockets.

e If you're running Internet Explorer 10 on Windows 7 (lIS 7.5), the transport
method is iframe.

e If you're running Firefox 19 on Windows 8 (lIS 8), the transport method is
WebSockets.

Q Tip

In Firefox, install the Firebug add-in to get a Console window.

e If you're running Firefox 19 on Windows 7 (lIS 7.5), the transport method is
server-sent events.

Install the StockTicker sample

The Microsoft.AspNet.SignalR.Sample installs the StockTicker application. The NuGet
package includes more features than the simplified version that you created from scratch.
In this section of the tutorial, you install the NuGet package and review the new features
and the code that implements them.

@® Important

If vou install the packaae without performina the earlier steps of this tutorial. vou
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

23/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

J - B L D N I - ~ -7 - D D - T A A

must add an OWIN startup class to your project. This readme.txt file for the NuGet
package explains this step.

Install the SignalR.Sample NuGet package
1. In Solution Explorer, right-click the project and select Manage NuGet Packages.
2. In NuGet Package manager: SignalR.StockTicker, select Browse.
3. From Package source, select nuget.org.

4. Enter SignalR.Sample in the search box and select Microsoft.AspNet.SignalR.Sample
> Install.

5. In Solution Explorer, expand the SignalR.Sample folder.
Installing the SignalR.Sample package created the folder and its contents.

6. In the SignalR.Sample folder, right-click StockTicker.html, and then select Set As Start
Page.

O Note

Installing The SignalR.Sample NuGet package might change the version of
jQuery that you have in your Scripts folder. The new StockTicker.html file that the
package installs in the SignalR.Sample folder will be in sync with the jQuery
version that the package installs, but if you want to run your original
StockTicker.html file again, you might have to update the jQuery reference in the
script tag first.

Run the application

The table that you saw in the first app had useful features. The full stock ticker application
shows new features: a horizontally scrolling window that shows the stock data and stocks

that change color as they rise and fall.

1. Press F5 to run the app.

When vou run the apo for the first time. the "market" is "closed" and vou see a static
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 24/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

- J T - - T - - - -0 - - - - - - - T T

B A

table and a ticker window that isn't scrolling.

2. Select Open Market.

[ASP.MET SignalR Stock Ticker b +

C @ localhost:65012/SignalR.Sample/StockTicker.html v O

ASP.NET SignalR Stock Ticker Sample

Dpen Market || Close Market || Reset |

Live Stock Table

Symbol | Price | Open | High | Low |Change| %
GOOG | 542.89 | 543.01 | 543.93 | 54257 | ¥ -0.12 | -0.02%
MSFT | 42.00| 41.68 42| 41.68| A032| 0.76%
AAPL| 93.04| 9208| 93.13| 5208 | A 096 | 1.03%

Live Stock Ticker

3 542.89 ¥ -0.12 (-0.02%) MSFT 42.00 A 0.32 (0.76%) AAPL 93|

e The Live Stock Ticker box starts to scroll horizontally, and the server starts to

periodically broadcast stock price changes on a random basis.

e Each time a stock price changes, the app updates both the Live Stock Table and
the Live Stock Ticker.

e When a stock's price change is positive, the app shows the stock with a green
background.

e When the change is negative, the app shows the stock with a red background.
3. Select Close Market.

e The table updates stop.

e The ticker stops scrolling.

4. Select Reset.

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

25/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

e All stock data is reset.

e The app restores the initial state before price changes started.

5. Copy the URL from the browser, open two other browsers, and paste the URLs into

the address bars.
6. You see the same data dynamically updated at the same time in each browser.

7. When you select any of the controls, all browsers respond the same way at the same

time.

Live Stock Ticker display

The Live Stock Ticker display is an unordered list in a <div> element formatted into a
single line by CSS styles. The app initializes and updates the ticker the same way as the
table: by replacing placeholders in an <1i> template string and dynamically adding the
<1li> elements to the element. The app includes scrolling by using the jQuery

animate function to vary the margin-left of the unordered list within the <div>.

SignalR.Sample StockTicker.html

The stock ticker HTML code:

HTML

<h2>Live Stock Ticker</h2>
<div id="stockTicker">
<div class="inner">

<li class="loading">loading...</1li>

</div>
</div>

SignalR.Sample StockTicker.css

The stock ticker CSS code:

HTML

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 26/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

#tstockTicker {
overflow: hidden;
width: 450px;
height: 24px;
border: 1px solid #999;
}

#tstockTicker .inner {
width: 9999px;

#tstockTicker ul {
display: inline-block;
list-style-type: none;
margin: 0;
padding: ©;

#tstockTicker 1i {
display: inline-block;
margin-right: 8px;

/*<1i data-symbol="{Symbol}">{Symbol}{Price}{PercentChange}</1li>*/
#stockTicker .symbol {
font-weight: bold;

#tstockTicker .change {
font-style: italic;

SignalR.Sample SignalR.StockTicker.js
The jQuery code that makes it scroll:
JavaScript
function scrollTicker() {
var w = $stockTickerUl.width();

$stockTickerUl.css({ marginLeft: w });
$stockTickerUl.animate({ marginLeft: -w }, 15000, 'linear', scrollTicker);

AAAitiAnnal mathAade An tha carvar that tha Fliant ~Fan ~all
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 27/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn
MUMILIVIIAL TTHICTLULITIVUJUD VI LIIT OCTI VI LITAUL LIIT LTICTIL Larn waini

To add flexibility to the app, there are additional methods the app can call.

SignalR.Sample StockTickerHub.cs

The stockTickerHub class defines four additional methods that the client can call:

C#

public string GetMarketState()

{
return _stockTicker.MarketState.ToString();
}
public void OpenMarket()
{
_stockTicker.OpenMarket();
}
public void CloseMarket()
{
_stockTicker.CloseMarket();
}
public void Reset()
{
_stockTicker.Reset();
}

The app calls OpenMarket, CloseMarket, and Reset in response to the buttons at the top of
the page. They demonstrate the pattern of one client triggering a change in state
immediately propagated to all clients. Each of these methods calls a method in the

StockTicker class that causes the market state change and then broadcasts the new state.

SignalR.Sample StockTicker.cs

In the StockTicker class, the app maintains the state of the market with a Marketstate

property that returns a MarketState enum value:

C#

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 28/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

public MarketState MarketState

{
get { return _marketState; }
private set { _marketState = value; }
}
public enum MarketState
{
Closed,
Open
}

Each of the methods that change the market state do so inside a lock block because the

StockTicker class has to be thread-safe:

C#

public void OpenMarket()

{
lock (_marketStatelLock)
{
if (MarketState != MarketState.Open)
{
_timer = new Timer(UpdateStockPrices, null, _updateInterval,
_updatelInterval);
MarketState = MarketState.Open;
BroadcastMarketStateChange(MarketState.Open);
}
}
}
public void CloseMarket()
{
lock (_marketStatelLock)
{
if (MarketState == MarketState.Open)
{
if (_timer != null)
{
_timer.Dispose();
}
MarketState = MarketState.Closed;
BroadcastMarketStateChange(MarketState.Closed);
}
}
}

public void Reset()

{

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

29/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn
lock (_marketStatelLock)

{
if (MarketState != MarketState.Closed)

{

throw new InvalidOperationException("Market must be closed before
it can be reset.");

}
LoadDefaultStocks();

BroadcastMarketReset();

To make sure this code is thread-safe, the marketstate field that backs the MarketState

property designated volatile:

C#

private volatile MarketState _marketState;

The BroadcastMarketStateChange and BroadcastMarketReset methods are similar to the

BroadcastStockPrice method that you already saw, except they call different methods
defined at the client:

C#

private void BroadcastMarketStateChange(MarketState marketState)

{
switch (marketState)
{
case MarketState.Open:
Clients.All.marketOpened();
break;
case MarketState.Closed:
Clients.All.marketClosed();
break;
default:
break;
}
}
private void BroadcastMarketReset()
{
Clients.All.marketReset();
}

AAAitiAnnal fiinArtinne Ann tha Aliant that tha carviar Fan ~all
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 30/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn
MAUMILIVIICL TUTIVLULIVIID VI LHIT CIITIIL LIIdL LIIT OCI Vel Lall wain

The updateStockprice function now handles both the table and the ticker display, and it

uses jQuery.Color to flash red and green colors.

New functions in SignalR.StockTicker,js enable and disable the buttons based on market
state. They also stop or start the Live Stock Ticker horizontal scrolling. Since many
functions are being added to ticker.client, the app uses the jQuery extend function to
add them.

JavaScript

$.extend(ticker.client, {
updateStockPrice: function (stock) {
var displayStock = formatStock(stock),
$row = $(rowTemplate.supplant(displayStock)),
$1i = $(1liTemplate.supplant(displayStock)),
bg = stock.LastChange === 0
? '255,216,0' // yellow
: stock.LastChange > ©
? '154,240,117' // green
'255,148,148'; // red

$stockTableBody.find('tr[data-symbol=" + stock.Symbol + ']"')
.replacelWith($row);

$stockTickerUl.find('li[data-symbol=" + stock.Symbol + ']")
.replaceWith($1i);

$row.flash(bg, 1000);
$1i.flash(bg, 1000);

}s

marketOpened: function () {
$("#open").prop("disabled", true);
$("#close").prop("disabled", false);
$("#reset").prop("disabled", true);
scrollTicker();

1

marketClosed: function () {
$("#open").prop("disabled", false);
$("#close").prop("disabled", true);
$("#reset").prop("disabled”, false);
stopTicker();

}s

marketReset: function () {
return init();

}

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr

31/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

1)

Additional client setup after establishing the connection
After the client establishes the connection, it has some additional work to do:

e Find out if the market is open or closed to call the appropriate marketOpened or

marketClosed function.
e Attach the server method calls to the buttons.

JavaScript

$.connection.hub.start()
.pipe(init)
.pipe(function () {
return ticker.server.getMarketState();

)
.done(function (state) {

if (state === 'Open') {
ticker.client.marketOpened();

} else {
ticker.client.marketClosed();

}

// Wire up the buttons
$("#open").click(function () {
ticker.server.openMarket();

1)

$("#close").click(function () {
ticker.server.closeMarket();

})s

$("#reset").click(function () {
ticker.server.reset();

1)
s

The server methods aren't wired up to the buttons until after the app establishes the

connection. It's so the code can't call the server methods before they're available.

Additional resources

In this tutorial vou've learned how to broaram a SianalR apolication that broadcasts
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 32/33

2023/1/10 £49:42 Tutorial: Server broadcast with SignalR 2 | Microsoft Learn

J T - - -7 - N A I - L - - - T

messages from the server to all connected clients. Now you can broadcast messages on a
periodic basis and in response to notifications from any client. You can use the concept of
multi-threaded singleton instance to maintain server state in multi-player online game
scenarios. For an example, see the ShootR game based on SignalR

For tutorials that show peer-to-peer communication scenarios, see Getting Started with
SignalR and Real-Time Updating with SignalR.

For more about SignalR, see the following resources:

e ASP.NET SignalR

¢ SignalR Project

¢ SignalR GitHub and Samples
e SignalR Wiki

Next steps

In this tutorial, you:

v/ Created the project

v/ Set up the server code

v/ Examined the server code
v Set up the client code

v/ Examined the client code
v Tested the application

v/ Enabled logging

Advance to the next article to learn how to create a real-time web application that uses
ASP.NET SignalR 2.

https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/tutorial-server-broadcast-with-signalr 33/33

